• 検索結果がありません。

1 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. //, No.,, -3.2 (,**2) The Mechanism of Soymilk and Tofu Formation from Soybean, and the Factors A# e

N/A
N/A
Protected

Academic year: 2021

シェア "1 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. //, No.,, -3.2 (,**2) The Mechanism of Soymilk and Tofu Formation from Soybean, and the Factors A# e"

Copied!
10
0
0

読み込み中.... (全文を見る)

全文

(1)Nippon Shokuhin Kagaku Kogaku Kaishi Vol. //, No. ,, -3.2 (,**2) :%&;.

(2) 1 .

(3). 39. ῌ !"#$%&

(4) '

(5) ()*+,-./012.345

(6)  +3 

(7)  c ,  Z \\]S'\^_`. The Mechanism of Soymilk and Tofu Formation from Soybean, and the Factors A#ecting the Formation Tomotada Ono United Graduate School of Agricultural Sciences, Iwate University, Ueda -ῌ+2ῌ2, Morioka, *,*ῌ2/** ῎῎῎῎῎῎῎῎῎῎῎῎῎῎῎῎. +    . &<  @ () a$F-.$b& +33* *+ L 9.'^_*,&.9'< c,+- .  d-F.C/e-f0g1 23. GH$F-JGH!. C4& Ih@@. i  5$j*,64*,k'<  l. mno N!OPQ@WICpB. 0q+N!OPQC7$K

(8) -/῍ *+$. &-C8krs'< t@  m@N. Mfq-.@uvwxy1q-z"!C9:$K5. !OPQRSGH$F- -. &- < {@'s;0N!OPQ|}~&.M@f. m.+N!OPQ ! €‚ƒ„<@I$. t $†&  ‡ˆ@‰/g1f. -C$+.$'< { @N!OPQI. =>k'< *+$ l0

(9) ,*῍ KŠ .  .*+** nm @k* $F[?h@N!OP. g1 . @‹ŒA1q-zy1C7$. Q.+pB*, B$N!OPQ@CDCEs-. KŽFB$G,&- 12Co&q-<. C$+.$'< {@HB Utsumi +/ ‘I'. . 7@JKLŒA1$../+0 MNB. N!OPQ@tB-’I“SO<$ ++. jP8Q'23 ‰8 12$R”s. S •–—z!

(10) ++S @˜™šP›œž 1S •–—z. Ÿ=q dF =@‡ˆC¡7k'< 23. !

(11) 1S @ b ¢—£¤š¥C7K5&'< *+$ . +.   . C¦§¢!SŒ¨T8'SŒ  $FO. !"#$%&'(%)$*+*,&-$../+0. <@IN!OPQt©-$+.$9'0< t. 123456

(12) $ 7-89&-,<. .+$F6@FA$mN!OPQ2. 7@ 8@ ῌ  Yª f4.  -@. Guo +1 $A B@. «U@DCEs&-<  > j$†o-B. 2CD'< Fig. + $EFA$ @. V¬­4@®$¯4$‰-^_? @HB°W. GH-IJ$KL,-.+ ++ S. q9' > .+ ῌ tB-±²{,$³´. CM'@N!OPQRS&-.. CX7-µ¶I? $‰%&-<. -< TC UV 0/1/ N!OPQ@W. , . ·4@ $b&8QP@^_57¸*,& - &/¹- 4@ $b&@^_”s~ . *,*ῌ2//*   -ῌ+2ῌ2 

(13) Corresponding author tomon@iwate-u.ac.jp.  ! XJ$WY, *+$TC U 3* Z N!OPQ0,456@" [#. $-$+.9'< @J Kamat +2 ŒQ N!OPQC±ºB$»­9'@ ¼  Y½J@$F9tB-@q  {@N!OPQHB.+€‚ƒ„O5@@3.

(14)  

(15)    //   ,  ,**2  , . 40. .  2 . !"#$%& b '!(. )*+,-./ .* +** nm -%012. 345! 1S -6 7  - b 89:5;<(345!. =- + >?@A7B

(16) CD>EFGHI !". ++S -6 7  -JK4;#LMNOPQRST. #$- 0*ῌ &UVU4! -& BX+ BX, .  ++ S WB 3* XY+* Z72=[-\. @3 ]=> ++S, 1S. _= -+ >?Z7-`a5bcP Ono. --

(17) CD& Udefgh UVU4!-.  i?j Guo  -Pk> Fig. , >lmGHn. oEF >2> ++S, 1S EFGZ\_=. B p)*

(18) Cqr>sGA%&t- ++S P.  u> .>?@v1Gw

(19) C%&. -. 1. EFGHI 0/ 1/ -+ %-Wx@. !"#$G

(20) CD-z-[-[ ^ 2> 2/ XY{|} -JK4;#LMN O~B% !"#$-Z7\_=. .** nm. !"#$EFGH^HI. !"#$  %& 2* nm yu. HI Toda /2 ,**1 XY-& ++ S, 1 S. !"#$P  -q  >EFGUdefgh. Udefgh. % %. !"#$i?j{|. !"#$P67 B€G z\_ = $&Udefgh %% !"#$. !&"a3‚cƒ-„ †ePSTz+ >{ | !"#$‡Gz -ῌ ΐ῔῎ῐΐ῕῏ῑῒ. &ae4‚c ˆ( 4‚cdU!ƒ-#+‰ pH Š‹>?@ŒB Žq>Œ2$aKO. PZ7B ‘$’>%FG&$-$PZ72 “-QR-”•@ ]=>–IH&—˜-™ š++ P›HIœ^I ' $-Z7>–IH&. t !"#$-žeZ7 -Ÿ (‡2= $ [že-q‘GH¡@¢£=H^. !"#$-že. Z7Ÿ >–IH&¤-™š+, P¥¦Iœ^I 2 Fig. + Lipid quantity in the particulate, soluble, and floating fractions of unheated soymilk at elevated temperature The unheated soymilk was heated at a specific temperature for / min and cooled to ,*. Particulate (), soluble (), and floating (  ) fractions were obtained by centrifugation at +/0 *** g for -* min. (Guo et al.1, +331). H ?R§|¨-©& ŒGHaKOPZ7 G 2>ªP)«GHNKb¬+2= ­3K& žeaKO&I žeaKO-®I& ž e& %ƒ¯G*oFHªP+^°±œZ²³ ´µ ¶·&ªP)«GH¸¹B4 3K4ºPx 2I aKO& % 72=»t ¼½ '. Fig. , Schematic diagram of Soymilk formation from raw soymilk by heating, which was induced from Ono et al.-῍ (+33+) and Guo et al.1῍ (+331).

(21)

(22)  : ῌ . 3 . Fig. -. 41. E#ects of Calcium on Protein Solubility in Soymilk. Particulate protein (  ) dispersed in ultrafiltrate, soluble protein (  ) and soymilk (  ). This figure was prepared from Fig.+ of Ono et al.++ (+33-)..   !"#$%&'()*+,- .' /01234)562 7!8%79':;< = >2?) @AB CDE&FGH 'IJ-1 ;KL @MN2@GOP%2?)Q RS TU V'P%VWXYZ[@ +33* \]42 K^Z Ono L+- @ '<)CD. E&F'Q SCDE&F+ _ PN7`a+b <)cdS'eZ Fig. - +f<*+ CDE&F @Q SCDE&F*ghijkPN7`alD2c. Fig. .. Changes in protein solubility and floating fraction ratio in dispersions of floating and particulate fractions (a) and floating and soluble fractions (b) at various concentrations of calcium chloride. (  ) protein solubility ; (  ) floating fraction ratio ; (  ) newly formed particulate fraction ratio (Guo et al.+,, +333). d<);

(23) LK+G^Z ;;@ +c3m' n/Zo pqCDE&FcdKLr4);' s WU) ;;2tZ 2@ CDE&F. < AB@ u2@lNvwx2?)2. Q SCDE&F yz{|^WU)2 CD. +l}l7DCDE&F'~ cd<);GO€. E&F ‚ƒ/Zc3mjk2 uCDE&F. „2?) c3m n†‡)lD u.  cdW*U@q2?) K @y1. †‡ ABˆg+CDE&F ,-Z‰"&. cd‚GK^Z ;‡LCDE&F Š ‹. 2o Œ-QRG) +;‰"& !"#$%. U@  AB. ŽWU);2?) ;2 Guo. &‘+.'o012,-  V†‡W’O . @ ABQ SCDE&F “*”AB. n†‡Zc3m •–+’o—Z) Q SCDE&F. CDE&F ˜™'(g ‡š‡2c3m+b<)C. KLV†‡ZCDE&F †L+!"#$%&. DE&Fcd“*”AB›œ'žZ Fig. . a. +,- ^KgZ P%. L. +.. 2o);+G. +f<*+CDE&Fcdh+ABŸ. ) AB@lNvwxCDE&F l}l7. h:;^WU); K^Z = Q SCDE&F. D CDE&F †L+Q SCDE&FKLV†.  -@ Fig. .b +f<*+ ?)=„c3mjk. ‡ZCDE&F¡¢CDE&F+4‡ £¤'. 42CDE&F“*”Acd¥Ÿ@:;LGU. ¦_+OU§¨W€„GV+G^WU); K) ©. Q SCDE&FKLCDE&F =„ª«¬). @8­%N£+® £¤†‡¯U2?) ¡¢. cd :;); K^Z ;‡L;KL . CDE&F+*)®0®2  €•2€„G°+. V@ +c3m' n<)pqCDE&F. G^WU); ; VKL±2o). AB²,-2r4g +Q SCDE&F †L+ ,-W³’<)´/L‡) ;‡L'µ+W

(24). . 

(25) . +/+0 @¶U V·wN'¸¹Z Fig. / +. + . KL . F@ +©oO¼½<) @U)©. UK+WV†‡)K º»'f.

(26)  

(27)

(28)   //   ,  ,**2  , . 42. Fig. /.  4 . Formation of Tofu Curd from Soymilk (Speculation)+/)+0ῌ An OB particle is packed with oleosin proteins.. Fig. 0. IR Spectra of Soymilk and Its Components. IR spectra were measured from . *** to 2** cm+ with a FT-IR spectrophotometer equipped with an ATR apparatus. IR spectra of soymilk, soy-protein, soy-lipid, and soy-sugar are shown in order, from upper site. (Nakasato et al.+0, ,**.).   !"#$%&. '( )* +$ ,-./012$33 ATR 4. 56*789:* -.$;<=>-.=>?@A. BCDE'F*G$, HIJKL ML NLO&. PQRE'ST,U*& HIJKL ML NL@. + 4 VWXY,Z[E'ST,U*. A\  $!O -.]^_$QRE'`a,U. ,ῌ ῎ῐ῏῍ῑΐῒ. * b  HIJKL$E' ML/cX$ ,. -.$d

(29) !,U*HIJKLe) f*7 gh. ij- Bradford +1 /k F*$&lmn,Uo M. $p$q-X]^(o-./4 7(rs(otu. LvwKxyz/ )o{| ,UP NLHIJK. HIJKL=>&})-.~A)-&,j*+7&€. LῌML/(‚) ƒ„*X †N$',ƒ„*. : )*,,,- (X(@& ‡;ˆ 2$. )W:(‰[Š$XX*E',U* -.7-$‹Œ. /Ž)D@)‘Gg),. 2+,+:$’/r. /“”F*o„ -.!$QRE'&S•,U. –F* q-pŠ$—/h( Z6-.,H. * Nakasato . +2.  ˜™š / )o-.›d

(30) !. IJKL=>$f&œ(o-./]^F*

(31) &U*. $QR' /ž(o +$ Ÿ ¡¢£E'. Nakasato ,/ }R¤¥/ ). ATR 4 B/ )  4 /2$33§¨,E'F*. _ ©™‰ªPHIJKL=>$]«/¬) 2:.  , gh$§¨ ,k +3,+ &€:. /­®!F*+7PHIJKL=>$f&¯@*-. )*. -.X¦/. Fig. 0 -.°±2$HIJKL ML NL!$›. ./]^(o 2:/ ) -.$HIJKL=>&}. ˜™²$¢£/³F HIJKL´µ¶¢£· ML. h@*~A-$¸¹º&}h@P h@*+7/. »x¼½$¢£ NL C-O C-C $¢£·/ ) E. X(o.

(32) 1 :  ῌ

(33) +,2345%.  5 . 43. - . 67"8 &'(6 9:0;<' =>0- ?"8 6 =>0*

(34)  6@A  #$*">0 B,0,2 C 8" =>0D

(35) EFGH IJHK LMN

(36)  6O+.+/  !PG0Q/R % -S CT8&'( "U FV - C C W"XY ZV[\J - C  ]^ &'( _ 8`C% a bcde !W" XY7

(37)  f $! W"XYZV[ \JK) ghC i ,3  (Jj 6=kY = "#$ GDL  *   l=kY =h#$mn. B8" C ="]o. Fig. 1. b PG0Q/R% D

(38)  p   ZV[\Jq

(39) de-!_8" "r. Comparisons of protein particle content in soymilk and the breaking stress of tofu curds prepared by mixture glycinin-rich and b-conglycinin-rich soybeans (Guo and Ono-3, ,**/). #stuC8" fC ?v 6  wx"n yz$%{aN|!n & '8  b PG0Q/R% (. -. ++Sῌ1S ) D   +- *} )~€ ++Sῌ. =f wx‚+, N Nakasato ,/ ƒ-. 1S ). †1234"8 nb23 5h.  C-/ *}‡ )~ ++Sῌ1S )ˆ. 82‰ Š,  fC  &'(. v D ]v  6 2)5‹Œ _. N%qY Ž*

(40)  fC). a

(41) Xx‘ ") ghC. ’)*“”  •–.

(42) )./„' &  * 08". & ++Sῌ1S ) a D  0 *} 4"8. fCe&'( 78Œ KU.  9)~| ++S ") . FV&'( cdc : —  . %&'( 

(43)   . ” "UFVf ) ; ”

(44)  &'(.  C-0 Yagasaki -1  <˜= . ˆva>2  Œ— ghC. ++S, 1S ™Uš›V[ œ? 4 ++Sῌ1S.  @A ZV[\J-  6&'(. ) D  ῌK

(45) €ž_ ++Sῌ1S ). Ÿ '¡ ¢,N Bn _. a"#$*  ` 1S "   £C

(46)   K

(47) ¤" $. .   ++Sῌ1S

(48). &'(¥ kY ¥ "#$  ©ª C. ,,,-,/.  *} D +«)&. Guo -2  ++S ¦V§ 1S ¦V§ ¨Y ++ Sῌ1S ) D  K

(49)  ++S "#$%&'(. '(ˆv¬h " ­DC8" .  

(50)    . &'( ® 2 ++ S ¯FU¦' ¯¦°›.   Guo  Ono-3  Fig. 1  ! ++S . '  1S ¯FU¦' b E'¯¦°›' n  1S ?. "#$%&'(  ) *. ± ++S ¯FU¦'¦V§ E²n GDL F

(51) >0.   +,- ./0+/+0 Fig.. K ++ S ¦V§ & *">0K . / nGBa - PG0Q/R% . C  fC ++S H3 SH  "#$* . b %&'( XY³`Œ %. n SS XY 0 ´C8"-+ ` ++S ¦V§. &'( (=b&'(

(52) µ . &  I0°¶j)BnC. ·ˆUFV - C fC W"XY8.   n C 9&'(E²7"8. ZV[\J aŒ¸I ,J . XxN

(53)  ¹ 7"8 n_ Skurray. /   . .  +/ } 7"8  * ++ Sῌ1 S ). ++S ¯FU¦' ¯¦°›' ? ± 1S ¯FU¦' b. º».{  f ¼1  e|. E'¯¦°›' K; ™Uš›V[2%n . 0 & a" & ++S, 1S =. LC8" 1S ¯FU¦' a a῍ b - } ™U.   ++ S ") ½n*" a. š›V[ LC8".* ++S ¯FU¦' / } ™. ,.. -*. -,. --.

(54)  %&'&()

(55) // *

(56) , + ,**2 , ,. 44.  6 . -./012  34 + 56   7  839:; ῌ A+aB, ; A+bB+b ; A,B+a 9:;῍a A/A.B- 9:. ;῍b A-B. !34<=.+., >? @=< 1S A-./0183BC?  a a῎ b D #234<=.- E  9FG/ H=< Nakamura 3.../ 2῍a ?  

(57)  ῍b 

(58)  3  Nishinari 3.0 ῍a A-./01I<=   83=  2"JK Tezuka 3.1 L4M4 A-./01 b N9FG/  OP QRS9TGUV>W>?B  L   Dῌ ῍b ῍a D#C  43?"X  Y# L" L4. Fig. 2 Breaking stress of tofu curds prepared from soy milks with identical levels of glycinin content. Values are means  standard deviation, n1 per group. Tofu curd containing +-.*῍ solids was prepared by adding magnesium chloride from the mixture of soybeans having group I (Group I), IIa (Group IIa), and IIb (Group IIb) and soybean having a low content of glycinin. (Tezuka et al..2, ,***). M4 A-./01ZC=<ῌB. [\  ]῍a ῍ b ῌ D#   ^ D#C.2 Fig..  !_"=`#"#=aW34 43 H=<. 2 8 L4M4 ?" ῌ. 3#b$2%&"X Liu  Chang// 'c. ῍b ῍a D"X .1  deY#C<= . fg(" hij]k) lmn ++Sῌ1S. o=? o=aW34 *+p .  +q" Ca ,2

(59) -K Guo . ] r.#s2

(60) t:uB. Ono-3  ++Sῌ1S  Y#=<  "J. 83 /#? v01"w4#=. ]2 ++S  2 cx &c.   ῍b 2y&. fg("^3#$# Fig. 1 z4 ]. #{- ῍a |\S}~ 5=<= L. r. €<6cfg(""cx. < I  4|$#2 A , ; 5$. ‚+- ]27$#ƒs6cfg("". 2 A + S}~ 5 $z 4   de. cx # Kao 3/0  cfg("8W. Nakamura 3. K<= Poysa 3. .3. .0. ?"„Cde.  9 :]†;‡ˆ<83‰^ŠE"=>#6ZH. E?<= 3  Poysa 3. N9FG/". cfg("‰'cfg("<‹‚<= Ono 3/1.  a῎@ ^ 2$#K A-./012.  ++Sῌ1S  Y#83cfg("8W<. 8R(" ++Sῌ1S #s^8R. B  A BCD^ 9 :]†;‡. .../.  Nishirari 3. .3. #s83ŒE ["JŽF B82GH. „= L43

(61) I‘ A2JKL. #aW34  ] [-3 #. #8’M"‰^ŠE"=>#6#  ++Sῌ1S 2. s^ + H NaW34. J=ƒsL M6cfg("“”O  . 0 . 3 cfg("212PQ2 T01.    ++Sῌ1S  !"#$. •: –J$# BCD26— 43 . cfg("^J$

(62) - ˜R ‚ 'Scf. 83'cfg("‰^=>#6# !™T. g(" šC<Y#234<=< L ‹. , 8’M XaW34 L4‰cfg(". '› @=<y&#UB EH"X cfg(. Y#A"X28C %œ^=>#62‰. "‹ :VW" 8’M83žN  ŸXY". ^ !™T2 $#=  ¡ dPTBC. ¢ ‰1Z[£¡83žN/+ \]+"¤*. T ¥ GH8^4#= 43 ^83 . J2_WM83¦§N/,/- #s2a¨4<=. 3#©ª2«`4. /*.  ¬ ­83a [bP. 1 

(63) 

(64) . cfg("=8 8 šC<Y#2a.  B < c®¯°t±=. W342 ²³ ²´"Ed (""[<=. <>eµ N c®¯¶>^ \·. 27= Toda 3/.  0 ­ ¸= MgCl, (". >µ N2X ¹º  "B34<=. 8W<BC\  šC<‰ !_". ƒ»s2>µ N"B34<= >µ N. #("2Y#‘=  ¼ . 2=2"J234<= >µ. (" f

(65) Xcfg("½1 #3#=‘3. N"°t2>£ Oº83 °t83g. 4#=<= 'cfg("2%œ^‰. §482 

(66) aW34 hi.

(67) M :  ῌNLOP QRSTU.  7 . Fig. +*. Fig. 3. 45. E#ect of Soymilk Phytate Concentration on GDL Tofu Hardness. Soymilks containing *.,*, *.-*, and *..*῍ phytate were prepared by adding potassium phytate (pH 1.*) in soymilk preparation. (Ishiguro et al.00, ,**0). E#ect of Soymilk Phytate Concentration on CaSO. Tofu Hardness. Soymilks containing *.,*, *.-*, and *..*῍ phytate were prepared by adding potassium phytate (pH 1.*) in soymilk preparation. (Ishiguro et al.00, ,**0). 

(68)   /2. VWX@IYZ[?

(69) \] Basic 1S )$^. _\Z[` `,\ % , abZ[`

(70).  

(71)    !"#$%&'( !")*+,'

(72) !"#$-./ 0. %dE NdE. 1% 23 45678

(73)  !"#$ 1%7.  @e %dE Ca fV$ Basic1S ghi. 9:7 ;

(74) <=> Toda. j$ k &'(U)$^_\1%?

(75) @l8. 0/. . /3. @c Toda . 0*.  0m]nop5

(76) - q@87!". J VWX%Z[`

(77)  , Ca fV. #$r ,

(78) QR@s tu. $ U)$^_\1%%dENdE'. vwxyz !"#$r k8 {.. E D5

(79) |T<

(80) }78

(81)  5~U)$^. 45

(82)  tuvwH5

(83) B€. _\1% Ca fV$. ,D`,78

(84). ‚ƒ €. 5. 67858. „?

(85). -3. ++Sῌ1S M`8uvw@k. q †<E ‡5uvw%B. 2ῌ ῏῍῎ῐῑῒ. €.  ˆ\  ‰Š_h*‹!@Œx E!. !"#$r @Ž uvw@7@. ‹)V*‹ X!"*‹5.Vj‘<

(86) . C6 = Fig. 3 ,’?'>, v5

(87) ,. ‚ƒ?

(88) . ,56 Ishiguro 00. “"#, $”•QR :58  j$–@. !"#$r k8 {.uvw k% ?

(89) . —6<

(90) !"#$– f‰˜*™ 0 j$–. @. ˆ, +-῍  . . , Ca ] Mg fV$5

(91) uvw. *.+*.-῍ rš j$. !"#$k8{.Bj$–“•z,‚&`

(92). –“›%`

(93) uvw zœ'<

(94) . x 

(95)   pH uvw<

(96) GDL.  ,!"#$.  Fig. +* ,’?'>, ;žl !"#. @%?

(97)   45

(98) 0 1% uŸ. $k8 GDL ,'

(99) pH (

(100) x . )  ¡*,5

(101) @l8J Ono +- ¢+-0. D`,£?

(102) , 'Ek GDL @%  !". x5QR

(103)  Saio 0+.  uvw%!"#$, Ca ,fV$z?

(104) . #$. pH  ,¤?

(105) ¡¥C @ ¦ . . Y§fV$ - [ E  pH   ?

(106) . 56 `, .n Y/0¨.©1 ,1 q.  W*ª«L,!"#$¬52­@®¯78

(107). !"#$r @° = .n Y/0¨.r. @±3 ˆ!"#$. -* abF`. p5

(108) q :58q<6 !". 

(109) !")*+,'E-`9:?

(110)  ,. #$r :5©1.²r p5

(111)  C.  ³´F,'

(112) C›'. E48 µ¶78

(113) qk !"#$r H©. `. 0,0-. F,'E!"#$5·. 1.²r ,:58q, 67q 7. ,9:?

(114) @A

(115)  B@C6 . 878

(116) ¸$i‰h¹ º$»f VV‹¼,r. =0 9: 23 D56  !")*+. š78   !"#$r 8 u. !"#$@- @C

(117)  0 1%. vw% ½@4 @CE4?

(118) |T. 23 45E F,'

(119)  G. + ¦ 

(120) . 

(121)  Hou Chang. 0.. 56 HIF  !"#$JK5L.

(122)

(123) A 0 1 // B 1 , 2 ,**2 3 , C. 46.  8 . 3 

(124) . ,/; $%*! 3* 4DE%FG5!;H. $ !$%"#$%&'(&)' *+. I?,=> J@K$%LMN,!O%PQ. $(,)-./"#$%&012$(,)3. RS)Q!67!8T* 595)UR6. 4*+56 )* "#$%' ! 789:. 7!:'VW;E%FG! 34*+5*;X. !. </Y%;=>8T'=ZU[)\>I =. ,8-.;</=>?+@ Thompson  Erdman. 01. +32, 3)J>]*,8-.'?^_@I AV(&Q. :)7' /BC',8&Z` !E%FG;\. -.I? -῍ TCA+*῍ Na,SO. *DED F GH. >I LMN,;I=> 8T!YaYb% . J.*HJ=c@V' +.,῍ HCl * dI@V''. ;E%FG ` !E%FG* - K)=]> =:). /-.'LeI@ f-.!F  Makwer .02 M. 7'NgOh*iK? Q$(Q fU[)$(. j .Pgf;*+ =:)HJ.*HJ'. !E%FG;kQ)

(125) >I7'NgOhl

(126) *. dIRSdDmnop%oqM.*?TU/-. R $)&]>VrW'X/1. ls*Q8 2E%. .. 03. MVPe=>@ t- AOAC .I?VYRZu:. >@Y%{|L}~' -.. 1*. *! n%[\]. FGVvw=cQ xqbMvy

(127) Qz?  f^_`)ag:>@E%FG

(128) >€L. PQb‚Mqn%[ "#$% 'b *+. ƒ~;c:9)Qz@f* f„ 'd@Q

(129) .  =:) f-.!j =>?ef†gG‡ˆ‚‰}. Š/h;<sV‹iI? . "#M.1+ QR j)X*' ;`kQz?  I9IZŒF .j .*!lmQ,nop'q /I Y%{|.u>! HPLC .*z?V) X;9@K (&Q' !” v  Ishiguro :. frs!]R)VtŽ*)!J>H‘Q= J[Q$%2$()W. ?]K@V*/ ’“)V. !. ,**1 3 +* C) $5A)•sw–pdc. $%ῌ$(x—u*y*+U[) "$%"#. Š)H/01 *

(130) A z'{zI]I. $%(&' .'</I@ f-.*! pH+++, *. @ fz)|}I?˜=z@™~ š€›. "#$%; Ca Y%+5*HJ/f'I f. ‚œƒ„" ]@,8' z? @l @˜†‡ˆ. HJ'G%[* dD ATR ‰Š' ? FT-IR '. „")‹9:vŒ @I]/ ,* 34)$01 z?. 1,. '[-.* =:) $

(131) tŽ)Vy/. ˜=z@—žhŸ‘01Ÿ›  ,’¡. @KDE.'j I1- ZŒ“-.'`k)I@ f. ¢„")!t-Q:£a¤]I'”+]I@ ff). -.*!DE HJ d]*op•U¥ FT-IR '. ¦8§ @I]/ ]@ V)01I@•2–-0. ;j)X*(&)op`k*R ,_g‰?^. 1—- ˜V*¨01'©™:>@- š. 00. M. )Vª'/«I@. 01*©™:>@-Q8I?f01!I*+. /    . $%ῌ$(! )Ÿ I?9: +*** 3®Z ' §W]R)VtŽQ

(132) * J@K9x.M) ²Qhl01!, ; ¨`Q01!œQ U[)ž³ > $(;4]f! Q´9¦@R4fU[ )Pg:> ]@ nMq[)©Zp#*)V 99³:µ $();&]>? f!ª>; ²* ]@AŽ! $¶k!)­9R«; + ¬;­  ®)z?V¯I;²Qn·%'°± I?8> QE%FG *f'ª>?! Q l¸[9 $%!!²;O%U8³? ls*Q8 ´# ,µ 8T ¶T E%FG; L¹%º» q ` !E%FG B º¼}q VU8³?  O%!$%!PQ½¥- 9zf· l;$%“) E%FG;* O%!789:L¹% º»q)ULMN,;¸:>? @; $%*!; E%FG¹;¸:>?. Q9z@ O%*! -1. 4Dº»<Š)UR;BC'¼½/f*LMN. ]ch*I@ ¬=h\›'frs)œI*V] K:>>­)gVžz? ]/ ]@ ˜ ¡'¢ ?˜=z@¯£ ¤„¥- ¦)R v[°± ]I@ . . +    

(133)   

(134)  ,*** ,    

(135)  !  "# -1 ,3*ῌ,3, +333 - Ono, T., Choi, M.R., Ikeda, A. and Odagiri, S., Changes in the composition and size distribution of soymilk protein particles by heating. Agric. Biol. Chem., //, ,,3+ῌ ,,31 (+33+). . Ono, T., Murayama, T., Kaketa, S. and Odagiri, S., Changes in the protein composition and size distribution of bovine casein micelles induced by cooling. Agric. Biol. Chem., /., +-2/ῌ+-3, (+33*). / Utsumi, S., Damodaran, S. and Kinsella, J.E., Heat-induced interactions between soybean proteins : preferential association of ++S basic subunits and b subunits of 1S. J. Agric. Food Chem., -,, +.*0ῌ+.+, (+32.). 0 Ono, T., Takeda, M. and Guo, S.T., Interaction of protein particles with lipids in soybean milk. Biosci. Biotech..

(136)  9 . 1. 2 3. +*. ++ +, +-. +.. +/ +0. +1. +2. +3. ,*. ,+. ,,. ,-. ,.. ,/. - : <ῌ3g#hH$ijklm. Biochem., 0*, ++0/ῌ++03 (+330). Guo, S.T., Ono, T. and Mikami, M., Interaction between protein and lipid in soybean milk at elevated temperature. J. Agric. Food Chem. ./, .0*+ῌ.0*/ (+331). Kamat, V.B., Graham, G.E. and Davis, M.A.F., Vegetable protein : lipid interactions. Cereal Chem., //, ,3/ῌ-*1 (+312). Tzen, J.T.C., Lai, Y.K., Chan, K.L. and Huang, A.H.C., Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiol., 3., +,2,ῌ+,23 (+33*). Sorgentini, D.A., Wagner, J.R. and Anon, M.C., E#ects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions. J. Agric. Food Chem., .-, ,.1+ῌ ,.13 (+33/). -./0 12 : 3 4536789:;<=> 8?@;AB C'DE .+ 3.,ῌ3/, +33. F G0 '( !H7"#$IJKLMNO8?@ ;AB 'PD .1 21-ῌ22+ ,*** Ono, T., Katho, S. and Mothizuki, K., Influences of calcium and pH on protein solubility in soybean milk. Biosci. Biotech. Biochem., /1, ,.ῌ,2 (+33-). Guo, S.T., Ono, T. and Mikami, M., Incorporation of soy milk lipid into protein coagulum by additionof calcium chloride. J. Agric. Food Chem. .1, 3*+ῌ3*/ (+333). -Q/ R<$<89:;

(137) ST New Food Industry, .+ 0/ῌ12 +333 Ono, T., The mechanisms of curd formation from soybean milk to make a stable lipid food. Proceedings of ISPUC-III (Tsukuba), /+ῌ/, (,***). Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 1,, ,.2ῌ,/. (+310). Nakasato, K., Ono, T., Ishiguro, T., Takamatsu, M., Tsukamoto, C. and Mikami, M., Rapid quantitative analysis of the major components in soymilk using Fourier-transform infrared spectroscopy (FT-IR). Food Sci. Tech. Res., +*, +0+ῌ+00 (,**.). Defemez, M., Kemsley, E.K. and Wilson, R.H., Use of infrared spectroscopy and chemometrics for the authentication of fruit purees. J. Agric. Food Chem., .-, +*3ῌ ++- (+33/). Edelmann, A., Diewok, J., Schuster, K.C. and Lendl, B., Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts. J. Agric. Food Chem., .3, ++-3ῌ++./ (,**+). Guillen, M.D. and Cabo, N., Usefulness of the frequency data of the Fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. J. Agric. Food Chem., .1, 1*3ῌ1+3 (+333). Wang, H.L., Swain, E.W. and Kwolek, W.F., E#ect of soybean varieties on the yield and quality of tofu. Cereal Chem., 0*, ,./ῌ,.2 (+32-). Shen, C.F., deMan, L., Buzzell, R.I. and deMan, J.M., Yield and quality of tofu as a#ected by soybean and soymilk characteristics : glucono-d-lactone coagulant. J. Food Sci., /0, +*3ῌ++, (+33+). Lim, B.T., deMan, J.M., deMan, L. and Buzzell, R.I., Yield and quality of tofu as a#ected by soybean and soymilk characteristics. Calcium sulfate coagulant. J. Food Sci., //, +*22ῌ+*3, (+33*). Nakasato, K., Ono, T., Wada, T. and Takamatu, M., in. ,0. ,1. ,2. ,3 -*. -+. -,. --. -.. -/. -0 -1. -2. -3. .*. .+. .,. .-. 47. preparation.  ,**.

(138)  : 2- ,**. Catsimpoolas, N. and Meyer, E.W., Gelation phenomena of soybean globulins. III. Protein-lipid interactions. Cereal Chem., .2, +/3ῌ+01 (+31+). Shimada, K. and Matsushita, S., E#ects of oils on thermal gelation of soybean protein. Agric. Biol. Chem., ./, ,211ῌ,22+ (+32+). Miura, M. and Yamauchi, F., Rheological behavior of soybean protein-lipid-water gel, from a small distortion to rupture. Agric. Biol. Chem., .2, ,..3ῌ,.// (+32.).   !"#$%& '(%& ) +/  *+ , pp. ,*-ῌ,,, +33* Saio, K., Kamiya, M. and Watanabe, T., Food processing characteristics of soybean ++S and 1S proteins. I. E#ect of di#erence of protein components among soybean varieties on formation of tofu-gel. Agric. Biol. Chem., --, +-*+ῌ+-*2 (+303). Saio, K., Kajikawa, M. and Watanabe, T., Food processing characteristics of soybean ++S and 1S proteins. II. E#ect of sulfhydryl groups on physical properties of tofu-gel. Agric. Biol. Chem., -/, 23*ῌ232 (+31+). Saio, K., Watanabe, T. and Kaji, M., Food use of soybean 1 S and ++ S proteins. Extraction and functional properties of their fractions. J. Food Sci., -2, ++-3ῌ++.. (+31.). Skurray, G., Cunich, J. and Carter, O., The e#ect of di#erent varieties of soybean and calcium ion concentration on the quality of tofu. Food Chem., 0, 23ῌ3/ (+32*). Ji, M.P., Cai, T.D. and Chang, K.C., Tofu yield and textural properties from three soybean cultivars as a#ected by ratios of 1S and ++S proteins. J. Food Sci., 0., 10-ῌ101 (+333). Cai, T.D. and Chang, K.C., Processing e#ect on soybean storage proteins and their relationship with tofu quality. J. Agric. Food Chem., .1, 1,*ῌ1,1 (+333). UVW -Q/ XYZ[ (\]^;_`abcd 6ef<& C'DE ., //0ῌ/0+ +33/ Yagasaki, K., Kousaka, F. and Kitamura, K., Potential improvement of soymilk gelation properties by soybeans with modified protein subunit compositions. Breeding Science, /*, +*+ῌ+*1 (,***). Guo S.T., Tsukamoto, C., Takahasi, K., Yagasaki, K., Nan, Q.X. and Ono, T., Incorporation of soymilk lipid into soy-protein coagulum by the addition of calcium chloride. J. Food Sci., 01, -,+/ῌ-,+3 (,**,). Guo, S.T. and Ono, T., The role of composition and content of protein particles in soymilk on tofu curding by glucono-d-lactone or calcium sulfate. J. Food Sci., 1*, C,/2ῌ,0, (,**/). Thanh, V.H. and Shibasaki, K., Major proteins of soybean seeds : subunit structure of b-conglycinin. J. Agric. Food Chem., ,0, 03,ῌ03/ (+312). Nielsen, N.C., Dickinson, C.D., Cho, T., Thanh, V.H., Scallon, B. J. and Fischer, R.L., Characterization of the glycinin gene family is soybean. Plant Cell, +, -+-ῌ-,2 (+323). Yagasaki, K., Kaizuma, N. and Kitamura, K., Inheritance of glycinin subunits and characterization of glycinin molecules lacking the subunits in soybean (Glycine max (L.) Merr.). Breeding Science, .0, ++ῌ+/ (+330). Mohamad Ramlan, B.M.S., Maruyama, N., Takahashi, K., Yagasaki, K., Higasa, T., Matsumura, Y. and Utsumi, S., Gelling properties of soybean b-conglycinin having di#erent subunit compositions. Biosci. Biotech. Biochem.,.

(139) 48. ... ./. .0. .1. .2. .3. /* /+ /, /-. /.. //. /0. /1 /2 /3. %m&nop'pL( q // r q , s ,**2 t , u 02, +*3+ῌ+*30 (,**.). Nakamura, T., Utsumi, S., Kitamura, K., Harada, K. and Mori, T., Cultivar di#erence in gelling characteristics of soybean. J. Agric. Food Chem., -,, 0.1ῌ0/+ (+32.). Nakamura, T., Utsumi, S. and Mori, T., Formation of pseudo glycinin from intermediary subunits of glycinin and their gel properties and network structure. Agric. Biol. Chem., .3, ,1--ῌ,1.* (+32/). Nishinari, K., Kohyama, K., Zhang, Y., Kitamura, K., Sugimoto, T., Saio, K. and Kawamura, Y., Rheological study on the e#ect of the AS subunit on the gelation characteristics of soybean protein. Agric. Biol. Chem., //, -/+ῌ-// (+33+). Tezuka, M., Yagasaki, K. and Ono, T., Changes in characters of soybean glycinin group I, IIa, and IIb caused by heating. J. Agric. Food Chem., /,, +03-ῌ+033 (,**.). Tezuka, M., Taira, H., Igarashi, Y., Yagasaki, K. and Ono, T., Properties of tofus and soy milks prepared from soybeans having di#erent subunits of glycinin. J. Agric. Food Chem., .2, ++++ῌ+++1 (,***). Poysa, V., Woodrow, L. and Yu, K., E#ect of soy protein subunit composition on tofu quality. Food Res. Int., -3, -*3ῌ-+1 (,**0).  

(140)     !"#$ %&'( -3 .*0ῌ.++ +33,   )*+,- .%/0  123 4'5$ %&'( -3 /12ῌ/2/ +33, .678 9:;<= !"#>?$@A B CDE'FGHIJK , +,-ῌ+,0 +33- Liu, Z.S. and Chang, K.C., Development of a rapid titration method for predicting optimal coagulant concentration for filled tofu. J. Agric. Food Chem., /+, /,+.ῌ/,,+ (,**-). Toda, K., Ono, T., Kitamura, K., Hajika, M., Takahashi, K. and Nakamura, Y., Seed protein content and consistency of tofu prepared with di#rent magnesium chloride concentration in six japanese soybean varieties. Breeding Science, /-, ,+1ῌ,,- (,**-). Liu, Z.S. and Chang, S.K.C., E#ect of soy milk characteristics and cooking conditions on coagulant requirements for making filled tofu. J. Agric. Food Chem., /,, -.*/ῌ-.++ (,**.). Kao, F. J., Su, N.W. and Lee, M.H., E#ect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. J. Agric. Food Chem., /+, 0,++ῌ0,+0 (,**-). Ono, T., Onodera, Y., Toda, K. and Nakasato, K., in preparation. %&' /- 1.LMN4 : +,. ,**0 OPQ- .RS T U+VW .XYZ[\]^_ `abZcdef %&'( -0 0-0ῌ0., +323 OPQ- .RS T U+VW .dgZch ijkl[^_ %&'( -2 11*ῌ11/ +33+. 0*. 0+. 0,. 0-. 0.. 0/. 00. 01 02 03. 1*. 1+. 1,. 1-. 1..  10 . Toda, K., Chiba, K. and Ono, T., E#ect of components extracted from okara on the physicochemical properties of soymilk and tofu texture. J. Food Sci., 1,, C+*2ῌ++(,**1). Saio, K., Koyama, E., Yamazaki, S. and Watanabe, T., Protein-calcium-phytic acid relations in soybean. III. E#ect of phytic acid on coagulative reaction in tofu making. Agric. Biol. Chem., --, -0ῌ., (+303). Thomas, R., deMan, J.M. and deMan, L., Soymilk and tofu properties as influenced by soybean storage conditions. J. Am. Oil Chem. Soc., 00, 111ῌ12, (+323). Nakagawa, Y., E#ect of storage temperature on tofuprocessing property and phytic acid in soybean. Proceedings of ISPUC-III (Tsukuba), +.,ῌ+.- (,***). Hou, H. J. and Chang, K.C., Yield and textural properties of tofu as a#ected by the changes of phytate content during soybean storage. J. Food Sci., 02, ++2/ῌ++3+ (,**-). Toda, K., Takahashi, K., Ono, T., Kitamura, K. and Nakamura, Y., Variation in the phytic acid content of soybeans and its e#ect on consistency of tofu made from soybean varieties with high protein content. J. Sci. Food Agric., 20, ,+,ῌ,+3 (,**0). Ishiguro, T., Ono, T., Wada, T., Tsukamoto, C. and Kono, Y., Changes in soybean phytate content as a result of field growing conditions and influence on tofu texture. Biosci. Biotech. Biochem., 1*, 21.ῌ22* (,**0). Thompson, D.B. and Erdman, W., JR., Phytic acid determination in soybeans. J. Food Sci., .1, /+-ῌ/+1 (+32,). Makower, R.U., Extraction and determination of phytic acid in beans. Cereal Chem., .1, ,22ῌ,3/ (+31*). Mohamed, A., Perera, P.A. J. and Hafez, Y.S., New chromophore for phytic acie determination. Ceral Chem., 0-, .1/ῌ .12 (+320). Harland, B.F. and Oberleas, D., Anion-exchage method for determination of phytate in food : collaborative study. J. Assoc. O#. Anal. Chem., 03, 001ῌ01* (+320). Sandberg, A.S. and Ahderine, R., HPLC method for determination of inositol tri-, tetra-, penta- and hexaphosphates in foods and intestinal contents. J. Food Sci., /+, /.1ῌ//* (+320). Ishiguro, T., Ono, T., Nakasato, K., Tsukamoto, C. and Shimada, S., Rapid measurement of phytate in raw soymilk by mid-infrared spectroscopy. Biosci. Biotech. Biochem., 01, 1/,ῌ1/1 (,**-). Ishiguro, T., Ono, T., Nakasato, K. and Tsukamoto, C., Rapid measurement of phytate in soy products by midinfrared spectroscopy. J. Food Sci., 1*, 0-ῌ00 (,**/). Mahfuz, A. al, Tsukamoto, C., Kudo, S. and Ono, T., Changes of astringent sensation of soy milk during tofu curd formation. J. Agric. Food Chem., /,, 1*1*ῌ1*1. (,**.).. ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ. v\ +3 t ++ u +3 %wx.

(141)

参照

関連したドキュメント

H ernández , Positive and free boundary solutions to singular nonlinear elliptic problems with absorption; An overview and open problems, in: Proceedings of the Variational

Keywords: Convex order ; Fréchet distribution ; Median ; Mittag-Leffler distribution ; Mittag- Leffler function ; Stable distribution ; Stochastic order.. AMS MSC 2010: Primary 60E05

In Section 3, we show that the clique- width is unbounded in any superfactorial class of graphs, and in Section 4, we prove that the clique-width is bounded in any hereditary

By interpreting the Hilbert series with respect to a multipartition degree of certain (diagonal) invariant and coinvariant algebras in terms of (descents of) tableaux and

Inside this class, we identify a new subclass of Liouvillian integrable systems, under suitable conditions such Liouvillian integrable systems can have at most one limit cycle, and

Greenberg and G.Stevens, p-adic L-functions and p-adic periods of modular forms, Invent.. Greenberg and G.Stevens, On the conjecture of Mazur, Tate and

The proof uses a set up of Seiberg Witten theory that replaces generic metrics by the construction of a localised Euler class of an infinite dimensional bundle with a Fredholm

[Mag3] , Painlev´ e-type differential equations for the recurrence coefficients of semi- classical orthogonal polynomials, J. Zaslavsky , Asymptotic expansions of ratios of