• 検索結果がありません。

Gluon scattering amplitudesand two-dimensional integrable systemsJHEP 1202(2012)003; arXiv:1211.6225, to appear in JHEP Y. Hatsuda (DESY), K. Ito (TIT) and Y.S.

N/A
N/A
Protected

Academic year: 2024

シェア "Gluon scattering amplitudesand two-dimensional integrable systemsJHEP 1202(2012)003; arXiv:1211.6225, to appear in JHEP Y. Hatsuda (DESY), K. Ito (TIT) and Y.S."

Copied!
60
0
0

読み込み中.... (全文を見る)

全文

(1)

Yuji Satoh

(University of Tsukuba)

Based on

Y. Hatsuda (DESY), K. Ito (TIT), K. Sakai (YITP) and Y.S.

JHEP 1004(2010)108; 1009(2010)064; 1104(2011)100 ;

Gluon scattering amplitudes

and two-dimensional integrable systems

JHEP 1202(2012)003; arXiv:1211.6225, to appear in JHEP Y. Hatsuda (DESY), K. Ito (TIT) and Y.S.

(2)

string theory in

dual

1 (λ: coupling)

AdS space

4D maximal 1

1. Introduction

✩ gauge/string duality

AdS/CFT correspondence

[CFT: conformal field theory]

[AdS: anti-de Sitter]

super Yang-Mills

strong/weak

✩ discovery of integrability

⇒  

  opened up new dimensions

(3)

gauge/string duality beyond susy sectors

quantitative analysis of

gauge theory dynamics at strong coupling

(4)

gauge/string duality beyond susy sectors

quantitative analysis of

gauge theory dynamics at strong coupling

.. .

insights into applications

stimulating study of SYM

(5)

In fact,

spectrum of planar AdS/CFT for arbitrary coupling

given by thermodynamic Bethe ansatz (TBA) eqs.

checked up to 5/6-loops of SYM

[Gromov-Kazakov-Vieira ’09, Bombardelli-Fioravanti-Tateo ’09,

[Bajnok-Hegedus-Janik-Lukowski ’09, ... ] Arutyunov-Frolov ’09, ...]

( finite size effects of 2D integrable models )

( 4 loops 100000 Feynman diagrams )

(6)

In fact,

spectrum of planar AdS/CFT for arbitrary coupling

given by thermodynamic Bethe ansatz (TBA) eqs.

checked up to 5/6-loops of SYM

[Gromov-Kazakov-Vieira ’09, Bombardelli-Fioravanti-Tateo ’09,

[Bajnok-Hegedus-Janik-Lukowski ’09, ... ] Arutyunov-Frolov ’09, ...]

( finite size effects of 2D integrable models )

( 4 loops 100000 Feynman diagrams )

other aspects ?

Also,

.. .

gluon scattering amplitude/Wilson loops

correlation fn.

quark - anti

-

quark potential/cusp anomalous dim.

[this talk]

(7)

gluon scatt. amplitudes at strong coupling

minimal surfaces in AdS5 x S5

thermodynamic Bethe ansatz (TBA) equations

[ AdS/CFT ]

[ integrability ]

(8)

In this talk,

discuss maximally helicity violating (MHV) amplitude/

underlying 2D integrable models and CFTs

derive analytic expansions

around certain kinematic points

N = 4

Wilson loops of 4D maximal ( ) SYM at strong coupling

[ regular polygonal Wilson loops ]

(9)

Plan of talk

1. Introduction

2. Gluon scattering amplitudes at strong coupling 3. Minimal surfaces in AdS and integrability

4. Analytic expansion of amplitudes at strong coupling 5. Summary

[ amplitude min. surface ] [ min. surface Hitchin system, TBA ] [ AdS3 case, AdS4 case ]

(10)

2. Gluon scattering amplitudes at strong coupling

dual to

[Alday-Maldacena ’07]

amplitudes of SYM

at strong coupling minimal surfaces in AdS

=

AdS/CFT

null boundary at AdS boundary xµi+1 xµi = 2 kiµ

M : scalar part of MHV amplitudes

n-pt. amplitude n-cusp min. surface

(momentum of particle)

λ : ’t Hooft coupling

M e

p

2⇡

(Area)

N = 4

x4

x3 x2

x1 k4

k2

(11)

4-cusp solution (4-pt. amplitude)

AdS5 is parametrized in asR2,4

Y · Y := Y 21 Y02 + Y12 + Y22 + Y32 + Y42 = 1

string e.o.m. eq. of min. surface

¯Y⇥ ( Y⇥ · ¯Y⇥ )Y⇥ = 0 ( Y⇥ )2 = ( ¯Y⇥ )2 = 0

simple solution ⊂  AdS3  

Y 1 + Y 4 Y 1 + Y 0 Y 1 Y 0 Y 1 Y 4

= 1 p2

e+ e e + e

Y 2 = Y 3 = 0, z = + i

( = z , ¯ = z¯)

(12)

Poincare coordinates

Y µ = xµ

r = 0, 1, 2, 3) Y 1 + Y 4 = 1

r , Y 1 Y 4 = r2 + xµxµ r

) ds2 = 1

r2 dr2 + dxµdxµ [ r 0 : AdS boundary]

boundary coord. of AdS3 : x± = Y 0 ± Y 1

Y 1 + Y 4

Z

1 2

3 4

(13)

regularizing area, e.g., by 4 ! 4 2✏

M4 Mdiv4 exp

1

8 f( ) ln s t

2 + const.

f( ) = p

/⇥

・ f(λ) : exactly same as in spectral problem

・ precisely matches BDS conjecture [cusp anom. dim]

[all orders in perturbation]

[Bern-Dixon-Smirnov ’05]

・ s, t : Mandelstam variables

(14)

Insights into SYM

amplitudes min. surface Wilson loop

Remainder fn. : deviation from BDS formula

dual conformal symm.

⇒ remainder fn. = fn. of cross-ratios of cusp. coord. xµa

(15)

Insights into SYM

amplitudes min. surface Wilson loop

Remainder fn. : deviation from BDS formula

dual conformal symm.

⇒ remainder fn. = fn. of cross-ratios of cusp. coord. xµa

amplitude at

strong coupling ≈ geometrical object

(16)

cf. 2-loop 6-pt. remainder fn.

[Del Duca-Duhr-Smirnov ’09]

R(2)6,W L(u1, u2, u3) = (H.1)

1 24π2G

! 1

1u1

, u2 1 u1+u21; 1

"

+ 1 24π2G

! 1

u1

, 1 u1+u2

; 1

"

+ 1 24π2G

! 1

u1

, 1 u1 +u3

; 1

"

+ 1

24π2G

! 1

1u2

, u3 1 u2+u31; 1

"

+ 1 24π2G

! 1

u2

, 1 u1+u2

; 1

"

+ 1 24π2G

! 1

u2

, 1 u2 +u3

; 1

"

+ 1

24π2G

! 1

1u3

, u1 1 u1+u31; 1

"

+ 1 24π2G

! 1

u3

, 1 u1+u3

; 1

"

+ 1 24π2G

! 1

u3

, 1 u2 +u3

; 1

"

+ 3

2G

! 0,0, 1

u1

, 1 u1+u2

; 1

"

+ 3 2G

! 0,0, 1

u1

, 1 u1+u3

; 1

"

+ 3 2G

!

0,0, 1 u2

, 1 u1+u2

; 1

"

+ 3

2G

! 0,0, 1

u2

, 1 u2+u3

; 1

"

+ 3 2G

! 0,0, 1

u3

, 1 u1+u3

; 1

"

+ 3 2G

!

0,0, 1 u3

, 1 u2+u3

; 1

"

1

2G

! 0, 1

u1

,0, 1 u2

; 1

"

+G

! 0, 1

u1

,0, 1 u1+u2

; 1

"

1 2G

! 0, 1

u1

,0, 1 u3

; 1

"

+

G

! 0, 1

u1

,0, 1 u1+u3

; 1

"

1 2G

! 0, 1

u1

, 1 u1

, 1 u1+u2

; 1

"

1 2G

! 0, 1

u1

, 1 u1

, 1 u1+u3

; 1

"

1

2G

! 0, 1

u1

, 1 u2

, 1 u1+u2

; 1

"

1 2G

! 0, 1

u1

, 1 u3

, 1 u1+u3

; 1

"

1 2G

! 0, 1

u2

,0, 1 u1

; 1

"

+

G

! 0, 1

u2

,0, 1 u1+u2

; 1

"

1 2G

! 0, 1

u2

,0, 1 u3

; 1

"

+G

! 0, 1

u2

,0, 1 u2+u3

; 1

"

1

2G

! 0, 1

u2

, 1 u1

, 1 u1+u2

; 1

"

1 2G

! 0, 1

u2

, 1 u2

, 1 u1+u2

; 1

"

1 2G

! 0, 1

u2

, 1 u2

, 1 u2 +u3

; 1

"

1

2G

! 0, 1

u2

, 1 u3

, 1 u2+u3

; 1

"

+ 1 4G

!

0, u21

u1+u21,0, 1 1u1

; 1

"

+ 1

4G

!

0, u21

u1+u21, 1 1u1

,0; 1

"

1 4G

!

0, u21

u1+u2 1, 1 1u1

,1; 1

"

+ 1

4G

!

0, u21

u1+u21, 1

1u1, 1 1u1; 1

"

1 4G

!

0, u21

u1 +u21, u21

u1+u21, 1 1u1; 1

"

1

2G

! 0, 1

u3

,0, 1 u1

; 1

"

1 2G

! 0, 1

u3

,0, 1 u2

; 1

"

+G

! 0, 1

u3

,0, 1 u1+u3

; 1

"

+

G

! 0, 1

u3,0, 1 u2+u3; 1

"

1 2G

! 0, 1

u3, 1

u1, 1 u1+u3; 1

"

1 2G

! 0, 1

u3, 1

u2, 1 u2+u3; 1

"

1

2G

! 0, 1

u3, 1

u3, 1 u1+u3; 1

"

1 2G

! 0, 1

u3, 1

u3, 1 u2+u3; 1

"

+ 1

4G

!

0, u11

u1+u31,0, 1 1u3; 1

"

+ 1 4G

!

0, u11

u1+u3 1, 1

1u3,0; 1

"

1

4G

!

0, u11

u1+u31, 1

1u3,1; 1

"

+ 1 4G

!

0, u11

u1+u3 1, 1

1u3, 1 1u3; 1

"

1

4G

!

0, u11

u1+u31, u11

u1+u31, 1 1u3; 1

"

+ 1 4G

!

0, u31

u2+u31,0, 1 1u2; 1

"

+ 1

4G

!

0, u31

u2+u31, 1

1u2,0; 1

"

1 4G

!

0, u31

u2+u3 1, 1

1u2,1; 1

"

+ 1

4G

!

0, u31

u2+u31, 1

1u2, 1 1u2; 1

"

1 4G

!

0, u31

u2 +u31, u31

u2+u31, 1 1u2; 1

"

1

4G

! 1

1u1,1, 1 u3,0; 1

"

+ 1 2G

! 1

1u1, 1

1u1,1, 1 1u1; 1

"

+

– 99 –

[ “heroic effort” ]

continues 17 pages ...

(17)

[Goncharov-Spradlin-Vergu-Voloich ’10]

w/ a little more heroic effort ...

R2-loop

6 =

3

i=1

L4(x+i , xi ) 1

2Li4(1 1/ui) 1

8

Li2(1 1/ui)2

+ 1

24J4 + 2

12 J2 + 4 72

amplitude at

strong coupling ≈ sum up all-orders

(18)

3. Minimal surfaces and integrability

difficult to construct min. surfaces w/ null bound. for n ≥ 5

but possible to obtain A(area) w/o explicit solutions

[Alday-Maldacena ’09]

・ string e.o.m. ⇒  Hitchin system

[cf. special 6-cusp sol., Sakai-Satoh ’09]

・ “patching” 4-cusp sol.

amplitudes ⇐   TBA eq.

[Alday-Gaiotto-Maldacena ’09, Hatsuda-Ito-Sakai-YS ’10 Alday-Maldacena-Sever-Vieira ’10]

(19)

Let us see this

4D external momenta in

# of cusps : even in AdS3

2 light-cone coord. at ∂(AdS)

( X  ,  X   ) +1 1- ( X  ,  X   ) +2 2-

( X  ,  X   ) +2 1-

[mom. conservation]

for 2n-cusp min. surface in AdS

3

R1,1

x

±
(20)

Pohlmeyer reduction

basis in

[evolution of moving frame]

q = (Y , Y , ¯⇥Y , N )T

string e.o.m.

evolution eq. of

q :

(d + U)q = 0

introducing spectral parameter ζ R2,2 AdS3 :

⇒  linearized eq.

Bz = 1

2 1 e

1

e p 12

Bz¯ = 1

2¯ e p¯

e 12¯

0 = ⇥

d + B( ) ⇤

⇥ , so(4) ⇠ su(2) su(2)

Na = 12 e abcdY b Y c ¯Y d, e2 = 12 Y · ¯Y

p = p(z) := 2 2Y · N

(21)

compatibility/flatness cond.

) Dz¯ z = Dz z¯ = 0, Fzz¯ + [ z, z¯] = 0 Bz = Az + 1 z , Bz¯ = Az¯ + z¯

[ su(2) Hitchin system ]

original solution

Yaa˙ = Y 1 + Y 2 Y 1 + Y 0 Y 1 Y 0 Y 1 Y 2

= ( = 1)M ( = i)

= ( 1, 2) ; M : certain matrix

¯ e2↵ + |p(z)|2e 2↵ = 0

[ generalized sinh-Gordon ]

set

(22)

2n-cusp solution

change of variables

dw = ppdz, ˆ = 14 ln pp¯

) @@¯↵ˆ 2 sinh ˆ↵ = 0 [ sinh-Gordon ] ˆ

↵ = 0

⇒  4-cusp sol. in w-plane

take p(z) = zn 2 + · · · [polynomial]

solution w/ ˆ ! 0 (|w| 1) : 2n-cusp sol. in z-plane ) w ⇠ z n2 (|z| 1)

Z W

n/2 times

1 2

3 4 [no explicit form]

(23)

Cross-ratios

[ how to obtain physical info. w/o explicit sol. ]

in each (i-th) quadrant in w-plane

⇥( ; w) = bi( ; w) + si( ; w)

bi / si : big/small sol.ew/0+ ¯w , e (w/0 + ¯w )

can show cross-ratios are given by Stokes data

x±ijx±kl

x±ikx±jl = (si ^ sj)(sk ^ sl)

(si ^ sk)(sj ^ sl)( ) [ = 1, ±i for +, ]

si ^ sj := det (si, sj) ; xµi,i+1 := xµi+1 xµi = 2 kiµ

shape of min. surface cross-ratios/momenta
(24)

Finding cross-ratios

define T- and Y- fn. by

T2k+1 = (s k 1 ^ sk+1), T2k = (s k 1 ^ sk)[+]

Ys = Ts 1Ts+1

identities among det

(si ^ sj)(sk ^ sl) = (si ^ sk)(sj ^ sl) + (si ^ sl)(sk ^ sj)

Ts[+]Ts[ ] = Ts+1Ts 1 + 1

Ys[+]Ys[ ] = (1 + Ys 1)(1 + Ys+1)

[T-system]

[Y-system]

(s = 1, ..., n-3 )

where f[a]( ) := f(ea i/2 )

1 2 3 n-3

[cross-ratios]

(25)

asymptotics for ζ 0,

by WKB for Hitchin system

(⇣ ! 0) etc.

Zs = H

s

pp dz

(asymptotics) + (analyticity)

log Ys = ms cosh + X

r

Ksr ⇤ log(1 + Yr)

s :

[ cycle on alg. curve]

[for real Zs]

Ksr = Isr/ cosh ⇥ , Isr = s,r+1 + s,r 1 Y0 = Yn 2 = 0

log Ys Zs

= e , ms = 2Zs

(26)

Computing area

amplitudes

regularization of area

(Area) = 4 Z

d2z e2 ! 4 Z

d2z (e2 p

pp) + 4¯ Z

r

d2z p

pp¯

=: Afree + Areg

Afree = X

s

Z d

2⇥ ms cosh · log(1 + Ys)

remainder fn.

R (remainder fn.) = A ABDS = Afree + · · ·

.. .

(27)

Summarizing so far,

Ys : (extended) cross-ratios of

to compute AdS3 amplitudes (2n-pt.), need to solve log Ys( ) = ms cosh +

r

Ksr log(1 + Yr)

・ ms : complex param.

shape of surface

momenta

x±a

e.g. )

Y1 i 2

= x+15x+67

x+56x+17 , Y1 0) = x15x67 x56x17 Y

Y

Y

1 Y2

3 4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

n = 7

TBA eqs.

1 2 3 n-3Ksr Isr (incidence mat. of An-3)

(28)

Summarizing so far,

Ys : (extended) cross-ratios of

to compute AdS3 amplitudes (2n-pt.), need to solve log Ys( ) = ms cosh +

r

Ksr log(1 + Yr)

・ ms : complex (mass) param.

shape of surface

momenta

x±a

e.g. )

Y1 i 2

= x+15x+67

x+56x+17 , Y1 0) = x15x67 x56x17 Y

Y

Y

1 Y2

3 4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

n = 7

⇒ TBA eq. of hom. sine-Gordon model

TBA eqs.

[Hatsuda-Ito-Sakai-YS ’10]

1 2 3 n-3Ksr Isr (incidence mat. of An-3)

(29)

Remainder function

Aperiods = 1

4 mr Irs1 ms

c±i,j = x±i+2,i+1x±i+4,i+3 · · · x±j,i x±i+1,ix±i+3,i+2 · · · x±j,j 1

Afree =

n 3

s=1

d

2⇥ ms cosh log(1 + Ys( ))

ABDS = 1 4

n

i,j=1

log c+i,j

c+i,j+1 log ci 1,j ci,j ,

[overall coupling dependence : omitted]

Once Y-fn. are obtained

1 2

3

4

5

6 7

C16

c16 = x23 x45 x16 x12 x34 x56

non-trivial part : Afree , ABDS

A ABDS

= 7

12 (n 2) + Aperiods + ABDS + Afree

[amp.] - [BDS formula]

R2n :=

free energy of TBA system

for given ms [ n odd ]

(30)

4D amplitude

at strong coupling

2D integrable systems

10D superstring

➚ ➚

(31)

TBA system : solved numerically

ms 0 : CFT limit

{

exact solutions regular polygon

ms

Solving TBA eqs.

(32)

TBA system : solved numerically

ms 0 : CFT limit

{

exact solutions regular polygon

ms

Solving TBA eqs.

momentum dependence : ms ↔ momentum

solutions to TBA system : not fully investigated

[but sometimes simple iteration fails]

(33)

TBA system : solved numerically

ms 0 : CFT limit

{

exact solutions regular polygon

ms

Solving TBA eqs.

momentum dependence : ms ↔ momentum

solutions to TBA system : not fully investigated

[but sometimes simple iteration fails]

Analytic results at strong coupling

⇒ we discuss expansions around CFT lim.

??

ms ! 0 , 1

l = M L 0 ( ms = MsL = ˜MsM L )

[ M: mass scale, L: length scale ]

except

(34)

4. Analytic expansion at strong coupling

[Hatsuda-Ito-Sakai-YS ’11, Hatsuda-Ito-YS ’11 ]

TBA for AdS3

2n-pt. amplitude

HSG from [su(nb 2)2

bu(1)]n 3

[w/ imaginary resonance param.]

relation between T-fn. and g-function (boundary entropy)

[Bazhanov-Lukyanov-Zamolodchikov ’94;

Dorey-Runkel-Tateo-Watts ’99; Dorey-Lishman-Rim-Tateo ’05]

[Hatsuda-Ito-Sakai-YS ’10]

Basis of expansion

(35)

Homogenous sine-Gordon (HSG) model

[Fernandez Pousa-Gallas-Hollowood-Miramontes ’96]

start w/ coset CFT

[ for 2n-cusp AdS3 min. surface N = n-2, k=2 ]

HSG model : integrable deformation of coset CFT

Φ : comb. of weight 0 adjoint op.

SHSG = SgWZNW + d2x b

su(N )k/[bu(1)]N 1

[multi-param. deformation]

simplest case from su(2)b k/bu(1)

⇒  complex sine-Gordon/minimal affine TodaAk 1

= ⇥ M 2(1 )

= ¯ = N

N + k ,

(36)

spectrum [copies of min. affine Toda]

Msa = sin ka

sin k Ms , Ms = MM˜s

1 2

1 2 k-1

N-1 3

s a

MN 1 M2

M1

min. surface ← 2D integrable model ← CFT

(37)

Expansion of A

free

:

[ R2n Afree + ABDS ]

free energy around CFT limit

CFT perturbation

for the case of 2n-cusp min. surface in AdS3

Afree =

6 cn + fnbulk +

k=2

fn(k) l 4kn

cn = (n 2)(n 5)

n [central charge]

fnbulk = 1

4 mr Irs1 ms fn(k) k-pt. fn.of

(38)

A

BDS

:

( c±ij )

can show cross-ratios c±ij : nothing but T-fn.

where

c+ij = T|[i+ji j|] 1(0), cij = T|[i+ji j|+1]1 (0)

)

Ts[k]( ) := Ts + i 2 k

everything fits into language of 2D integrable model ABDS =

[trans. matrix]

ABDS(Ts)

(39)

T-function ⇐ g-function

integral eq. for g-fn. is known :

[Dorey-Lishman-Rim-Tateo ’05; Poszgay ’10; Woynarovich ’10]

comparing this w/ TBA eq. following

similar to TBA eq. , including boundary contributions

g-fn.

Z | = |e RH | =

k=0

G|(k)(l)2

e REk

[Dorey-Runkel-Tateo-Watts ’99; Dorey-Lishman-Rim-Tateo ’05]

log G|(0) R

L

G|(0)s,C .

G|(0)1 = Ts i

2 C

[counts ground state degeneracy]

(boundary entropy)

(40)

|1 : trivial boundary

boundaries reflection factors

[deforming factor]

need to find

satisfying boundary bootstrap, unitarity, crossing symm.

corresponding precisely to

T

s

(x) := sinh 12 ( + i2 x) sinh 12 ( i2 x)

[Sasaki ’93]

)

|s, C : ( R|rs,C ( ) = R|r1 ( ) Zr|s,C ( )

Zr|s,C

Zr|s,C ( ) :=

(1 + C)(1 C) sr

R |s,r C >

(41)

Expansion of T-function

periodicity

Ts( ) =

p,q=0

t(p,qs )l(1 )(p+q) cosh 2p n

boundary CFT perturbation of g-fn.

t(2,0)s

t(0,0)s = nG( ˜Mj)B(1 2 , ) 2(2⇥)1 2

sin(3(s+1)n ) sin((s+1)n )

s sin(n ) sin(3n )

ssin(3n ) sin(n)

!

[ given by modular S-matrix ]

t(0,0)s = sin (s+1)n

sin(n ) (z) (0)

= G2( ˜Ms)

|z|4

,

t(2,0)s , t(0,4)s

T-system

nG( ˜Ms)

t(2,0)1

[Dorey-Runkel-Tateo-Watts ’99;

Dorey-Lishman-Rim-Tateo ’05]

[

T-system ]
(42)

R2n = R2n(0) + l n8 R(4)2n + O(l 12n )

:=

t(2,0)s 1 t(0,0)s 1

2

+ t(2,0)s t(0,0)s

2

cos 2 n

2t(2,0)s

参照

関連したドキュメント