Yuji Satoh
(University of Tsukuba)
Based on
Y. Hatsuda (DESY), K. Ito (TIT), K. Sakai (YITP) and Y.S.
JHEP 1004(2010)108; 1009(2010)064; 1104(2011)100 ;
Gluon scattering amplitudes
and two-dimensional integrable systems
JHEP 1202(2012)003; arXiv:1211.6225, to appear in JHEP Y. Hatsuda (DESY), K. Ito (TIT) and Y.S.
string theory in
dual⇥
1 (λ: coupling)
AdS space
4D maximal 1
1. Introduction
✩ gauge/string duality
≈AdS/CFT correspondence
[CFT: conformal field theory]
[AdS: anti-de Sitter]
super Yang-Mills
strong/weak
✩ discovery of integrability
⇒
opened up new dimensions
● gauge/string duality beyond susy sectors
● quantitative analysis of
gauge theory dynamics at strong coupling
● gauge/string duality beyond susy sectors
● quantitative analysis of
gauge theory dynamics at strong coupling
.. .
● insights into applications
● stimulating study of SYM
In fact,
● spectrum of planar AdS/CFT for arbitrary coupling
・ given by thermodynamic Bethe ansatz (TBA) eqs.
・ checked up to 5/6-loops of SYM
[Gromov-Kazakov-Vieira ’09, Bombardelli-Fioravanti-Tateo ’09,
[Bajnok-Hegedus-Janik-Lukowski ’09, ... ] Arutyunov-Frolov ’09, ...]
( finite size effects of 2D integrable models )
( 4 loops ≈ 100000 Feynman diagrams )
In fact,
● spectrum of planar AdS/CFT for arbitrary coupling
・ given by thermodynamic Bethe ansatz (TBA) eqs.
・ checked up to 5/6-loops of SYM
[Gromov-Kazakov-Vieira ’09, Bombardelli-Fioravanti-Tateo ’09,
[Bajnok-Hegedus-Janik-Lukowski ’09, ... ] Arutyunov-Frolov ’09, ...]
( finite size effects of 2D integrable models )
( 4 loops ≈ 100000 Feynman diagrams )
● other aspects ?
Also,
.. .
・
gluon scattering amplitude/Wilson loops
・
correlation fn.
・
quark - anti
-quark potential/cusp anomalous dim.
[this talk]
gluon scatt. amplitudes at strong coupling
minimal surfaces in AdS5 x S5
thermodynamic Bethe ansatz (TBA) equations
[ AdS/CFT ]
[ integrability ]
⇐
⇐
In this talk,
● discuss maximally helicity violating (MHV) amplitude/
underlying 2D integrable models and CFTs
● derive analytic expansions
around certain kinematic points
N = 4
Wilson loops of 4D maximal ( ) SYM at strong coupling
⇑
[ regular polygonal Wilson loops ]
Plan of talk
1. Introduction
2. Gluon scattering amplitudes at strong coupling 3. Minimal surfaces in AdS and integrability
4. Analytic expansion of amplitudes at strong coupling 5. Summary
[ amplitude → min. surface ] [ min. surface → Hitchin system, TBA ] [ AdS3 case, AdS4 case ]
2. Gluon scattering amplitudes at strong coupling
dual to
[Alday-Maldacena ’07]
amplitudes of SYM
at strong coupling minimal surfaces in AdS
=
AdS/CFT
・ null boundary at AdS boundary xµi+1 xµi = 2 kiµ
・ M : scalar part of MHV amplitudes
n-pt. amplitude n-cusp min. surface
(momentum of particle)
・ λ : ’t Hooft coupling
M e
p
2⇡
(Area)
N = 4
x4
x3 x2
x1 k4
k2
4-cusp solution (4-pt. amplitude)
● AdS5 is parametrized in asR2,4
Y · Y := Y 21 Y02 + Y12 + Y22 + Y32 + Y42 = 1
● string e.o.m. ≈ eq. of min. surface
¯Y⇥ ( Y⇥ · ¯Y⇥ )Y⇥ = 0 ( Y⇥ )2 = ( ¯Y⇥ )2 = 0
● simple solution ⊂ AdS3
⇣ Y 1 + Y 4 Y 1 + Y 0 Y 1 Y 0 Y 1 Y 4
⌘ = 1 p2
⇣ e⌧+ e⌧ e ⌧+ e ⌧
⌘ Y 2 = Y 3 = 0, z = ⇥ + i
( = z , ¯ = z¯)
● Poincare coordinates
Y µ = xµ
r (µ = 0, 1, 2, 3) Y 1 + Y 4 = 1
r , Y 1 Y 4 = r2 + xµxµ r
) ds2 = 1
r2 dr2 + dxµdxµ [ r → 0 : AdS boundary]
● boundary coord. of AdS3 : x± = Y 0 ± Y 1
Y 1 + Y 4
∞ Z ∞
1 2
3 4
● regularizing area, e.g., by 4 ! 4 2✏
M4 ⇥ Mdiv4 exp
1
8 f( ) ln s t
2 + const.
f( ) = p
/⇥
・ f(λ) : exactly same as in spectral problem
・ precisely matches BDS conjecture [cusp anom. dim]
[all orders in perturbation]
[Bern-Dixon-Smirnov ’05]
・ s, t : Mandelstam variables
Insights into SYM
amplitudes ≈ min. surface ≈ Wilson loop
Remainder fn. : deviation from BDS formula
dual conformal symm.
⇒ remainder fn. = fn. of cross-ratios of cusp. coord. xµa
Insights into SYM
amplitudes ≈ min. surface ≈ Wilson loop
Remainder fn. : deviation from BDS formula
dual conformal symm.
⇒ remainder fn. = fn. of cross-ratios of cusp. coord. xµa
amplitude at
strong coupling ≈ geometrical object
cf. 2-loop 6-pt. remainder fn.
[Del Duca-Duhr-Smirnov ’09]R(2)6,W L(u1, u2, u3) = (H.1)
1 24π2G
! 1
1−u1
, u2 −1 u1+u2−1; 1
"
+ 1 24π2G
! 1
u1
, 1 u1+u2
; 1
"
+ 1 24π2G
! 1
u1
, 1 u1 +u3
; 1
"
+ 1
24π2G
! 1
1−u2
, u3 −1 u2+u3−1; 1
"
+ 1 24π2G
! 1
u2
, 1 u1+u2
; 1
"
+ 1 24π2G
! 1
u2
, 1 u2 +u3
; 1
"
+ 1
24π2G
! 1
1−u3
, u1 −1 u1+u3−1; 1
"
+ 1 24π2G
! 1
u3
, 1 u1+u3
; 1
"
+ 1 24π2G
! 1
u3
, 1 u2 +u3
; 1
"
+ 3
2G
! 0,0, 1
u1
, 1 u1+u2
; 1
"
+ 3 2G
! 0,0, 1
u1
, 1 u1+u3
; 1
"
+ 3 2G
!
0,0, 1 u2
, 1 u1+u2
; 1
"
+ 3
2G
! 0,0, 1
u2
, 1 u2+u3
; 1
"
+ 3 2G
! 0,0, 1
u3
, 1 u1+u3
; 1
"
+ 3 2G
!
0,0, 1 u3
, 1 u2+u3
; 1
"
− 1
2G
! 0, 1
u1
,0, 1 u2
; 1
"
+G
! 0, 1
u1
,0, 1 u1+u2
; 1
"
− 1 2G
! 0, 1
u1
,0, 1 u3
; 1
"
+
G
! 0, 1
u1
,0, 1 u1+u3
; 1
"
− 1 2G
! 0, 1
u1
, 1 u1
, 1 u1+u2
; 1
"
− 1 2G
! 0, 1
u1
, 1 u1
, 1 u1+u3
; 1
"
− 1
2G
! 0, 1
u1
, 1 u2
, 1 u1+u2
; 1
"
− 1 2G
! 0, 1
u1
, 1 u3
, 1 u1+u3
; 1
"
− 1 2G
! 0, 1
u2
,0, 1 u1
; 1
"
+
G
! 0, 1
u2
,0, 1 u1+u2
; 1
"
− 1 2G
! 0, 1
u2
,0, 1 u3
; 1
"
+G
! 0, 1
u2
,0, 1 u2+u3
; 1
"
− 1
2G
! 0, 1
u2
, 1 u1
, 1 u1+u2
; 1
"
− 1 2G
! 0, 1
u2
, 1 u2
, 1 u1+u2
; 1
"
− 1 2G
! 0, 1
u2
, 1 u2
, 1 u2 +u3
; 1
"
− 1
2G
! 0, 1
u2
, 1 u3
, 1 u2+u3
; 1
"
+ 1 4G
!
0, u2−1
u1+u2−1,0, 1 1−u1
; 1
"
+ 1
4G
!
0, u2−1
u1+u2−1, 1 1−u1
,0; 1
"
− 1 4G
!
0, u2−1
u1+u2 −1, 1 1−u1
,1; 1
"
+ 1
4G
!
0, u2−1
u1+u2−1, 1
1−u1, 1 1−u1; 1
"
− 1 4G
!
0, u2−1
u1 +u2−1, u2−1
u1+u2−1, 1 1−u1; 1
"
− 1
2G
! 0, 1
u3
,0, 1 u1
; 1
"
− 1 2G
! 0, 1
u3
,0, 1 u2
; 1
"
+G
! 0, 1
u3
,0, 1 u1+u3
; 1
"
+
G
! 0, 1
u3,0, 1 u2+u3; 1
"
− 1 2G
! 0, 1
u3, 1
u1, 1 u1+u3; 1
"
− 1 2G
! 0, 1
u3, 1
u2, 1 u2+u3; 1
"
− 1
2G
! 0, 1
u3, 1
u3, 1 u1+u3; 1
"
− 1 2G
! 0, 1
u3, 1
u3, 1 u2+u3; 1
"
+ 1
4G
!
0, u1−1
u1+u3−1,0, 1 1−u3; 1
"
+ 1 4G
!
0, u1−1
u1+u3 −1, 1
1−u3,0; 1
"
− 1
4G
!
0, u1−1
u1+u3−1, 1
1−u3,1; 1
"
+ 1 4G
!
0, u1−1
u1+u3 −1, 1
1−u3, 1 1−u3; 1
"
− 1
4G
!
0, u1−1
u1+u3−1, u1−1
u1+u3−1, 1 1−u3; 1
"
+ 1 4G
!
0, u3−1
u2+u3−1,0, 1 1−u2; 1
"
+ 1
4G
!
0, u3−1
u2+u3−1, 1
1−u2,0; 1
"
− 1 4G
!
0, u3−1
u2+u3 −1, 1
1−u2,1; 1
"
+ 1
4G
!
0, u3−1
u2+u3−1, 1
1−u2, 1 1−u2; 1
"
− 1 4G
!
0, u3−1
u2 +u3−1, u3−1
u2+u3−1, 1 1−u2; 1
"
− 1
4G
! 1
1−u1,1, 1 u3,0; 1
"
+ 1 2G
! 1
1−u1, 1
1−u1,1, 1 1−u1; 1
"
+
– 99 –
[ “heroic effort” ]
continues 17 pages ...
[Goncharov-Spradlin-Vergu-Voloich ’10]
w/ a little more heroic effort ...
R2-loop
6 =
3
i=1
⇥L4(x+i , xi ) 1
2Li4(1 1/ui)⇤ 1
8
⇥Li2(1 1/ui)⇤2
+ 1
24J4 + 2
12 J2 + 4 72
amplitude at
strong coupling ≈ sum up all-orders
3. Minimal surfaces and integrability
● difficult to construct min. surfaces w/ null bound. for n ≥ 5
● but possible to obtain A(area) w/o explicit solutions
[Alday-Maldacena ’09]
・ string e.o.m. ⇒ Hitchin system
[cf. special 6-cusp sol., Sakai-Satoh ’09]
・ “patching” 4-cusp sol.
● amplitudes ⇐ TBA eq.
[Alday-Gaiotto-Maldacena ’09, Hatsuda-Ito-Sakai-YS ’10 Alday-Maldacena-Sever-Vieira ’10]
Let us see this
● 4D external momenta in
● # of cusps : even in AdS3
● 2 light-cone coord. at ∂(AdS)
( X , X ) +1 1- ( X , X ) +2 2-
( X , X ) +2 1-
[mom. conservation]
for 2n-cusp min. surface in AdS
3R1,1
x
±Pohlmeyer reduction
● basis in
[evolution of moving frame]
q = (Y ,⇥ Y ,⇥ ¯⇥Y , N⇥ )T
● string e.o.m.
⇔
evolution eq. ofq :
(d + U)q = 0●
introducing spectral parameter ζ R2,2 AdS3 :
⇒ linearized eq.
Bz = ⇣ 1
2⇥ 1⇥ e
1
⇥ e p 12⇥
⌘
Bz¯ = ⇣ 1
2⇤¯ ⇥e p¯
⇥e 12⇤¯
0 = ⇥ ⌘
d + B( ) ⇤
⇥ , so(4) ⇠ su(2) su(2)
Na = 12 e abcdY b Y c ¯Y d, e2 = 12 Y · ¯Y
p = p(z) := 2 2Y · N
● compatibility/flatness cond.
) Dz¯ z = Dz z¯ = 0, Fzz¯ + [ z, z¯] = 0 Bz = Az + 1 z , Bz¯ = Az¯ + z¯
[ su(2) Hitchin system ]
● original solution
Yaa˙ = ⇣ Y 1 + Y 2 Y 1 + Y 0 Y 1 Y 0 Y 1 Y 2
⌘ = ( = 1)M ( = i)
= ( 1, 2) ; M : certain matrix
⇔
⇥⇥¯ e2↵ + |p(z)|2e 2↵ = 0[ generalized sinh-Gordon ]
set
2n-cusp solution
● change of variables
dw = ppdz, ˆ = 14 ln pp¯
) @@¯↵ˆ 2 sinh ˆ↵ = 0 [ sinh-Gordon ] ˆ
↵ = 0
● ⇒ 4-cusp sol. in w-plane
● take p(z) = zn 2 + · · · [polynomial]
⇒
solution w/ ↵ˆ ! 0 (|w| 1) : 2n-cusp sol. in z-plane ) w ⇠ z n2 (|z| 1)Z W
n/2 times
1 2
3 4 [no explicit form]
Cross-ratios
[ how to obtain physical info. w/o explicit sol. ]● in each (i-th) quadrant in w-plane
⇥( ; w) = bi( ; w) + si( ; w)
bi / si : big/small sol. ⇠ ew/0+ ¯w , e (w/0 + ¯w )
● can show cross-ratios are given by Stokes data
x±ijx±kl
x±ikx±jl = (si ^ sj)(sk ^ sl)
(si ^ sk)(sj ^ sl)( ) [ = 1, ±i for +, ]
si ^ sj := det (si, sj) ; xµi,i+1 := xµi+1 xµi = 2 kiµ
⇒
shape of min. surface ≈ cross-ratios/momentaFinding cross-ratios
● define T- and Y- fn. by
T2k+1 = (s k 1 ^ sk+1), T2k = (s k 1 ^ sk)[+]
Ys = Ts 1Ts+1
● identities among det
(si ^ sj)(sk ^ sl) = (si ^ sk)(sj ^ sl) + (si ^ sl)(sk ^ sj)
⇡ Ts[+]Ts[ ] = Ts+1Ts 1 + 1
⇡ Ys[+]Ys[ ] = (1 + Ys 1)(1 + Ys+1)
[T-system]
[Y-system]
(s = 1, ..., n-3 )
where f[a]( ) := f(ea i/2 )
1 2 3 n-3
[≈ cross-ratios]
● asymptotics for ζ → 0,
∞
by WKB for Hitchin system(⇣ ! 0) etc.
Zs = H
s
pp dz
● (asymptotics) + (analyticity)
log Ys = ms cosh + X
r
Ksr ⇤ log(1 + Yr)
s :
[ cycle on alg. curve]
[for real Zs]
Ksr = Isr/ cosh ⇥ , Isr = s,r+1 + s,r 1 Y0 = Yn 2 = 0
log Ys Zs
= e , ms = 2Zs
Computing area
≈amplitudes
● regularization of area
(Area) = 4 Z
d2z e2 ! 4 Z
d2z (e2 p
pp) + 4¯ Z
r ⇥
d2z p
pp¯
=: Afree + Areg
Afree = X
s
Z d
2⇥ ms cosh · log(1 + Ys)
● remainder fn.
R (remainder fn.) = A ABDS = Afree + · · ·
.. .
Summarizing so far,
・ Ys : (extended) cross-ratios of
● to compute AdS3 amplitudes (2n-pt.), need to solve log Ys( ) = ms cosh +
r
Ksr ⇥ log(1 + Yr)
・ ms : complex param.
≈ shape of surface
⇔
momentax±a
e.g. )
Y1 i 2
⇥ = x+15x+67
x+56x+17 , Y1 0) = x15x67 x56x17 Y
Y
Y
1 Y2
3 4
1 1
2 2
3 3
4 4
5 5
6 6
7 7
n = 7
TBA eqs.
1 2 3 n-3 ・ Ksr ∝ Isr (incidence mat. of An-3)
Summarizing so far,
・ Ys : (extended) cross-ratios of
● to compute AdS3 amplitudes (2n-pt.), need to solve log Ys( ) = ms cosh +
r
Ksr ⇥ log(1 + Yr)
・ ms : complex (mass) param.
≈ shape of surface
⇔
momentax±a
e.g. )
Y1 i 2
⇥ = x+15x+67
x+56x+17 , Y1 0) = x15x67 x56x17 Y
Y
Y
1 Y2
3 4
1 1
2 2
3 3
4 4
5 5
6 6
7 7
n = 7
⇒ TBA eq. of hom. sine-Gordon model
TBA eqs.
[Hatsuda-Ito-Sakai-YS ’10]
1 2 3 n-3 ・ Ksr ∝ Isr (incidence mat. of An-3)
Remainder function
Aperiods = 1
4 mr Irs1 ms
c±i,j = x±i+2,i+1x±i+4,i+3 · · · x±j,i x±i+1,ix±i+3,i+2 · · · x±j,j 1
Afree =
n 3
s=1
⇥ ⇥
⇥
d
2⇥ ms cosh log(1 + Ys( ))
ABDS = 1 4
n
i,j=1
log c+i,j
c+i,j+1 log ci 1,j ci,j ,
[overall coupling dependence : omitted]
● Once Y-fn. are obtained
1 2
3
4
5
6 7
C16
c16 = x23 x45 x16 x12 x34 x56
⇒
non-trivial part : Afree , ABDSA ABDS
= 7
12 (n 2) + Aperiods + ABDS + Afree
[amp.] - [BDS formula]
R2n :=
free energy of TBA system
for given ms [ n odd ]
4D amplitude
at strong coupling
2D integrable systems
10D superstring
➚ ➚
⇒
● TBA system : solved numerically
ms 0 : CFT limit
{
● exact solutions regular polygon
ms ⇥
Solving TBA eqs.
● TBA system : solved numerically
ms 0 : CFT limit
{
● exact solutions regular polygon
ms ⇥
Solving TBA eqs.
momentum dependence : ms ↔ momentum
solutions to TBA system : not fully investigated
[but sometimes simple iteration fails]
● TBA system : solved numerically
ms 0 : CFT limit
{
● exact solutions regular polygon
ms ⇥
Solving TBA eqs.
momentum dependence : ms ↔ momentum
solutions to TBA system : not fully investigated
[but sometimes simple iteration fails]
Analytic results at strong coupling
⇒ we discuss expansions around CFT lim.
??
ms ! 0 , 1
l = M L 0 ( ms = MsL = ˜MsM L )
[ M: mass scale, L: length scale ]
except
4. Analytic expansion at strong coupling
[Hatsuda-Ito-Sakai-YS ’11, Hatsuda-Ito-YS ’11 ]
TBA for AdS3
2n-pt. amplitude
⇐
HSG from [su(nb 2)2bu(1)]n 3
[w/ imaginary resonance param.]
●
● relation between T-fn. and g-function (boundary entropy)
[Bazhanov-Lukyanov-Zamolodchikov ’94;
Dorey-Runkel-Tateo-Watts ’99; Dorey-Lishman-Rim-Tateo ’05]
[Hatsuda-Ito-Sakai-YS ’10]
Basis of expansion
Homogenous sine-Gordon (HSG) model
[Fernandez Pousa-Gallas-Hollowood-Miramontes ’96]
● start w/ coset CFT
[ for 2n-cusp AdS3 min. surface N = n-2, k=2 ]
● HSG model : integrable deformation of coset CFT
Φ : comb. of weight 0 adjoint op.
SHSG = SgWZNW + d2x b
su(N )k/[bu(1)]N 1
[multi-param. deformation]
● simplest case from su(2)b k/bu(1)
⇒ complex sine-Gordon/minimal affine TodaAk 1
= ⇥ M 2(1 )
= ¯ = N
N + k ,
● spectrum [copies of min. affine Toda]
Msa = sin ka
sin k Ms , Ms = MM˜s
1 2
1 2 k-1
N-1 3
s a
MN 1 M2
M1
min. surface ← 2D integrable model ← CFT
Expansion of A
free:
[ R2n ⇠ Afree + ABDS ]● free energy around CFT limit
⇐
CFT perturbation● for the case of 2n-cusp min. surface in AdS3
Afree =
6 cn + fnbulk +
k=2
fn(k) l 4kn
cn = (n 2)(n 5)
n [central charge]
fnbulk = 1
4 mr Irs1 ms fn(k) ⇥ k-pt. fn.of
A
BDS:
( c±ij )● can show cross-ratios c±ij : nothing but T-fn.
where
c+ij = T|[i+ji j|] 1(0), cij = T|[i+ji j|+1]1 (0)
)
Ts[k]( ) := Ts + ⇥i 2 k
everything fits into language of 2D integrable model ABDS =
[≈ trans. matrix]
ABDS(Ts)
T-function ⇐ g-function
● integral eq. for g-fn. is known :
[Dorey-Lishman-Rim-Tateo ’05; Poszgay ’10; Woynarovich ’10]
● comparing this w/ TBA eq. following
⇒
similar to TBA eq. , including boundary contributions
●
g-fn.
≈Z⇤ | ⌅ = |e RH | ⇥ = ⇤⇥
k=0
G|(k)⌅(l)⇥2
e REk
[Dorey-Runkel-Tateo-Watts ’99; Dorey-Lishman-Rim-Tateo ’05]
log G|(0)↵ R
L
G|(0)s,C .
G|(0)1 = Ts i
2 C
[counts ground state degeneracy]
(boundary entropy)
|1 : trivial boundary
● boundaries ≈ reflection factors
[deforming factor]
● need to find
satisfying boundary bootstrap, unitarity, crossing symm.
・
corresponding precisely to
・
T
s(x) := sinh 12 ( + i⇥2 x) sinh 12 ( i⇥2 x)
[Sasaki ’93]
)
|s, C : ( R|rs,C ( ) = R|r1 ( ) Zr|s,C ( )
Zr|s,C
Zr|s,C ( ) := ⇣
(1 + C)⇥(1 C)⇥⌘ sr
R |s,r C >
Expansion of T-function
● periodicity
Ts( ) = ⇤⇥
p,q=0
t(p,qs )l(1 )(p+q) cosh 2p n
⇥
● boundary CFT perturbation of g-fn.
t(2,0)s
t(0,0)s = nG( ˜Mj)B(1 2 , ) 2(2⇥)1 2
sin(3(s+1)n ) sin((s+1)n )
s sin(n ) sin(3n )
ssin(3n ) sin(n)
!
[ given by modular S-matrix ]
t(0,0)s = sin (s+1)n ⇥
sin(n ) (z) (0)⇥
= G2( ˜Ms)
|z|4
,
t(2,0)s , t(0,4)s
T-system
nG( ˜Ms)
∝
● t(2,0)1
[Dorey-Runkel-Tateo-Watts ’99;
Dorey-Lishman-Rim-Tateo ’05]
[
⇐
T-system ]R2n = R2n(0) + l n8 R(4)2n + O(l 12n )
:=
⇤ t(2,0)s 1 t(0,0)s 1
⇥2
+ t(2,0)s t(0,0)s
⇥2⌅
cos 2 n
⇥ 2t(2,0)s