• 検索結果がありません。

6L5K&

L. YciF6L5E, YciF6L5K の 精 製

変異体は、ÄKTA System (GE ヘルスケア社)にと Histap HP, HiTrap Q HP,

ResourceQカラム(GEヘルスケア社)で、クロマトグラフィーによる精製を行った。

吸着、溶出バッファーは使用直前に0.22µmのフィルターろ過・脱気を行った(表

L.1 ~ L.8)。吸着バッファーで平衡化したカラムにサンプルを吸着させ、カウンタ

ーイオンのまたは競合試薬の混合濃度を変える事により各タンパク質固有の溶出 位置に分画させ分離した。各フラクションをSDS-PAGEで確認した。

続いて、目的のタンパク質が溶出したフラクションを集め、塩を除くために透 析を行った。透析膜は超純水中で5 min煮沸した後、良くすすいだ物を使った。

透析外液は次の操作に合わせて変更した。透析は4 °C、3時間透析した後、透析 外液を新しくして再び4 °C、O/N 行った。透析液は4 °C、15000 rpm、10分遠心 して沈殿を取り除き、SDS-PAGEで確認した。

また、精製したタンパク質を、BCA Protein Assay Regent Kit (PIERCE社) によ り濃度測定した。

表 L.1. YciF変異体 Histrap HP使用時 吸着バッファー組成 20 mM Tris-Cl pH 8.0

150 mM NaCl

表 L.2. YciF変異体Histrap HP使用時バッファー組成 20 mM Tris-Cl pH 8.0

150 mM NaCl 0,5 M immidazole

表 L.3. YciF変異体 HitrapQ使用時 吸着バッファー組成 20 mM Tris-Cl pH 8.0

表 L.4. YciF変異体 HitrapQ使用時 溶出バッファー組成 20 mM Tris-Cl pH 8.0

1 M KCl

表 L.5. YciF変異体 HitrapQ使用時2回目 吸着バッファー組成 20 mM Tris-Cl pH 8.8

表 L.6. YciF変異体 HitrapQ使用時2回目溶出バッファー組成 20 mM Tris-Cl pH 8.0

1 M KCl

表 L.7. YciF変異体 Resource Q使用時 吸着バッファー組成 20 mM Tris-Cl pH 8.0

表 L.8. YciF変異体 Resource Q使用時 溶出バッファー組成 20 mM Tris-Cl pH 10.0

1 M NaCl

参 考 文 献

[1] delete

[2] D. Philp and J. F. Stoddart, Self-Assembly in Natural and Unnatural Systems, Angew.

Chem. Int. Ed. Engl. 35 (1996), pp.1154-1196.

[3] G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems – From Dissipative Structures to Order through Fluctuations, John Wiley & Sons, 1977; (小畠 陽之助, 相沢洋二 訳 「散逸構造 – 自己秩序形成の物理学的基礎」 岩波書 店, 1980)

[4] I. Prigogine, I. Stengers and H. R. Pagels, Order Out of Chaos, AIP Publishing 38:1 (1985).

[5] Y. Taniguchi, N. Trentham and S. Ikeuchi, Globular Cluster Formation Triggered by the Initial Starburst in Galaxy Formation, Astrophys. J. 526(1) (1999), pp. L13-L16.

[6] R. Pakmor and V. Springel, Simulations of magnetic fields in isolated disk galaxies, MNRAS, (2012) submitted.

[7] A. Cabelli and G. de Vahl Davis, A numerical study of the Benard cell, Journal of Fluid Mechanics 45:04 (1971), pp. 805-829.

[8] A. N. Zaikin and A. M. Zhabotinsky, Concentration wave propagation in

two-dimensional liquid-phase self-oscillating system, Nature 225, pp. 535-37, (1970).

[9] S. Laura, P. Forti, S-E. Lauritzen, Preliminary U/Th dating and the evolution of gypsum crystals in Naica caves (Mexico). Acta Carsologica 40 (1): (2011), pp.17–28.

[10] H. Haken, Synergetics – An Introduction, Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, 1978; (牧島 邦夫, 小森尚志 訳 「協同現象の数理-物理,生物,化学的系における自律形成」

東海大学出版界, 1980

[11] 木下正弘 and 原野雄一, 生命現象発現における水の並進エントロピーの重要

性, 生物物理 46(4) (2006) pp. 214-219.

[12] N. Taniguchi, On the Basic Concept of 'Nano-Technology. Proc. Intl. Conf. Prod.

London, Part II British Society of Precision Engineering. (1974).

[13] ナノテクノロジーハンドブック編集委員会 「ナノテクノロジーハンドブック1

編 創る」 オーム社, 2003.

[14] T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F. Scheurer, G.

Rogez, T. K. Yamada, P. Ohresser, E. Beaurepaire and W. Wulfhekel, Robust spin crossover and memristance across a single molecule, Nature Communications,

[15] J. J. Steele, A. C. v. P., M. M. Hawkeye, J. C. Sit, M. J. Brett, Nanostructured gradient index optical filter for high-speed humidity sensing. Sensors and Actuators B, 120 (2006) pp. 213-219.

[16] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong and S. Mitra, Carbon nanotube computer, Nature 501, (2013) pp. 526–530.

[17] R. D. Peters, X. M. Yang, Q. Wang, J. J. de Pablo, and F. Nealey, Combing advanced lithographic techniques and self-assembly of thin films of diblock copolymers to produce templates for nanofabrication, J. Vac. Sci. Technol. 18 (2000), pp.

3530-3534.

[18] R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, "Dip-Pen" Nanolithography, Science 283:5402 (1999), pp. 661-663.

[19] M. Fujita, M. Tominaga, A. Hori, and B. Therrien, Coordination Assemblies from a Pd(II)-Cornered Square Complex, Acc. Chem. Res. 38 (2005), pp. 369-378.

[20] C. G. Bezzu, M. Helliwell, J. E. Warren, D. R. Allan and N. B. McKeown, Heme-Like Coordination Chemistry Within Nanoporous Molecular Crystals, Science 327 (2010), pp. 1627-1630.

[21] Y. Yamamoto, T. Nishimura, A. Sugawara, H. Inoue, H. Nagasawa, and T. Kato, Effects of Peptides on CaCO3 Crystallization: Mineralization Properties of an Acidic Peptide Isolated from Exoskeleton of a Crayfish and Its Derivatives, Cryst. Growth Des., 8, (2008), 4062.

[22] R. Watanabe, D. Okuno, S. Sakakihara, K, Shimabukuro, R, Iino, M. Yoshida &

H. Noji, Mechanical modulation of catalytic power on F1-ATPase, Nature Chemical Biology 8, (2012), pp. 86–92.

[23] P. Ball, made to Measure -New Materials for the 21th Century, Pronceton University Press, 1997.

[24] P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature 440, (2006) pp. 297-302.

[25] M. Adleman, Molecular Computation Of Solutions To Combinatorial Problems, Science 266(11), (1994) pp. 1021-1024.

[26] H. Gradišar, S. Božič, T. Doles, D. Vengust, I. Hafner-Bratkovič, A. Mertelj, B. Webb, A. Šali, S. Klavžar and R. Jerala, Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments, Nature Chemical Biology 9, (2013) 362–366.

[27] A. Noy, Bionanoelectronics., Adv Mater. 15;23(7):807-20 (2011).

[28] K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet and S. Acharya, Challenges and breakthroughs in recent research on self-assembly, Sci. Technol. Adv. Mater. 9 (2008) 014109-014204.

[29] S. Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nature Biotechnology 21 (2003), pp. 1171-78.

[30] R. Feynman, There's Plenty of Room at the Bottom, Caltech Engineering and Science 23:5 (1960), pp. 22-36.

[31] 近藤保, 大島広行 訳, 「分子間力と表面力 第2版」朝倉書店.

[32] M. Tamakoshi, A. Murakami, M. Sugisawa, K. Tsuneizumi, S. Takeda, T. Saheki, T.

Izumi, T. Akiba, K. Mitsuoka, H. Toh, A. Yamashita, F. Arisaka, M. Hattori, T.

Oshima and A. Yamagishi, Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus, Bacteriophage, 1(3): 152–164, (2011).

[33] O. Tokareva, M. Jacobsen, M. Buehler, J. Wong and D. L. Kaplan,

Structure-function-property-design interplay in biopolymers: Spider silk, Acta Biomaterialia (2013) in press.

[34] G. Askarieh, M. Hedhammar, K. Nordling, A. Saenz, C. Casals, A. Rising, J.

Johansson and S. D. Knight, Self-assembly of spider silk proteins is controlled by a pH-sensitive relay, Nature 465 (2010) pp. 236-239.

[35] L. Xu, M-L. Tremblay, K. E. Orrell, J. Leclerc, Q. Meng, X-Q. Liu and J. K. Rainey, Nanoparticle self-assembly by a highly stable recombinant spider wrapping silk protein subunit, FEBS Letters 587 (2013), pp. 3273-3280.

[36] Y. Zheng, H. Bai, Z. Huang, X. Tian, F-Q. Nie, Y. Zhao, J. Zhai and L. Jiang, Directional water collection on wetted spider silk, Nature 463 (2010), pp. 640-643.

[37] T. Harrah, Engineered bacteriophage T4 tail fiber proteins for nanotechnology, Doctor of Philosophy in Biomedical Enginnering of TUFTS university UMI No. 3304126 (2008).

[38] A. Klug, The tobacco mosaic virus particle: structure and assembly, Philosophical Transactions of the Royal Society B 354:(1383), (1999), pp. 531–5.

[39] H. Mohri, Amino-acid composition of Tubulin constituting microtubules of sperm flagella, Nature 217 (1968) 1053-4.

[40] F. Hara, K. Yamashiro, N. Nemoto, Y. Ohta, S. Yokobori, T. Yasunaga2, S. Hisanaga and A. Yamagishi, An Actin Homolog of the Archaeon Thermoplasma acidophilum That Retains the Ancient Characteristics of Eukaryotic Actin, J. Bacteriol., 189(5),

[41] K. T. Nam, D. Kim, P. J. Yoo, C. Chiang, N. Meethong, P. T. Hammond, Y. Chiang, and A. M. Belcher, Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes, Science 312 (2006), pp. 885-888.

[42] AM. Buckle, G. Schreiber and AR. Fersht, Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution, Biochemistry 33(30) (1994), pp. 8878–89.

[43] G. R. Dieckmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen, G. M. Giordano, E.

Muñoz, I. H. Musselman, R. H. Baughman and R. K. Draper. Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices, J. Am. Chem. Soc., 125(7), (2003), pp. 1770–1777.

[44] SJ. Fleishman, TA. Whitehead, DC. Ekiert, C. Dreyfus, JE. Corn, EM. Strauch, IA.

Wilson, D. Baker, Computational design of proteins targeting the conserved stem region of influenza hemagglutinin, Science 332(6031) (2011), pp. 816-821.

[45] M. J. Pandya, G. M. Spooner, M. Sunde, J. R. Thorpe, A. Rodger, and D. N. Woolfson, Sticky-End Assembly of a Designed Peptide Fiber Provides Insight into Protein

Fibrillogenesis, Biochemistry 39 (2000), pp.8728-8734.

[46] H. Dong, S. E. Paramonov, and J. D. Hartgerink, Self-Assembly of α-Helical Coiled Coil Nanofibers, J. Am. Chem. Soc. 130 (2008), pp. 13691-13695.

[47] D. Grueninger, N. Treiber, M. O. P. Ziegler, J. W. A. Koetter, M. Schulze, and G. E.

Schulz, Designed Protein-Protein Association, Science 319 (2008), pp. 206-209.

[48] E. R. Ballister, A. H. Lai, R. N. Zuckermann, Y. Cheng, and J. D. Mougous, In vitro self-assembly of tailorable nanotubes from a simple protein building block, PNAS 105 (2008), pp. 3733-3738.

[49] J. Ha, J. M. Karchin, N. Walker-Kopp, L. Huang, E. A. Berry, and S. N. Loh, Engineering Domain-Swapped Binding Interfaces by Mutually Exclusive Folding, J.

Mol. Biol. 416 (2012), pp. 495-502.

[50] E. N. Salgado, X. I. Ambroggio, J. D. Brodin, R. A. Lewis, B. Kuhlman and F. A.

Tezcan, Metal template design of protein interfaces, PNAS 107 (2010), pp. 1827-1832.

[51] J. D. Brodin, X. I. Ambroggio, C. Tang, K. N. Parent, T. S. Baker, and F. A. Tezcan, Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays, Nature Chemistry 4 (2012), pp. 375-382.

[52] H. Masukata and J. Tomizawa, Control of primer formation for ColE1 plasmid replication: conformational change of the primer transcript, Cell. 17;44(1) 1986 pp.125-136.

(1988) pp.929-932.

[54] Dmitry, et al. A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. The EMBO journal. 1994 13:2849-61.

[55] S. Alberti, S. Oehler, B. von Wilcken-Bergmann and B. Muller-Hill, ENBO J., 1993, 12(8) 3227

[56] S. Akanuma, T. Matsuba, E. Ueno, N. Umeda and A. Yamagishi, Mimicking the evolution of a thermally stable monomeric four-helix bundle by fusion of four identical single-helix peptides, J. Biochem. 147 (2010), pp. 371-379.

[57] M. Munson, R. O’brien, J. M. Sturtevant, and L. Regan, Redesigning the hydrophobic core of a four-helix-bundle protein, Prot. Sci. 3 (1994), pp. 2015-2022.

[58] M. Munson, S. Balasubramanian, K. G. Fleming, A. D. Nagi, R. O’brien, J. M.

Sturtevant, What makes a protein a protein? Hydrophobic core designs he specify stability and structural properties, Prot. Sci. 5 (1996), pp. 1584-1593.

[59] P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber, A Switch Between Two-, Three-, and Four-Stranded Coiled Coils in GCN4 Leucine Zipper Mutants, Science 262 (1993), pp. 1401-1407.

[60] B. C. Root, L. D. Pellegrino, E. D. Crawford, B. Kokona, and R. Fairman, Design of a heterotetrameric coiled coil, Prot. Sci. 18 (2009), pp. 329-336.

[61] R. Fairman, H. Chao, T. B. Lavoie, J. J. Villafranca, G. R. Matsueda, and Jiri Novotny, Design of Heterotetrameric Coiled Coils: Evidence for Increased Stabilization by Glu –Lys+ Ion Pair Interactions, Biochemistry 35 (1996), pp. 2824-2829.

[62] M. Fukuda, N. Nara, S. Akanuma and A. Yamagishi, Effect of charged residues on the stability of a four-helix bundle conformation, 日本分子生物学会, (2009).

[63] J. Kyte, and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157 (1982), pp.105–132.

[64] L. Wang, SW. Siu, W. Gu, V. Helms, Downhill binding energy surface of the barnase-barstar complex. Biopolymers. 93(11), (2010), pp. 977-85.

[65] N. P. King, W. Sheffler, M. R. Sawaya, B. S. Vollmar, J. P. Sumida, I. Andre, T.

Gonen, T. O. Yeates, D. Baker, Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy, Science. 336(6085), (2012), pp.

1171-1174.

[66] Y. Komatsu, H. Yamada, S. Kawamoto, M. Fukuda, T. Miyakawa, R. Morikawa, M.

Takasu, S. Akanuma, and A. Yamagishi, Designing the binding surface of proteins to construct nano-fibers, to be published Prog. Theor. Chem. Phys. 26 (2012), pp.

[67] Y. Komatsu, M. Fukuda, H. Yamada, S. Kawamoto, T. Miyakawa, R. Morikawa, M.

Takasu, S. Yokojima S. Akanuma, and A. Yamagishi, Constructing Protein Nano-Fiber and Estimation of the Electronic State Around Metal Ions, to be published Int. J. Quant. Chem. 112 (2012), pp. 3750-3755.

[68] 福田真己, 「ナノ繊維創出の為の新規タンパク質間相互作用の設計」, 東京薬科

大学 生命科学研究科 2010年度修士学位論文

[69] Toshiharu, et al. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan.

Extremophiles. 2002. 6:39-44.

[70] S. Fushinobu, H. Shoun and T. Wakagi, Crystal Strucuture of Sulerythrin, a Rubrerythrin-Like Protein from a Strictly Aerobic Archaeon, Sulfolobus tokodaii Strain 7, shows Unexpected Domain Swapping, Biochemistry 42 (2003), pp.

11707-11715.

[71] T. Wakagi, Sulerythrin, the smallest member of the rubrerythrin family, from a strictly aerobic and themoacidophilic archaeon, Sulfolobus tokodaii strain 7, FEMS Microbiology Letters 222 (2003), pp. 33-37.

[72] Jean, et al. Isolation and characterization of rubrerythrin, a non-heme iron protein from Desulfovibrio vulgaris that contains rubredoxin centers and a hemerythrin-like

binuclear iron cluster. Biochemistry, 1988. 27:1636–1642.

[73] M. Helmstedt, K. Gast (Eds.), Date Evaluation in Light Scattering of Polymers.

(2000).

[74] 上田顕, 「コンピュータシミュレーション―マクロな系の中の原子運動」, 第四

版, 朝倉書店, 1990.

[75] 岡崎進, 吉井範行, 「コンピュータ・シミュレーションの基礎」第二版, 化学同

人, 2011.

[76] J. M. Thijssen 「Computational Physics」, Cambridge University Press (松田和典 訳,

「計算物理学」, シュプリンガー, 2003.

[77] T. Darden, D. York and L. Pedersen, J. Chem. Phys., (1993) 12, p.15-.

[78] 小松勇, 「ナノ繊維の素材となるタンパク質の安定性と金属イオン周辺の電子

状態」, 東京薬科大学 生命科学研究科 平成23年度修士学位論文

[79] D. Liu, Y. Zhao, X. Fan, Y. Sun, and R. O. Fox, Escherichia coli stress protein YciF:

expression, crystallization and preliminary crystallographic analysis, Acta Cryst. 60 (2004), pp. 2389-2390.

[80] A. Hindupur, D. Liu, Y. Zhao, H. D. Bellamy, M. A. White, and R. O. Fox, The

[81] http://www.rcsb.org/pdb/home/home.do

[82] R. B. Cooley, D. J. Arp and P. A. Karplus, Symerythrin Structures at Atomic

Resolution and the Origins of Rubrerythrin and the Ferritin-like Superfamily, Journal of Molecular Biology, 413, pp. 177-194,(2011).

[83] D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D.

P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C.

Berendsen, Gromacs User Manual version 4.5.4, www.gromacs.org (2010).

[84] van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J. C.

GROMACS: Fast, Flexible and Free. J. Comp. Chem. 26:1701–1718, 2005.

[85] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory Comp. 4(3) (2008), pp. 435–447.

[86] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The Missing Term In Effective Pair Potentials, J. Phys. Chem. 91 (1987), pp. 6269-6271.

[87] K. Lindorff-Larsen, S. Pianam, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror and D. E. Shaw, Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins 78 (2010), pp. 1950-1958.

[88] 神谷成敏, 肥後順一, 福西快文, 中村春木, 「タンパク質計算科学 基礎と創薬へ

の応用」, 共立出版

[89] W. L. Jorgensen, et al., Proc. Natl. Acad. Sci. USA, 102, 6665 (2005) [90] http://www.pymol.org

[91] http://spdbv.vital-it.ch

[92] R. Das and D. Baker, Macromolecular Modeling with Rosetta, Annual Review of Biochemistry, 77 (2008), pp. 363-382.

[93] K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, How Fast-Folding Proteins Fold?, Science 334, (2011) 517-520.

[94] M. Fukuda, Y. Komatsu, H. Yamada, R. Morikawa, T. Miyakawa, M. Takasu, S.

Akanuma and A. Yamagishi, “Evaluation of the protein interfaces that form an intermolecular four-helix bundle as studied by computer simulation”, Molecular Simulation (2013).

[95] M. Fukuda et al., “The simulation study of protein-protein interfaces based on the 4-helix bundle structure”, AIP Conference Proceedings 1518 p.606 (2012).

[96] M. Fukuda et al., “Computer Simulation Analysis of the Protein Binding Interfaces that Form a 4-Helix Bundle Motif”, The 12th Asia Pacific Physics Conference (2012).

[98] J. M. Fletcher, R. L. Harniman, F. R. H. Barnes, A. L. Boyle, A. Colins, J. Mantell, T.

H. Sharp, M. Antognozzi, P. J. Booth, N. Linden, M. J. Miles, R. B. Sessions, P. V.

Verkade, D. N. Woolfson, Self-assembling cages from coiled –coil peptide modules, Science 340, p 595. (2013)

[99] C. J. Tsai, S. L. Lin, H. J. Wolfson, and R. Nussinov, Studies of protein-protein interfaces: A statistical analysis of hydrophobic effect, Prot. Sci. 6 (1997), pp. 53-64.

[100] Chung-jung, et al. Studies of protein-protein interfaces: A statistical analysis of the hydrophobic effect. Protein Science. 6:53-64. (1997).

[101] Ofran, et al. Analysing six types of protein-protein interfaces. J. Mol. Biol.

325:377-87 (2003).

[102] Christopher, et al. ProtorP: a protein–protein interaction analysis server.

Bioinformatics. 2009. 25:413-414

[103] David, et al. Protein structure prediction and analysis using the Robetta server.

Nucleic Acids Research. 2004 32:526-31

[104] S. Akanuma, et al. Phylogeny-based design of a B-subunit of DNA gyrase and its ATPase domain using a small set of homologous amino acid sequences., J Mol Biol.

16;412(2):212-25. (2011)

[105] Md. Z. Kamal, T. A. S. Mohammad, G. Krishnamoorthy and N. M. Rao, Role of Active Site Rigidity in Activity: MD Simulation and Fluorescence Study on a Lipase Mutant, PLoS one (2012), Volume 7, Issue 4.

関連したドキュメント