• 検索結果がありません。

Heat capLFCioT Of constant pressure

ドキュメント内 有機ハロゲン化合物の生成と分解の物理化学 (ページ 116-127)

.司

calibratedmicrobalance 1  (METTLER TOLEDO MX5 Microbalance) througha longalumintln Chain at

5.2  Computational Methods

4.2.2  Heat capLFCioT Of constant pressure

The heat capacityat constaJlt Pressure Was Calculated usingthe follodng relation・【9・10】

3〃‑6

C。 ‑ch・cm.・Cqb ‑言R・;R・R∑

J=l

hv/kT

(5)

where Cbans, C,.land Cvibare COnbibution to heat capacitydue to translation, rotationalmotion, and vibrationalnotion, respectively.

4.2.3 Enthalpy and Gl'bbs enerw oJfol.maLion

The following equations are employed to calCulatethe absolute hternaleneqgy (tD, enthalpy (F)and Gibb, energy (G) ofthc molecule at 0 Kandthe specified temperature (I)・[9・m]

UoK ‑ Eelec +Ezp.

UT =U。K +(E.,a.u +E.0. +E曲)T

3〃‑6

‑(Ed∝悔,・(言RT・RT・R ∑ (hv/k)【三・

J=1

HT‑ UT+RT

GT =HT ITS

where Eelec isthe intemalenergy due to electronic notion,and Ezpethe 2:erO point energy of the molecule at o K (a correction to the electromic energy). EBanS, El。t and ELbarethe thernalenergy corrections due to

the eqects of moleculartransladon, rotation andvibration atthe speci丘ed temperattqe, respectively・

Inthis study, E.lee is computed atthe B3LYP level. Et,anS, E..t and Ebb Can be rapidly calculated using statisticalthernodynamics.All the values ofEelec, Ezpe, UT, HTand GTaregiven in Hartrecs (atomic umits,

I Hartree=2625.5 I kJ・no1‑1) bythe output of the program.

Based onthese absolute energy values (U, a H), enthalpyand Gibbs energy of formation canbe calculated by different methods.

110

Method I

The enthalpies of formation at 0 K were calculated by subtractlngthc calculated atomizadon

energies (∑か。)fromknown enthalpies of formation of the isolated atoms・ The enthalpies offornation at

298.15 K were calculated by correction tothe enthalpies offornation at 0 K・ This method is the common

theo,etiCalmethodfor calCulatingthe enthalty offornation used by many studies.即ト13]

Forthe computation of enthalpies offornation, Curtiss et all [13] tested seven density funCtional

methods: B3IJYP, BP86, B3P86, BPW91, B3PW91 aJId SVWwith148 molecules・ Ofthese seven DFT

methods,the B3LYP method hasthe smallest average absolute deviation (13・O kJ・mol・1)fromthe

eq)eri皿entalValues.

The calculation procedure is as follows :

AfHo(M,OK) ‑ ∑ xAfHo(X,OK) ‑ ∑ D。(M)

‑ ∑ xAfHo(X,OK) ‑ [∑ xU(X,OK) ‑ U(M,OK)]

AfHo(M,298K) ≡ AfHo(M,OK) + lHo(M,298K) ‑ Ho(M,OK)]

‑ ∑X(H2,BK ‑H。K )x

AfGo(M,298K) = AfHo(M,298K) ‑Tis

= A.Ho(M,298K) ‑ TlSo(M,298K) ‑ ∑ xso(X,298K)】

(10)

(ll)

(12)

where Aガo and ALGoarethe staJldard‑state enthalpyand Gibbs energy of fbrnation of the idealgas,

respecdvely・ M st皿dsforthe molecule of the compound, X identifies each element which consists ofM,

and x isthe stoichiomebic codrlCient of the constituent. (H298K‑HoK)x isthefornation enthalpy correction from OK to 29SKfor elementsinreference state.

AF(A, SQ(X, 298 K),and (H298K‑HoK)Ware tabulated in Table 5.1, cited from the NIST‑JANAF

ThermochemiCalTables.[14】 The absolute standard state entropy So(X 29S K) used for elementalCarbon,

hydrogen, bromine,and oxygen (reference state) should be (5.740, 130.680/2, 152.206/2, aJld 205. 147/2)

J・mol l・K11 respectively, notthe values citedinOchterski's paper 【11】 (not in r曲rence state).

日! il

Table5・ I Enthalpies offo‑adonfor gaseous atoms and entropyand (H2粥K‑H.K) Values for elements in

their reference state Bom experiments.A

Atoms State

ANT.芹' Af;.'19.:I.K' shte I::I?.8.KK!1慧K

C Gas  71 I. 19土0.46   716.67j=0.46   Reference state  5.74土0.21 1.05 I

H Gas  216.035土0.006  217.999土0.006   Reference state 65.340土0.017  4.238 Br Gas l 17.92土0.06  1 1 1.86土0.06   Reference state   76. 103  12.255

0  Gas  246.79iO.10   249.17土0.10   Rderence state 102.574土0.018  4.342 N Gas  470.82土0.10   472.68土0.10    Reference state 95.805土0.010  4.335

The也lculatedthernochemisby values using B3LYP/6‑31G(d) for C, H, Br, 0, H2, Br2,

dibenzo‑p‑dioxin (DD)and 2,3,7,8‑tetrabromodibenzo‑p‑dioxin CrBDD)are listedinTable 5.2,all values areinHartrees.

Table 5・2 CalCulatedthermochemiby valuesingas phase at 101.325 kPa by B3LYP/6‑3 1 G(d). (Hartree)

Substance Uo K (‑Ho K)     U298 K H2,8 K G2,S K

c H Br 0

H2

‑37.846280      ‑3 7.844864

‑0.500273      .0.498857

‑2571.65691S     ‑2571.655502

‑75.060623      ‑75.059207

‑1.165536       ̲1.163175 Br2       ‑5 143.398381    ‑5 143.395626 DD        ‑612.362477     ‑612.352659 TBDD     ・ 10896. 808498    ̲ 10896.792547

‑37.843920

‑0.497913

‑2571.654558

‑75.058263

‑1.162231

‑5 143.394682

‑612.351714

‑10896.79 1602

137. 860825

‑0.5 10927

‑2571.673748

‑75.075575

・1. 177023

‑5 143.422540

・612.398258 110896.856484

UoKand Ho K arethe absolute hternalenergyand enthalpy of the molecule at 0 K.

U29S K, H298 K肌d G298 Karethe absolute intemalenergy'enthalpyand Gibbs energy of the molecule at 298.15 K, respectively. (1 H山ree=2625.51 kJ・mo1‑I)

Method 1 is illustratedwiththe example calCulatiOns for TBDD (C12H.Br.02) as follows:

∑80(TBDD)‑【12×U(C, 0 K)+4×U(H, 0 K)+4×UtBr, 0 K)+2×U(0, 0 K)]・U(TBDD, 0 K)

=[12×(‑37・846280)+4×(‑0・500273)+4×(・2571 ・6569 1 8)+2×(‑75.060623)]・(‑10896.808498)‑3.903 128

Har廿ee= 1 0247. 7 kJ・morl

AU(TBDD, 0 K)=[12×AU(C, 0 K)+4×Aβ○(H, 0 K)+4×AU(Br, 0 K)+2×AF(0, 0 K)]‑∑po(TBDD)

‑(12×71 1 ・ 19叫×21 6・035+4× 1 1 7.92+2×246.790)‑10247.7‑1 15.9 kJ・mol・l

112

AF(TBDD, 298 K)‑ Aβ○(TBDD, 0 K)+lH(TBDD, 29S K)‑H(TBDD, 0

K)H 1 2 × (H2,8KIH.K)C+4 × (H298K‑HoK)オ4 × (H298K‑HoKh,+2 × (H298K‑HoK)01

‑115.9+[(‑10896.791602)‑(‑10896・808498)】×2625・5 1‑(12× I ・05 I+4×4・238+ 4× 12・255+2×4342)=73・O

kJ・mo1‑1

AfGoCrBDD, 29S K)‑ AF(TBDD, 298 K)‑29g・ 15×lS'CrBDD, 29S K)I 12×SD(C, 298 K)4× S'(H, 298

K)・4×S'(Br, 29S K)‑2×So(0, 298 K)]

=73.0‑298. 15 ×(571.3112×5.740‑4×65.340‑4×76・ 103‑2× 102・574)/1000

=153.1 kJ・morl

Method2

Using B3I;YP/6‑31G(d), it wasfoundthatthe enthalpy offormation results for benzene and DD

calCAnted by Method 1 differ greatly from the experimentaldata・ Therefore, a simple method, Method 2,

was proposed here.

Becausethe absolute cnthalpy (H) and Gibbs energy (G) Values of the molecule can be obtained

throughtheoretiCalCalculation, lt lS easy tO Obtainthe reaction erLthalpyand Gibbs energy for any reaction

usingthese energy values by eq・ 13and 15・ hanother way'the reaction enthalpy and Gibbs energy can be calculated by eq. 14 aJld 16, respectively・

A,Ho(298 K) ‑ ∑(H2,8 K)p...ucb ‑∑(H2粥K)卿.mB

A.Ho(298 K) ‑ ∑(A,H20,8 K),.。.UCB ‑∑(AfH20,8 K).地nb

A.Go(298 K) ≡ ∑(G2,8 K),..duck ‑ ∑(G2,8 K).也C.mb

A.Go(298 K) = ∑(A,G20,8 K),..ducb ‑ ∑(AfG,0,8 K).eu..nb

(13)

(14)

(15)

(16)

combiningthese equations and usingthe experimentaldata of enthalpy and Gibbs energy of

formation for H2, Br2,and DD,[14・15]thc unknownenthalpyand Gibbs energy offo‑ation values of

TBDD can be calCulated丘om the reaction (Ⅰ) in Fig 5.I. Figure 5.1 showsthe calCuladon procedtqe of

Method 2 (all reactantsand productsare in gas state)・

113

二二二一二三二‥ ‑≡二二/…二丁‑≡;‑二=‑== 二

mweR・ bztree: ‑612351714  2×(‑5143・394682)  ‑10896・791602   2X(‑1・16223n → APES60;%0霊㌢Tee

AFT, kJ・nDl・1: 159・2     2×30・9     (AFmD)     2xO 一AV℡DD=68・3 kJ・zTD1‑I

el粥R, Hdree・ ・612・398258  2×(15143・422540)  ‑10896・856484   2×(‑1・177023) → A・qsO6・.て憲慧ITree

AP, kJIZTDl・.:  56・2      2×3・l     (APTD,,)     2xO 一APmD4148・5 kl・nt'1 1

Fig 5. 1 Calculation proc血e of Method 2・

The of enthalpyand Gibbs energy Offornation values of TBDD calCulated丘otn reaction (Ⅰ)are 68・3

kJ・no1‑land 148.5 kJ・no1‑I, respectively.

Method 3 (BensoTL's method)

The third method for estinatingthe enthalpies offomation is consistentwiththe group additivity teclmique developed by Benson・[16] It is a b・aditionalempiriCalmethod・ Benson goup values have been substantially refined duringthe years, e・g・the CHETAH progranl17] by ASTM hternationalpredicts themochemiCalproperties uslng a nOdem Bcnson application・ The available values of group conbibutions to enthalpy offornadon glVen by CHETAH 7・3 aqTe listedinTable 513・

Table 4.3 Vduesa of group additivib, conbibutions to enthalpy of forznadon of PBDDs・

Gro叩    CbH CbBr Cb‑(0) 0‑(Cb)2

Co汀eCtion

Acは

̲1.255

Arina A。血. A由uChe 13.807 44.769 ‑3.766 ・78.659  8368  3.138  8.368

Ac遥慧究l;I.。21t?.,1807 44・769 ‑3・766 ‑78・659 8368 3'138 8'3嘩

For TBDD :

AUTBDD ‑ 4(CbH) + 4(CbBr) + 4【CbT(0)I+ 2[01Cb)2] +Anne + 2A。.th。

‑ 4×13.807 +4×44.769 + 4×(13.766) + 2×(‑78.659) + 8.368 + 2×3.138

= 76.6 kJ・no1‑1

114

5.3 Discrepancy Ana吋sis for the Computation of Thermodynamics

To assess the accuracy of the three methods used to predictthe enthalpy and Gibbs energy of

formation,thethermodymamic properties of 16 compounds O)rominatedarenes) were first calculated, and

comparedwithavailable experinentaldata・

For brominated arenes, in fact, onlymiminalexpenmentalthertnodynamic data is available・ Table

5.4 showsthe calCAntion results of U, a H, S, C,, AH弧d AfG for benzene, bromoberLZX)Res, benzoic

acid, bromobenzoic acids, naphthalene,and bromonaphthalenesinthe standard‑state idealgas at 298・ 15 K and 101.325 kPa.

115

。tL'EtM .tM.69N

SL9SM O'れSM M.MハM 60MM寸 ZJMtM 0.SN寸 寸.SO〔

64の6M Z'96M 94tt寸 S.寸mM SLT9M 6tL9M 6.寸9M StENM 0.69Z

M.6寸t B.S甘T qZO+M∩T i.tMI

S+TのT

A)9JMOt m.tot

L'Zmt 9+lot 6.t寸1 8't寸t 寸.寸NT 卜1寸一

949TT S+9tT N.9tt M.66 dMm.ZS S.tS

9寸寸一卜68+9れ6Z・

6g寸S96SJ9m67・

tN9LLLL.mSM・

OSN寸t寸L.OZO8・

MSCtt6M.LO〔L L609698tOOO9‑

9MIM寸一m.卜SZ・

M卜MOSのS'T66Z・

SMMN卜SS+t66Z・

SSOSOmS't66N・

MM卜れ0寸ト.OMT t6960T寸.寸LME・

ZL6Stt寸.寸卜MS・

寸M6680寸.V卜ME・

れMO6寸6ZtMOSZ・

LtOSLt.NMZ・

9寸ZNMnS+9g6M・

60MSNMS+9S6Z・

tSt66ML.mSM・

00mt76900708・

MO卜SのれM.LOe‑

L80NtZSdOO8‑

99816ト寸.LSZ・

MMSOMtS+t66Z・

96MZNtS+t66N・

S990寸OS+1667・

M寸tMOOLQOZf・

tOSS69M.寸卜MS・

Nm9869M.寸卜MS・

寸9叫の卜9M.寸卜MS・

S寸06LSZ.MOSZ・

L9寸寸寸一.ZMZ・

9S9T寸ES.9g6N・

6寸9卜MES49の67・

tM9SO寸ト.ESで 0寸60M694OZOS・

M寸tS9mM.LOM‑

トNSTZNSdOOS・

9tMtOS寸.卜SZ‑

M卜NO寸tS+T66Z・

8MBTMTSfT66Z・

mSNOm08't66Z・

MSmMTOL.ONT

tmNSO卜M.寸LMで N60SO卜M.寸卜MS・

寸00SS9M.寸トME・

mS寸SSSN.MOSZ・

lt寸S寸t'NMZ‑

hEFLHOtu・z hqLtPtu・T

Wtu

HOMJE[ZH90・9'V'Z HOSH90

MHJqeJ亀H90・9'V'N

MFZSH90 HOOUhqWu・寸 HOOUh弔電U・M

HOO3JqWu・N

HOOUStPu M】蔓U・寸J

Mh弔電U・M'T Nh等U・N't hE[EH七0

9H90

au3Tt!qTqdtmouohq・N 9t)aTqTqd言OtuOJ甲t

auaTqTttdt!N

TOt19qdotuohqPL・9'寸.Z

tOtlaqd atZ!tPreOuOJqPL・9'V'M

atZ!TW

p.6t!3!ONdaqOuOh凸・寸 p.6t!3!ONtIaqOu2日・M P!3t!3!ONtIaqOuOJの・N

p.6t!3!02Waの 9u92Tt9qOtm)hq!G・寸.I

at)32maqOtuOJq!Q・M't 9ttaZttaqOuOhq!G・M't

att32WaqOuOh由 au92Xta中 Jqだ    UP!U

I‑3・1‑TOu・f dD

3aJPq

D

aaJPq

H

aaJVFq

n

CTrLtn10h

ptmoduou

.t!d1mZM.TOtptre7XEt+96Ntt芯Stqds亀u!t葛p93ugJ巴PtTeS1919ttreJdoTqmuApottLZ9qtP91t2Tn9PZDu99q9quOSPt!dtErOU寸.れ9TqtG.

ELt]ZOON'efト

frVJ・肖U'SanTe^TdTuauPad13,

宣ト66T.IatuaUtP岳aSat[SDPt2uLpOtuaqL

[LZ]686t'uPqe

寸.N寸N   9JMMN  6fE9N 6+Z寸N M.SMN  寸.L9Z

B'MZM M.寸NZ 0+t卜M S'〇寸   %'9T   949N O'ZC・  0.ZC・  れ.Mm S'mZZ ∩.66t Z0907 9'ZEt StNET S'寸一N 寸.卜St・  t+L6T・ SJSET・

I.寸ST・  6'寸6t・ 卜.MEt・

Z'9St・  T+8卜t・ 9.9MT・

6.れ07・  StTTN・ 8.mET・

寸.09t O'9St  ト.MET 寸.6寸t M.寸ST  6+tET 6JM9T N.T9T S+SET N.SMt   94トMT TJOEt 6.6Zt   6'6ZT S'9ET

6fE   64T・  寸.6N M.ト

れ.0 SJtM

S49寸 M.卜7  g+OT・

I.?

00 .‑ rつ

? o(コ

ト OO. \D

? ? <' M 可 M

・n' op oo

∩ tn Ln. o\

o J 7 ・ハ

【,i)(M661) .tZJJat!^T!SdpOJ!3qTE

【9d(E66T) 'PJaf!^T!SqpOh!aq叫出

【sd(996T)

+tDJatrett[aTOU

【邑(卜86t)'70JaTOTTV

【邑(196T)'tDJaXOU

【ee)(卜96t)JtZ'JatOTTV

【lt)(N96T)+tZ?JatZOnq (.:](966t)'tZ'Jaqt!qqt!S (.d(966t)LtOJatrCqqt!S (It)(966T)+tZ')aqtqqt!S [6.7(986t)'PJabTPad

【ot)(986t).tZ'JaT!SaTO

【ot)(986t)LtPJaT!SaTO

【oo(986t)4707aTFSaTO

F6t](996t)+107abTPad

(等6t).tZ)JauaSOJd

M.NT9tm卜T 9+ETM.寸Lt

I.TT9+OST m.MT6.守 6m.079M.96・

9+MTO'6ST 的80OTMOtト8 寸.tT6.m卜M・

S+TTM.89e・

TJNT6'9寸r・

M.ZTTr寸67・

寸.ST寸.9NT 寸.ST64MMT 寸.8764MCT T'寸丁寸.SOT OEJOTM6tMS

叫.tSt  ト.M卜t 帆.TBt S'寸卜t

9StOST [st]9.OST

M.ST・

【邑寸.96.

6.OnT

【邑〇'トS M.T卜Z・

tf69Z‑

9'卜寸Z・

(6L]T'寸6ZI M.NMT 寸.NMT 寸.8Mt L.not

OLmON T'90N

寸.卜6T T'Mf・ 寸.IT

〇'6寸t 帆.tnt 0+TMZ・

SfSMN‑

寸.LOZ・

I.〇寸N・

OO的NT qSNt

T'寸MT 8'9tT m.60t

3ttaTqqdtmotm)J甲へ atZaTqqdtmottToh甲t

auaTqtttdt!Z

tottaqdot17OJqPL・9'寸hN

TOttaqd au!TPrt!OtItOlqPL・9'V'N

au!TTtJV

p!3t!3!ONt13qOuOJ甲寸 pPt!3!ONdaqOtuOJの・M PPt!3!OZtTaqOttTOJ的・N

p!3C3!0日Ha中 atta2WqOttrOJq!G・寸'T

au32WaqOttTOJq!C・M'T auaZuaqOuOJq!(TN.T OtIaNdaqOtuOJtI att32VaE[

33tt巴aJaV

MPqtayV NpOqTaM tpOqTaM

MPOqtaM NpOqtaM TPOtP3M

aTtP!^'Jat[ MPOq79MNPOtPM

TPOqTaM

ptmodttrou

.(p9nuPuOU)寸.nOTqt2L

Asshown,the calCula̲ted results of heat capacityand absolute entropy areingood agreementwith

experinentaldata,althoughlittle such data is available. Onthe properties of heat capacib, and absolute

entropy,the calculation results obtained by B3LYP/6・31G(d) seem to be accurate, Since Gaussian

employs the mature theoretiCal nethods of statiStics thernodynamics to compute these two

the‑odynamic properties,and this conputationallevel is moderate.

In calCulatingthe enthalpy offornationforthose compounds, the results by Method I differ from the experimentalValues. The absolute deviationsarefrom (‑10.5 to 54.0) kJ・mol'1,andthe average

deviation is 28.I kJ・nol 1. The reason isthe model chemiby (B3LYP/6‑3 lG(d)) employed due tothe tradeoffof ̲a.ccuracyand cost is not acctmte enoqghforthe absoluteinternalenergy calculation.

The enthalpy offormation values calculated using method 2 areingood agreementwith the

experimentaldata of refemnce compounds (see Fig 5.2). The average absolute deviation from experimental values by method 2 is 4・2 kJ・norl,andthe largest absolute deviation is 17.3 kJ・no1‑I.

The predicting values using methods 3arealso in reasonable agreementwiththe experimental(see Fig 5・2)・ The average absolute deviadonfrom ekperimentalValuesfor Method 3 is 9.8 kJ・mol 1,and the largest absolute deviation is 27・O kJ・noll1 l Forthe enthalpies offornation of 2,4,6‑bibronoanilineand 2,4,61bibromophenol, bothMethod 2 and 3 have large differencesfromthe sole experimentalValues by Allotand Finch・[23] Unfortunately,there is a lack of experimentaldatafor bromoberLZene; the reference values of dibromoberLZene listedinTable 5・4arealso estimated values by OIesik et al. [20]

118

/

C6E6   0;Ⅱ5Br l3‑C6114Br2 1,3‑(芯Ⅱ4Br2 1,A‑C研14Ⅰ暮L2 (a)

60 40 20 00 名0 釣 棚 20 0

1    ●・・一    一I 1

TqJfrq‑oHlv

C 6I・15Nt・12  2 ,4, 61C6It2 a r3 NII2  C6H501I  2 ,4, 6‑C6H2 B r30I・I

C6E5COOEL  2イ:6fl411rCOOtt 3‑C6t14JlrCOOff 4‑C6tI4BrCOOtI

119

50 00 50 ㈹ 50 0 50 帥 5

2   2   1  ‑1       ●   l I

ptyLqI.Ltlv

(C)

仰 ー〜0 訓 別 ㈹ 3

pLqmtoHJV

(d)

訓o  謝  1 50  ㈹  5

PmJm.ottJv

I ̲tl OE7Dr       2イ:1 0Ⅱ7Br

Fig 5.2 Comparison of enthalpies offortnation by Methods ll3withreference data・

The results show thatthe traditionalBenson's method of group additivity(Method 3) is still one of the most acctJrate methods for estimatingfornation enthalpy,and calculation processare very slmPle and

fast.

However, Benson's method can onlygive a roughcorrection for cis‑(runs isonerization enpiriCalIy・

h estimatingthe enthalpies of isomers, Method 2 is superior to Benson's method,althoughMethod 1 and

2 is farmore conputationally expensive.

Comparedwiththe selected experimentaldata, Method 2 hasthe smallest absolute deviation among

the three methodsunderthe condition of B3LYP/6‑31G(d).Asindicated by Foresmanand Frisch,[5]

model chemisbiesthatareknownto be qulte reliablefor optlmlZlng geOmebies can be qulte poor at

predicting absolute thernochemiCalproperties (such as absolute internalenergy U, enthalpy Hand Gibbs energy G of the molecule), but such methods could be quite accurate at predicting other molecular properties, vibrationalfrequencies,and a varieb, of relative energy values: energy differences to similar

molecules, reaction energies (such as AHand A,G) and so on. The main reason for Method 2 call Offer

more accurate results isthat the systematic errors for U, Hand G in the method o鮎n cancel out across

the systems being compared.Another reason is due to its use of experiJnentalvalues as benclmarks.

120

ドキュメント内 有機ハロゲン化合物の生成と分解の物理化学 (ページ 116-127)

関連したドキュメント