• 検索結果がありません。

A NOTE ON SOME NON-LINEAR EQUATION IN GENERAL RELATIVITY

N/A
N/A
Protected

Academic year: 2021

シェア "A NOTE ON SOME NON-LINEAR EQUATION IN GENERAL RELATIVITY"

Copied!
4
0
0

読み込み中.... (全文を見る)

全文

(1)

TRU Mathematics 23−1〔1987〕

ANOTE ON SOME NON−LINEAR EQUATION IN GEMM RELATIVITY

Haruya》NAGAYAMA and 1㎞ko NA(誼Y勘仏 (Received Apri1 9, 1987)     §0. Introduction          [lhi・p・p・・i・aP・・lditi・nal n・t・・f[2]and th・f・11・Win9・・㎎・・f     induces will be used throughout the paper 2        0≦λ,μ,v,α,B,_≦3.          In[2], we searched solutions of the partial differential equations on h     and G−S。d・Ud・“a・f…㎝・・          ・・“−1・・v+(・・“gαB−2gUCtgvB)・。(・)・,(・)一・,       (0.1)          gpv▽U▽。(h)・0・     ・。Pa。ticular,。e、earch。d。。1。ti。n,。f(0.1)。n R4 Whi。h had ・h。 f。rm。。ch     that          h=h(r), . ・・eq。d・U・・v・−A(・)62d・2・(・+r2B(・))・・2・・2(・S2・・i・2・d・・2)     with boundary collditions at r=。。 as follows:  ・       ’    .

・ ・(・)・…(i),・(・)’・…(1),…2B(・)一…(i)・(…)

    From the rOsults of the papers([2] and [3]) and discussion in the first part     of the next section of this paper, this problem reduces to solve the follo砿㎎     non−1inear ordinary differential equation㎝y(x)硫th a bQundary condition at     x=◎oas follows:

         ま(・2+x・(・)巌)一・・(畿)2,     (…)

   ’』撫y(・)・…

         .1・thi・p・Pe・,舵顧11 fi・d general・・1・ti・n・y(・0・・1・・)・f(0・3)血i・力     have boundary conditions at x=◎。 such that          細y(・0・・1・・)−aO・瓢・(y(・0・・1・・)一㌔)=al     by. a met力od of power series expansion. In particular, we will find two     speeial solutions as follows;

57

(2)

58

H.NAGAYAMA. AND I. HAGAYAMA

     ,〈・)・c…t.・a。;・(・)・告,   、.

ぬi(力were g‡ven in [2].  §2. The solution y(aO,a1,x)    . We s tart with t士1e following equalities in [2];      .      ・(・)一(本一・)x」、:i;i嵩・ Where we rather use y and x instead ofη and r・ From the boundary conditions  (0.2) at x=g y(x) may satisfy the boundary condition at x=。。 as follows;

     ・(・)−a。+・(1),− 『     (…)

.⑰ere a。・s. ・ ・6・・t釦・・.we・・・…uc・an四var・ab…−l and⊇…h・ equati㎝(0.3)using this variable.[[hen the equation(0.3)and the・boundary

condition(1.1)bec㎝es as follows:    ’     ”

     量(・・(・)⇒聖)一・・(書)2,     (…)

     f(・)−ao+0(・)・ (1.2) is equivalent to the following ordinary differential equation of the first order:

     差一W,賠wl…w+一、f).      (・.3)

Now, we study t士le e(luation (1.3)with a iDitial data at z=O as follows:

     f(0)−ao加dw(0)=a1・        ・(1・4)

Fピ㎝ the explicit form of (1.3) and the existence theorem of the ordinary differenti・1・qu・ti…fth・fi・・t・・d…there exi・迦iq・・1y f(・0・・1・・)・・d w(・0・・1・・)・f・曲i・hare analyti・。n a n・ighbO・h・・d・f・−0胆d・ati・fy血・ equation〈1.3) and the initial condition (1.4). Thus, we may find the ・・1・ti・n f(・0・・1・・)・f(1・2)with an i・iti・1・・nditi…u・)h th・・t

     ・(・。,・、,・)−a。,豊・。,・、,・)−a、     .

by…th・「d・f・P・wer・eri・・expa・・i・−d f(・0・・1・・)i・i・th・f・m・・  follows:

     ・(・・・・…)−a・・…+…2・…鵬。・。・n・ (…)

P・tti・g(1・5)i・t・th・1・ft・hand・id・㎝d th・・ight・hand・id・・f(1・2), W・

(3)

NON−LiNEAR EQUATION IN(正NERAI、 REILATIVITY   have the following equalities respectively:       詰(・f(・。・・、・・)・蛭。((圃((k+・)・k+、・竃1・(k+・)・k.n+、an)・k・        ・・(dfdz)2一蕊(竃・・(一)・k.、一。an)・kl.・.’   C・叩ari・g th・・e t・。・qualiti・・, w・ h・v・ ・ recurf・nt f・imla a、 f。11。w,,       k+1    .

・(k+1)(ll“2)ak+・㌔1、竺(圃一2n)a斑一naゼ、層・・ (1・6)

       脆・・fineaf・・c・i・ny(・。・・、・・)byy(・。・・、,・)一・(・。,・i,i)・肚㎝血・   Study of the first part of this・section and the above reSults, we have proved   the following      .       ’ .     .   、      ’        PROPOSエTION. Anon−1inear ordinary differential equation.       忌(・y(・)・・2)畿)一・・(畿)2 ・ith bO・・dary・・nditi・n・頑出・t靱y(・)=aO・nd碁低・(y(・)−aO)−al h・・ th・uniq・…1・ti・・y(・0・・1・・)曲i・;h i・analyti…an・ighb・・f・・d’・f x−・…   follows;.      』       .      ’       

、y(…?…)−a・…(1)・・2(i)2㌔・・一よ。・k(1>k・

曲ere a。(・≧2)are d・t・㎝i・・d by th・.f・11・輌9・ecurrent f・m1・・       k+1        (k’1)(k’2)ak+・㌔1、n裡一2n)a・ak−n+・・        酬K1・F・㎝the ab・ve recurre・t f・㎜・1・・w・fi・d th・t if・0・1=0・   then an=O f・r n≧2・nd・・w・h・v・tw・・peci・1・・1uti・n・a・f。11・w・;        ・(・。,・,・)−a。−c…t.,・(・,・、,・)一告,   曲i()hPlay important roles in [2].        噸K2・S。…皿・rical calcu1・ti・n・・f an=a(・)by a c・mp・ter are   given as follows;        a(0)=1        a(0)=2        a( 1)=2      a( 1)=1        a( 2)=−1.000000000000000         a( 2)=−1.000000000000000        a( 3)=6.666666666666667D−1      a( 3)=1.333333333333333 59

(4)

60

H.NAGAYAMA AND I.NAGAYAMA、 a( 4)=−3.333333333333333D− 1 a( 5)= 5.551115123125783D−18 a( 6)= 0.222222222222222 a( 7)=−0.222222222222222 a( 8) 3.695082230804130D−18 a( 9)= 2.716049382716050D− 1 a(10)=−3.209876543209877D− 1 a(11)=−8.074349270001139D−18 a(12)= 4.897119341563786D− 1 a(13)=−6.255144032921811D− 1 a(14)=−2.928060724286127D−17 a(15)= 1.072702331961591 a(16)=−1.433470507544582 a(17)=−5.224578939412502D−17 a(18)= 2.643194634964183 a(19)=−3.638164913885079 a(20)=−7.479397218527370D−17 a(21)= 7.048519026571154 a(22)=−9.906518315297466 a(23)=0.OOOOOOOOOO(XXX)O a(24)=1.989418957137293D+1 a(25)=−2.839868583718607D+ 1 a(26)= 6.996113090560986D−16 a(27)=5.860567526153735D+1 a(28)=−8.467015592198069D+ 1 a(29)=2.240134733430858D−15 a(30)=1.785115395897402D+2 a( 4)=−1.916666666666667 a( 5)=2.800000000000000 a( 6)=−4.047222222222222 a( 7)= 5.688888888888889

a(8)一一7.653125−

a( 9)= 9.654320987654322 a(10)=−1.103157021604938D+1 a(11)=1.055030303030303D+1 a(12)=−6.227156781939770 a(13)=−4.675951538173760 a(14)=2.520740229822261D+1 a(15)=−5.737409703468974D+1 a(16)=9.926371310977944D+1 a(17)=−1.400211468531469D+2 a(18)=1.525146498517841D+2 a(19)=』8.493721787722224D+1 a(20)=−1.443572914340212D+2 a(21)= 6.390950952397937D+2 a(22)=−1.4868580575582271>÷3 a(23)= 2.664165740353852D+3 a(24)=−3.854623360592762p十3 a(25)=4.162947425048916D+3 a(26)=−1.760229968892296D+3 a(27)=−6.378853944065186D+3 a(28)= 2.425086389686828D+4 a(29)=−5.535259372548587D+4. a(30)=9.877879906629117D+4, Where・w・d・n・t・D+・・ by 10”. [1] [2] [3]        』    REFERENCES     .    .     』 H.Nagayama, A theory of general relativity by’ №?獅?窒≠戟@ ’   connections 工, TRU MIath., VO1. 20 (1984), 173−168.、 H.Nagayama, A.theory of general relativity by genetal   connections I工iTRU Math.,Vb1. 21 (1985), 287−317. H.Nagayama, Anote on some variational prOblem in general   relativity, TRU Ma亡h.,Vb1.22 (1986),15−19. 4−622, Shibazono−()ho 3−ban Kawagudhi−shi, Saitama−ken

333,Japan

参照

関連したドキュメント

In this note, we review score functions properties and discuss inequalities on the Fisher Information Matrix of a random vector subjected to linear non-invertible transformations..

Keywords and Phrases: moduli of vector bundles on curves, modular compactification, general linear

We consider a non-linear 4-th order parabolic equation derived from bending energy of wires in the 3 -dimensional Euclidean space.. On consid` ere une ´ equation parabolique du 4

Depending on the characteristic polynomial associated with a linear difference equation appearing during finding closed-form formulas for solutions to such a system, some of them

[1] Feireisl E., Petzeltov´ a H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations 10 (1997), 181–196..

In this note, we consider a second order multivalued iterative equation, and the result on decreasing solutions is given.. Equation (1) has been studied extensively on the

I The bijection sending the area to the sum of the major and the inverse major index can be generalized to types B and C but fails to exist in type D... Non-crossing and non-nesting

As application of our coarea inequality we answer this question in the case of real valued Lipschitz maps on the Heisenberg group (Theorem 3.11), considering the Q − 1