• 検索結果がありません。

Into the world of applications

ドキュメント内 High-order mode selection in Yb:YAG ceramic laser (ページ 91-105)

7.4 Future Prospects

7.4.1 Into the world of applications

As with most research, research does not end with just putting forward and ex-plaining how science works; but making it understandable and manipulate it to become useful to the world. Hence, the current work is not fully finished unless it is recognized in the world of applications. From the above discussions, it is clear that some of the future prospects definitely open doors to applications in various fields; like the very high-order modes for stronger trapping field, the NDF beams for long-range systems and the CVB for industry applications which gives hope that the work will form a part of a spectacular meteor shower in our skies someday in future.

Bibliography

[1] E. Innerhofer et al. , 60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Opt. Lett. 28, 5, 367 (2003).

[2] J. Dong et al. , Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet, J. Opt. Soc.

Am. B 20, 9, 1975 (2003).

[3] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity Phys. Rev. Lett., 75, 826 (1995).

[4] N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Mechanical equiv-alence of spin and orbital angular momentum of light: an optical spanner, Optics Lett., 22, 52 (1997).

[5] K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, Second harmonic generation using LaguerreGaussian laser modes, Phys. Rev. A, 54, R3742 (1996).

[6] W. L. Power, L. Allen, M. Babiker, and V. E. Lembessis, Atomic motion in light-beams possessing orbital angular-momentum, Phys. Rev. A, 52, 479, (1995).

[7] W. K. Lai, M. Babiker, and L. Allen, Radiation forces on a two-level atom in a σ+−σ− configuration of LaguerreGaussian beams, Optics Commun., 133, 487 (1997).

[8] G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, Spectral and lasing investigations of garnets with Yb3+ ions, Sov. Phys. JETP, 42, 440 (1976).

[9] S. E. Hatch, W. F. Parsons, and R.J.Weagley, Hot-pressed Poly-crystalline CaF2 Dy2+ laser, Appl. Phys. Lett. 5, 153 (1964).

74

BIBLIOGRAPHY 75 [10] A. Ikesue, T. Konoshita, K. Kamata, and K. Yoshida, Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers, J. Am. Ceram. Soc. 78, 1033 (1995).

[11] A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Diode-pumped high-power solid-state laser: concept and first results with Yb:YAG Appl. Phys. B: Lasers Opt. 58, 365 (1994).

[12] T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer,Yb:YAG and Nd:YAG edge-pumped slab lasers, IEEE J.Quantum Electron. 36, 205, (2000).

[13] T. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A.

A. Kaminskii, Yb3+ doped Y3Al5O12– A New solid-state laser Material, Phys.

Status Solidi A 200, R5, (2003).

[14] J. Dong, K. Ueda, H. Yagi, A. Kaminskii and Z. Cai , Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals, Laser Phys. Lett., 6, 282, (2009)

[15] A. Gerrard B. Burch, Matrix methods in optics, New York: John Wiley &

Sons (1975).

[16] W. Koechner, Solid-State Laser Engineering, Springer- Verlag, New York (1976).

[17] N. Hodgson and H. Weber,Laser Resonators and Beam Propagation, Springer Series in Optical Sciences, Springer, Berlin (2005).

[18] K. Kogelnik, and T. Li, Laser beams and resonators, Appl. Opt. 5, 1550 (1966).

[19] J. Durnin, Exact solutions for nondiffracting beams.I - The scalar theory, J.

Opt. Soc. Am. A 4, 651-654 (1987).

BIBLIOGRAPHY 76 [20] J. Durnin, and J. J. Miceli,Jr, Diffraction-free beams, Phys. Rev. Lett. 58,

15, 1499-1501 (1987).

[21] R. M. Herman, and T. A. Wiggins, Production and uses of diffractionless beams, J. Opt. Soc. Am. A 8, 6, 651-654 (1987).

[22] J. Durnin, J. J. Miceli Jr., and J. H. Eberly, Comparison of Bessel and Gaus-sian beams, Opt. Lett. 13, 79-80 (1988).

[23] Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, Experimental investigation of Bessel beam characteristics, Appl. Opt.31, 2708-2713 (1992).

[24] R. P. MacDonald, S. A. Boothroyd, T. Okamoto, J. Chrostowski, and B. A.

Syret, Interboard optical data distribution by Bessel beam shadowing, Opt.

Commun. 122, 4-6, 169-177 (1996).

[25] Z. Bouchal, J. Wagner, and M. Chlup, Self-reconstruction of a distorted non-diffracting beam, Opt. Commun. 151, 207-211 (1998).

[26] C. McQueen, J. Arlt, and K. holakia,An experiment to study a nondiffracting light beam, Am. J. Phys. 67, 10, 912-915 (1999)

[27] J. H. McLeod, The Axicon: A New Type of Optical Element J. Opt. Soc. Am.

44, 592-597 (1954).

[28] G. Indebetouw, Nondiffracting optical fields: some remarks on their analysis and synthesis J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 6, 150-152 (1989).

[29] A. Thaning, Z. Jaroszewicz, and A. T. Friberg,Diffractive Axicons in Oblique Illumination: Analysis and Experiments and Comparison with Elliptical Axi-cons, Appl. Opt. 42, 9-17 (2003).

[30] Z. Bin, and L. Zhu,Diffraction Property of an Axicon in Oblique Illumination, Appl. Opt. 37, 2563-2568 (1998).

BIBLIOGRAPHY 77 [31] T. Tanaka, and S. Yamamoto, Comparison of aberration between axicon and

lens, Opt. Commun. 184, 113-118 (2000).

[32] A. Vasara, J. Turunen, and A. T. Friberg,Realization of general nondiffracting beams with computer-generated holograms, J. Opt. Soc. Am. A 6, 1748-1754 (1989).

[33] J. A. Davis, E. Carcole, and D. M. Cottrell, Nondiffracting interference pat-terns generated with programmable spatial light modulators, Appl. Opt. 35, 599-602 (1996).

[34] J.A. Davis, E. Carcole, and D. M. Cottrell, Intensity and phase measure-ments of nondiffracting beams generated with a magneto-optic spatial light modulator, Appl. Opt. 35, 593-598 (1996).

[35] S. M. Dutra and P. L. Knight, On the generation of Bessel beams by sponta-neous emission in a planar micro-cavity, Opt. Commun.117, 256-261 (1995).

[36] J. Rogel-Salazar, G. H. C. New and S. Chvez-Cerda, Bessel-Gauss Beam Optical Resonator, Opt. Commun. 190, 117-122 (2001).

[37] C. L. Tsangaris, G. H. C. New and J. Rogel-Salazar, Opt. Commun. 223, 233-238 (2003).

[38] Peter Muys and Eefje Vandamme, Direct Generation of Bessel Beams, Appl.

Opt. 41, 6375-6379 (2002).

[39] A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, Intrinsic and extrinsic nature of orbital angular momentum of a light beam, Phys. Rev. Lett. 88.

053601 (2002).

[40] N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, The mechanical equiv-alence of the spin and orbital angular momentum of light: an optical spanner, Opt. Lett. 22, 52-54 (1997).

BIBLIOGRAPHY 78 [41] M. Rioux, P. A. Belanger, and M. Cormier,High-order circular-mode selection

in a conical resonator, Appl. Opt. 16, 1791-1792 (1977).

[42] A. P. Kolchenko, A. G. Nikitenko and Y. K. Troitskill,Control of the structure of transverse laser modes by phase-shifting masks, Sov. J. Quantum Electron.

10, 10131016 (1980).

[43] W. W. Rigrod, Isolation of Axi-Symmetric Optical- Resonator Modes, Ap-plied Physics Letters, 2, 51- 53 (1963).

[44] D. Chen, Z. Wang, and J. R. Leger, Measurements of the modal properties of a diffractive-optic graded-phase resonator, Opt. Lett.20, 663-665 (1995).

[45] J. Leger, D. Chen, and G. Mowry, Design and performance of diffractive optics for custom laser resonators, Appl. Opt.,34, 14, 2498509, (1995).

[46] A. A. Napartovich, N. N. Elkin, V. N. Troschieva, D. V. Vysotsky, and J.

R. Leger, Simplified Intracavity Phase Plates for Increasing Laser-Mode Dis-crimination, Appl. Opt. 38, 3025-3029 (1999).

[47] U. D. Zeitner, F. Wyrowski, H. Zellmer, External Design Freedom for Opti-mization of Resonator Originated Beam Shaping, IEEE J. Quantum Electron., 36, 1105-1109 (2000).

[48] A. A. Ishaaya, N. Davidson, G. Machavariani, E. Hasman and A.A. Friesem, Efficient selection of high-orderLaguerre-Gaussian modes in a Q-switched Nd:YAG laser, IEEE J. Quantum Electron. 39, 7482 (2003).

[49] A. A. Ishaaya, G. Machavariani, N. Davidson, E. Hasman and A. A. Friesem, Conversion of a high-order mode beam into a nearly Gaussian beam using a single interferometric element, Opt. Lett. 28, 504506 (2003).

[50] Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang and S. C. Wang,Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers, IEEE J. Quantum Electron. 33, 10251031 (1997).

BIBLIOGRAPHY 79 [51] Y. F. Chen, Y. P. Lan and S. c. Wang, Generation of Laguerre-Gaussian modes in fiber-coupled laser-diode end-pumped lasers, Appl. Phys. B 72, 167170 (2001).

[52] S. Quabis, R. Dorn, M. Eberler, O. Glckl, and G. Leuchs, Focusing light into a tighter spot, Opt. Commun. 179, 17 (2000).

[53] R. Dorn, S. Quabis, and G. Leuchs, Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91, 233901 (2003).

[54] Q. Zhan and J. R. Leger, Focus shaping using cylindrical vector beams, Opt.

Express 10, 324331 (2002).

[55] Y. Mushiake, K. Matsumura and N. Nakajima, Generation of Radially Po-larized Optical Beam Mode by Laser Oscillation,. Proc. IEEE, 60, 1107-1109 (1972).

[56] M.A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.C. Pommier and T. Graf, Radially polarized 3kW beam from a CO2 laser with an intracavity resonant grating mirror, Opt. Lett.,32, 13, 1824 (2007).

[57] T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M.A. Ahmed and T.

Graf, Polarization-selective grating mirrors used in the generation of radial polarization, Appl. Phys. B, 80, 6, 707 (2005).

[58] J. Li, K. Ueda, L. Zhong, M. Musha, A. Shirakawa, and T. Sato, Efficient excitations of radially and azimuthally polarized Nd3+ :YAG ceramic mi-crochip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2, Opt. Express, 16, 10841 (2008).

[59] D. Pohl, Operation of a Ruby laser in the Purely Transverse Electric Mode T E01, Appl. Phys. Lett., 20, 7, 266 (1972).

[60] S.C. Tidwell, D.H. Ford and W.D. Kimura, Generating radially polarized beams interferometrically, Appl. Opt.,29, 15, 2234 (1990).

BIBLIOGRAPHY 80 [61] N. Passilly, R. D. S. Denis, K. Ait-Ameur, F. Treussart, R. Hierle and J.F.

Roch, Simple interferometric technique for generation of a radially polarized light, Opt. Soc. Am. A, 22, 5, 984 (2005).

[62] D.C. Flanders, Submicrometer periodicity gratings as artificial anisotropic dielectrics, Appl. Phys. Lett., 42, 6, 492 (1983).

[63] G. Machavariani, Y. Lumer, I. Moshe, A. Meir and S. Jackel, Efficient extra-cavity generation of radially and azimuthally polarized beams, Opt. Lett., 32, 11, 1468 (2007).

[64] J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, The production of multi-ringed Laguerre-Gaussian modes by computer-generated holograms, J. Mod.

Opt. 45, 1231-1237 (1998).

[65] S.N. Khonina, V.V. Kotlyar, R.V. Skidanov, V.A. Soifer, P. Laakkonen, and J.

Turunen, GaussLaguerre modes with different indices in prescribed diffraction orders of a diffractive phase element, Opt. Commun. 175, 301 (2000).

[66] K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses, Opt. Express 12, 3548-3553 (2004).

[67] N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, Gen-eration of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators, J. Opt. Soc. Am. A 25, 1642-1651 (2008).

[68] R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Laser mode discrimination with intra-cavity spiral optical elements, Opt. Comm.

169, 115 (1999).

BIBLIOGRAPHY 81 [69] A. Ishaaya, N. Davidson, and A. Friesem, Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser, Opt. Express 13, 4952 (2005).

[70] Y.F. Chen, and Y.P. Lan, Dynamics of the Laguerre Gaussian TEM0,l mode in a solid-state laser, Phys. Rev. A63, 063807 (2001).

[71] Y.F. Chen, Y.P. Lan, and S.C.Wang,Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers, Appl. Phys. B 72, 167 (2001).

[72] J.-F. Bisson, A. Shirakawa, Y. Sato, Y. Senatsky, and K. Ueda, Near-field diffractive optical pumping of a laser medium, Opt. Rev., 11, 353 (2004).

[73] J.-F. Bisson, Yu. Senatsky, and K. Ueda, Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping, Laser Phys. Lett., 2, 327 (2005).

[74] M. Okida, Y. Hayashi, T.Oma-tsu, J. Hamazaki, and R. Morita, Charac-terization ... optical vortex laser based on a side-pump Nd:GdVO4 bounce oscillator, Appl. Phys. B 95, 69 (2009).

[75] J. Arlt, T. Hitomi, and K. Dholakia, Atom guiding along Laguerre-Gaussian and Bessel light beams, Appl. Phys. B 71, 549 (2000).

[76] M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, High-order Laguerre-Gaussian laser modes for studies of cold atoms, Opt. Commun. 156, 300 (1998).

[77] E.M. Wright, J. Arlt, and K. Dholakia,Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams, Phys. Rev. A 63, 013608 (2000).

[78] S. Chelkowski, S. Hild, and A. Freise, Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors, Phys. Rev. D 79,122002 (2009).

BIBLIOGRAPHY 82 [79] X.P. Zhang, W. Wang, Y.J. Xie, P.X. Wang, Q. Kong, and Y.K. Ho, Field properties and vacuum electron acceleration in a laser beam of high-order Laguerre-Gaussian mode, Opt. Commun. 281, 4103 (2008).

[80] J. Anupriya, N. Ram, and M. Pattabiraman, Hanle electromagnetically in-duced transparency and absorption resonances with a Laguerre Gaussian beam, Phys.Rev. A 81, 043804 (2010).

[81] S. Chenais, F. Druona, S. Forget, F. Balemboisa, and P. Georgesa,On thermal effects in solid-state lasers: The case of ytterbium-doped materials, Progress in Quantum Electronics, 30, 4, 98 (2006).

[82] J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon, Opt. Express14, 3304 (2006).

[83] K. Yonezawa, Y. Kozawa, and S. Sato,Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal, Opt. Lett. 31, 2151 (2006).

[84] K. Yonezawa, Y. Kozawa, and S. Sato, Compact Laser with Radial Polariza-tion Using Birefringent Laser Medium, Jap. J. Appl. Phys. 46, 5160 (2007).

[85] R. Zhou, B. I-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6m wavelength, Appl. Phys. Lett. 95, 191111 (2009).

[86] A. Nesterov, and V. Niziev, Laser Beams with Axially Symmetric Polariza-tion, Journal of Physics D Applied Physics 33,1817 (2000).

[87] Red Optronics, α-BBO (BaB2O4) crystal (Red Optronics, 2010).

http://www.redoptronics.com/a-BBO-crystal.html.

[88] Q. Zhan, Trapping metallic Rayleigh particles with radial polarization, Opt.

Express 12, 3377 (2004).

BIBLIOGRAPHY 83 [89] J. Dong, A. Shirakawa, K. Ueda, Composite Yb:YAG/Cr4+:YAG ceramics

picosecond microchip lasers, Opt. Express 15, 14516 (2007)

[90] J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. Kaminskii, Near-diffraction-limited passively Q-switched Yb:Y3Al5O12ceramic lasers with peak power >150 kW, App. Phys. Lett., 90, 13, 131105 (2007).

Curriculum Vitae

Last name: Thirugnanasambandam First name: Manasadevi Priyamvadha Born: 15 January 1985, Pondicherry, India Email: manasa@ils.uec.ac.jp

Education

Oct 2007- present

Ph.D, University of Electro-communications, Chofu, Tokyo, Japan.

Thesis title: High-Order Mode Generation in Yb:YAG ceramic laser.

July 2005 - June 2007

Masters in Physics, University of Hyderabad, Hyderabad, India.

July 2002 - June 2005

Bachelors in Physics, Pondicherry University, Pondicherry, India.

Research Experience

1. Summer Student Programme - Participated in the Summer Student Pro-gramme at Institute of Mathematical Sciences, Chennai, India. (Guide: Prof.

G. Baskaran), May - July 2005.

2. VSRP - Participated in the Visiting Students Research Programme conducted by the School of Natural Sciences, Tata Institute of Fundamental Research, Mum-bai. (Guide : Prof. Pranab Ghosh), May - July 2006.

3. Visiting student - Visiting student at Tata Institute of Fundamental Research, Mumbai. (Guide: Dr. G. Ravindra Kumar), June - September 2007.

84

BIBLIOGRAPHY 85

Publications / Conference Proceedings

1. Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,M.P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, Laser Phys. Lett.

7, No. 9, 637 (2010).

2. Multi-ring modes generation in Yb:YAG ceramic laser, Manasadevi P Thirug-nanasambandam, Yuri Senatsky, Akira Shirakawa, and Ken-ichi Ueda, Optical Materials (In press, Published online 11 Nov., 2010).

3. Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal, Manasadevi P Thirugnanasambandam, Yuri Senatsky, and Ken-ichi Ueda, Opt. Express 19, 1905-1914 (2011).

4. Generation of beams with near-diffraction free propagation characteristics in Yb:YAG laser using intra-cavity lens with spherical aberration, Manasadevi P Thirugnanasambandam, Yuri Senatsky, and Ken-ichi Ueda, Proceedings of the 5th Asian Symposium on Intense Laser Science, Vietnam (2009) - Invited Paper.

5. Cavity mode coupling for generating near-diffraction free beams in Yb:YAG laser, Manasadevi P Thirugnanasambandam, Yuri Senatsky, and Ken-ichi Ueda, (Manuscript under preparation).

Oral/Poster presentations

Domestic

1. The Japanese Society of Applied Physics, Annual Meeting, September 2009.

Oral: Numerical Simulation of quasi-continuous laser diode pumped all ceramic composite Yb,Cr:YAG self-Q-switched laser.

2. 6th UEC-TUAT Joint COE Symposium Future Nano-Materials and Coherent Optical Science, December 2010.

Poster: Multi-ring beams generation in Yb:YAG ceramic laser

3. The Japanese Society of Applied Physics, Annual Meeting, March 2010.

BIBLIOGRAPHY 86 Oral: Generation of Laguerre-Gaussian modes in Yb: YAG laser using intra-cavity lens with strong spherical aberration.

4. The Japanese Society of Applied Physics, Annual Meeting, March 2010.

Oral: Multi-ring modes with near-diffraction free propagation characteristics gen-erated from an Yb:YAG laser with an intra-cavity aberration lens.

5. The Japanese Society of Applied Physics, Annual Meeting, September 2010.

Oral: Selection of azimuthal and radially polarized modes in Yb:YAG laser with intra-cavity lens and birefringent crystal.

6. 7th UEC-TUAT Joint COE Symposium Future Nano-Materials and Coherent Optical Science, December 2011.

Poster: Selection of azimuthal and radially polarized modes in Yb:YAG laser with intra-cavity lens and birefringent crystal.

International

1. 21st Century COE Program International Symposium on Coherent Optical Science, December 2007,

Poster: Efficient Composite Ceramics Self-Q-Switching Microchip Lasers

2. 21st Century COE Program International Symposium on Coherent Optical Science, December 2007

Poster: Effect of Ytterbium concentration on Yb:YAG microchip laser perfor-mance at ambient temperature

3. 4th Asian Summer School & Symposium On Laser- Plasma Acceleration And Radiation, Hshichu,Taiwan, July 2009.

Poster: Numerical Simulation of Quasi-continuous Wave Laser-Diode-Pumped Self-Q-Switched All-ceramic Composite Cr,Yb:YAG Laser

4. 5th Laser Ceramics Symposium, Bilbao, Spain, December 2009.

Poster: Multi- ring modes generation in Yb: YAG ceramic laser

5. 14th Laser Optics Conference, St.Petersburg, Russia, June-July 2010.

Oral: Generation of very high order Laguerre-Gaussian modes in Yb: YAG laser

ドキュメント内 High-order mode selection in Yb:YAG ceramic laser (ページ 91-105)

関連したドキュメント