• 検索結果がありません。

The Gauss-Bonnet theorem for PL manifolds : Banchoff's theorem and Homma's theorem(Algebras, Languages, Computations and their Applications)

N/A
N/A
Protected

Academic year: 2021

シェア "The Gauss-Bonnet theorem for PL manifolds : Banchoff's theorem and Homma's theorem(Algebras, Languages, Computations and their Applications)"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

The

Gauss-Bonnet

theorem for

PL manifolds

\sim Banchoff’s

theorem

and

Homma’s

theorem\sim

SAT\^O,

Kenzi

佐藤

健治

There is

the

Gauss-Bonnet

theorem not

only

for smooth surfaces

but

also

for polyhedra. It

can

be

generalized

to

the

$th\infty rem$

for higher

dimensional

PL mfds,

in two methods of

Banchoff’s

and Homma’s.

The purpose of this

article

is to cooider the relation

of

them. First

of

all,

the

case

of

dimension

2 has to

be

described.

$2-dim$

.

Gauss’

Theorema

egregium.

For the boundary

$\partial P$

of

a

convex

polyhedrvs

$P=P^{3}$

of

$R^{3}$

,

let

$\sum^{m-1}(\pi-\theta:)-(m-2)\pi$

$\kappa(\langle v\})=2\cdot\frac{:-0}{4\pi}d\epsilon f$

(G)

$(= \lim\frac{2}{4\pi}\int_{\epsilon ma1ln.b.d..tvof\delta P}KdV)$

.

Then

$\kappa(\{v\})=1-\frac{1}{2}\cdot m+\sum_{:=0}^{m-1}\frac{\pi-\theta_{1}}{2\pi}$

(B)

$=1- \sum_{:=0}^{m-1}\frac{\theta_{1}}{2\pi}$

.

(H)

See the

figure below.

$\ell_{:}\perp l_{j}$

if

$t\neq j$

The

value

$\kappa(\{v\})$

depends only

$\partial P$

,

so, for

a

general

PL-mfd

$M=M^{2}$

,

we

can

define the

curvature

$\kappa$

by

$(B)=(II)$

.

This is

an

abetract

and the details witl be published elsewhere. The title in Japanme is

“PL 多様体の

$G-$

-Bonnet

(2)

$2-dim$

.

Gauss-Bonnet theorem.

We

have

$\sum_{v\in M}\kappa(\{v\})=\chi(M)$

.

$\frac{1}{4}\cdot 8=2=\chi(S^{2})$

$7^{1}124=2=\chi(S^{2})$

$(-18) \cdot 12+\frac{1}{6}\cdot 12=0=\chi(T^{2})$

To generalize

them for the higher dimension, the inner and outer angles for vertices

are

confirmed

by

the

following

figure.

$\alpha(\{v\},Q’)=\frac{\theta}{2\pi}$

$\alpha^{o}(\{v\},Q’)=\frac{\theta^{O}}{2\pi}$

$\alpha(\{v\},Q)=\frac{S}{4\pi}$

$\alpha^{o}(\{v\},Q)=\frac{s\circ}{4\pi}$

As

follows,

Theorema egregium and the

Gauss-Bonnet

thorem

are

extended.

Gauss’ Theorema egregium.

For

the boundary

$\partial P$

of

a

convex

polyhedra

$P=P^{n}$

of

$R^{n}$

,

let

$\kappa_{B}(\{v\})=dof(1+(-1)^{nrightarrow 1})\alpha^{o}(\{v\}, P)$

(G)

$(=$

$\lim\frac{1+(-1)^{n-1}}{\omega_{n-1}}\int_{-ma1ln.b.d.atv}$

of

$\partial PKdV$

).

Then

$\kappa_{B}(\{v\})=\sum_{Q\sigma\partial P}^{v\epsilon 0}(-1)^{|Q|}\alpha^{o}(\{v\},Q)$

.

So,

for

a

general

PL-mfd

$M=M^{n-1}$

,

let

(3)

Gauss-Bonnet

theorem

(Banchoff).

$\sum_{v\in M}\kappa_{B}(\{v\})=\chi(M)$

.

We

have another generalization.

Gauss-Bonnet theorem

(Homma).

For

ench

face

$Q’$

of

$M$

,

let

$\kappa_{H}(Q’)d=ef1-\sum_{Q\subseteqq M}^{Q’\subseteqq Q}\alpha(Q’,Q)|Q|=n-1$

(H)

Then

$\sum_{Q\subseteqq M}(-1)^{|Q’|}\kappa_{H}(Q’)=\chi(M)$

.

We also have to confirm

the

definition of

angles for

faces.

See

the figure below.

.

.

$\cdot$

.

$\cdot$ $\alpha(\ell,Q)=\frac{\theta}{2\pi}$ $\alpha^{O}(\ell,Q)=\frac{\theta^{o}}{2\pi}$

Notice

that

$\alpha(Q’, Q)=\alpha^{O}(Q’, Q)=51$

if

$|Q|-|Q’|=1$ ,

and

$\alpha(Q, Q)=\alpha^{O}(Q, Q)=1$

.

The following is

the main result of

this

article.

Relation

of

Banchoff and

Homma

(S.).

For ench

$v\in M$

,

we

have

$\kappa_{B}(\{v\})=\sum_{Q_{=}^{C}M}^{v\in Q}(-1)^{|Q|}\kappa_{H}(Q)\cdot\alpha^{O}(\{v\},Q)$

.

Remark that

$\sum_{v\in Q}\alpha^{O}(\{v\},Q)=1$

for

$\forall_{Q}\subseteqq M$

.

$\alpha(\{v\},Q)=\frac{\theta}{2\pi}$

(4)

Extend

$\kappa_{B}$

for all

faces

(and

extend

$\kappa_{B}$

and

$\kappa_{H}$

for

$P=P^{n}$

)

by

$\kappa_{B}(Q’’)=\{\begin{array}{ll}doi=\sum_{Q\subseteqq M}\overline{\alpha^{O}}(Q’’, Q’)-\delta_{|Q’|,\mathfrak{n}-1} if Q’’\subseteqq M(=0 if Q’’=P)\end{array}$

$(= \alpha^{O}(Q’’,P)-\overline{\alpha^{O}}(Q’’,P)-\sum_{=}\delta(Q’’,Q))Q^{\mathfrak{n}-1\subset}M$

$\kappa_{H}(Q’)=\{\begin{array}{ll}=1-\sum_{Q^{*-1}\subseteq M}\alpha(Q’,Q) if Q’\subseteqq M(=0 if Q’=P)\end{array}$

$(= \zeta(Q’,P)-\delta(Q’,P)-\sum_{o^{n-1}\subseteq M}\alpha(Q’, Q))$

,

where

$\delta(Q’,Q’)=1;\delta(Q’’, Q’)=0$

if

$Q”\subsetneqq Q’;\zeta(Q’’,Q’)=1$

if

$Q”\subseteqq Q’;\partial(Q’’,Q’)=(-1)^{|Q’|-|Q’’|}\beta(Q’’,Q’)$

for

$\beta=\alpha,$ $\alpha^{O},$ $\zeta$

,

and

$\delta$

; and

$\beta(Q’’,Q’)=0$

if

$Q”\Subset Q’$

for

each

$\beta$

.

Corollary.

Mvm

the generalization

of

the main

result

$\kappa_{B}=\overline{\alpha^{o}}0\kappa_{H}$

$(i.e.,$

$\kappa_{B}(Q’’)=\sum_{Q’}\overline{\alpha^{O}}(Q’’,Q’)\kappa_{H}(Q’))$

and

$\alpha$

$\overline{\alpha^{o}}=\delta$

$(i.e.,$

$\sum_{Q’}\alpha(Q’’,Q’)\overline{\alpha}^{T}(Q’,Q)=\delta(Q’’, Q))$

,

we

have

$\alpha 0\kappa_{B}=\kappa_{H}$

$(i.e.,$

$\sum_{Q}\alpha(Q’,Q)\kappa_{B}(Q)=\kappa_{H}(Q’))$

.

The

following

content

was

not described in the

prosentation.

The theorem

of Homma’s

curvature.

Let

$\tau(Q’,Q)d=\sum_{Q’\underline{\subseteq}Q’}(-1)^{|Q’|-|Q’’|}\alpha(Q’’,Q)of$

$= \sum_{Q’’}\zeta(Q’’,Q’)\alpha(Q’’,Q)$

$= \sum_{Q’’}\overline{\zeta}^{T}(Q’,Q’’)\alpha(Q’’, Q)$

.

Then,

for

a

$\dot{\alpha}mplexQ^{m}$

and

a

face

$Q_{\neq}^{\prime\subset}Q$

,

$\tau(Q’,Q)=\frac{\mu_{m-1}(S(Q’Q’’))arrow}{\omega_{m-1}}$

,

where

$S(Q’Q”)arrow=$

{

$\not\in’--fi\in S^{m-1}$

:

$q\in Q’$

,

Cl’

$\in Q’’$

},

$\omega_{m-1}=\mu_{m-1}(S^{m-1})$

,

and the

face

$Q”\subsetneqq Q\dot{u}$

such that the join

of

$Q’$

and

$Q”$

is

$Q$

,

and

(5)

Remark.

The

function

$\overline{\zeta}^{T}$

does

not

satisfy

$\overline{(}^{T}(Q’’, Q’)=0$

if

$Q”\subsetneqq Q’’$

,

so we

cannot

use

the

theorem above for

spherical simplices and

convex

cones

(we

can

only

use

it

for

Euclidean

simplices).

$\sum_{l=0}^{2}\frac{\theta^{1}}{2\pi}-\sum_{i}\frac{1}{2}+1=0$

$Co\iota\dot{\eta}ecture$

for Homma’s

curvature.

For

a

polyhdm

$Q^{m}$

and

a

face

$Q_{\neq}^{\prime\subset}Q$

,

can we

have

$= \emptyset\sum^{Q’\cap Q’’}(-1)^{|O’|+|Q’’|+1-m}\mu_{m-1}(S(QQ’’))arrow$

$\tau(Q’, Q)=\frac{Q’’gQ}{w_{m-1}}?$

and

$\tau(Q, Q)=?\{\begin{array}{ll}1 (ifm=0),0 (if m\geqq 1).\end{array}$

REFERENCES

[B]

T.

Banchoff,

Oriticd Points

and

ouruature

for

embedd

$\epsilon d$

polyhdm, J.

Differential

Geom.

1

(1967),

$24\triangleright 256$

.

[H]

T.

Homma,,

On

$PL$

total curvatures,

$Manlfold\epsilon-?bky_{Q}$

1973

(Proc.

Internat.

Conf., Tbkyo, 1973) (1975),

111-116.

[加] 加藤十吉, 組合せ位相幾何学, 岩波書店, 岩波講座基礎数学幾何学

iv,

1976.

[M]

P.

McMullen,

Non.

$l2n\infty r$

angle-sum

$nlat|om$

for

polyhdnl

cones

and PolytoPes,

Math. Proc.

Cambrldge Philoe.

Soc.

78

(1975),

247-261.

[Sa] K. Sat6, Spherical

$\dot{\alpha}mpl:ce$

.

and

$u_{\epsilon 1r}$

polars,

Quart.

J. Math.

58

(2007),

107-126.

SAT\^o,

Kenzi

DEPARTMENT

OP

MATHEMATICS,

FACULTY

OF

ENCINBBRING,

TAMAGAWA UNIVERSITY

6-1-1,

$TAuAGAWA- GAKUBN$

,

MACHIDA,

TOKYO

194-8610,

JAPAN

$E\sim ma|\downarrow$

address:

参照

関連したドキュメント

In this paper according to these studies we will prove Kakutani’s fixed point theorem in an n-dimensional simplex for multi-functions which have uniformly closed graph and

The purpose of this paper is to guarantee a complete structure theorem of bered Calabi- Yau threefolds of type II 0 to nish the classication of these two peculiar classes.. In

For example, a maximal embedded collection of tori in an irreducible manifold is complete as each of the component manifolds is indecomposable (any additional surface would have to

Keywords: nonlinear operator equations, Banach spaces, Halley type method, Ostrowski- Kantorovich convergence theorem, Ostrowski-Kantorovich assumptions, optimal error bound, S-order

In [9], it was shown that under diffusive scaling, the random set of coalescing random walk paths with one walker starting from every point on the space-time lattice Z × Z converges

He thereby extended his method to the investigation of boundary value problems of couple-stress elasticity, thermoelasticity and other generalized models of an elastic

The proof of Theorem 8.1 uses the corresponding result for simply-laced dia- grams (Theorem 7.1), applied to the set of short roots of. Let s and l denote the sets of short roots

Splitting homotopies : Another View of the Lyubeznik Resolution There are systematic ways to find smaller resolutions of a given resolution which are actually subresolutions.. This is