• 検索結果がありません。

THE ABELIANIZATION OF THE CONGRUENCE IA-AUTOMORPHISM GROUP OF A FREE GROUP(Methods of Transformation Group Theory)

N/A
N/A
Protected

Academic year: 2021

シェア "THE ABELIANIZATION OF THE CONGRUENCE IA-AUTOMORPHISM GROUP OF A FREE GROUP(Methods of Transformation Group Theory)"

Copied!
9
0
0

読み込み中.... (全文を見る)

全文

(1)

THE ABELIANIZATION OF THE CONGRUENCE

IA-AUTOMORPHISM GROUP OF A FREE GROUP

佐藤隆夫 (Takao Satoh)

東京大学大学院数理科学研究科 (The University of Tokyo)

Dedicatedto ProfessorKojun $Abe$ on the occation ofhis 60th birthday

ABSTRACT. In this paperwe considerthe abeiianizationsofsome normal subgroups ofthe automorphismgroupofafinitely generatedfree group. Let $F_{n}$ beafree group

ofrank$n$. For$d\geq 2$, we considera group consisting theautomorphismsof$F_{n}$ which

act triviallyon thefirst homologygroup of$F_{n}$ with $\mathrm{Z}/d\mathrm{Z}$-coefficients. We callit the

congruence$\mathrm{I}\mathrm{A}$

-automorphismgroup oflevel $d$and denote it by $IA_{n,d}$. Let $IO_{n,d}$ be the qutient group of thecongruence $\mathrm{I}\mathrm{A}$-automorphism group

of level $d$by the inner

automorphism group of afree group. In this paper we determinethe abelianization

of$IA_{n,d}$and $IO_{n,d}$for$n\geq 2$ and$d\geq 2$. Furthermore, for$n=2$and oddprime$p$, we

computethe integral homology groupsof$IA_{2,p}$ for any dimension. 1. INTRODUCTION

Let $F_{n}$ be a free group ofrank $n$, and Aut$F_{n}$ the automorphism group

of the free group $F_{n}$

.

We denote the abelianization of $F_{n}$ by $H$. The

abelianization homomorphism $F_{n}arrow H$ induces a surjective

homomor-phism $\rho$ :

Aut

$F_{n}arrow GL(n, \mathrm{Z})$. In this paper

we

consider the

abelianiza-tion ofthe preimages ofthe congruence subgroups of $GL(n, \mathrm{Z})$ by $\rho$. For

$n\geq 2$ and $d\geq 2$, let $GL(n, d)$ be the general linear group over $\mathrm{Z}/d\mathrm{Z}$,

and $\pi_{d}$ : $GL(n, \mathrm{Z})arrow GL(n, d)$ the natural homomorphism induced by

the mod reduction $d$. We call the kernel $\Gamma(n, d)$ of

$\pi_{d}$ the congruence

subgroup of $GL(n, d)$ of level $d$. Classically, the congruence subgroups

$\Gamma(n, d)$ have been studied by many authors, and there is a broad range

remarkable results ofthem. In particular, it is well known that for $n\geq 3$

and odd prime integer $p$, Lee and Szczarba [10, Theorem 1.1]

deter-mined the structure of the abelianization of the

congruence

subgroup

$\Gamma(n,p)$

.

More

precisely, they showed that it is isomorphic

to

the

Lie

algebra $\epsilon 1_{n}(\mathrm{F}_{p})$ of trace-zero matrices

over

$\mathrm{F}_{p}$

as an

$SL(n, \mathrm{F}_{p})$-module

where $\mathrm{F}_{p}$ is the finite field of order $p$

.

2000 Mathematics Subject Classification. $20\mathrm{F}28,20\mathrm{F}12,20\mathrm{F}14,20\mathrm{F}40,16\mathrm{W}25(\mathrm{P}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{y}),$$20\mathrm{F}38$,

$57\mathrm{M}05(\mathrm{S}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{l}\mathrm{y})$ .

Key words and phrases. the automorphism group of a free group, the Johnson homomorphism,

(2)

In this paper we are also interested in the kernel $IA_{n}$ of the natural

map $\rho$

.

We call it the

$\mathrm{I}\mathrm{A}$-automorphism group of

$F_{n}$. Then we have

an

exact sequence

$1arrow IA_{n}arrow \mathrm{A}\mathrm{u}\mathrm{t}F_{n}arrow G\rho L(n, \mathrm{Z})arrow 1$

.

This exact sequence plays important roles in the study of Aut $F_{n}$

.

Al-though Magnus [11] obtained a finitely many generating set of $IA_{n}$ for

$n\geq 3$, (See Subsection 2.1.) it is not known whether $IA_{n}$ is finitely

pre-sented

or

not for $n\geq 4$. We remark that Krstic and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{o}1[9]$ showed

that $IA_{3}$ is not finitely presentable.

For a group $G$,

we

denote the abelianization of $G$ by $G^{\mathrm{a}\mathrm{b}}$

.

Cohen-Pakianathan $[2, 3]$, Farb [4] and Kawazumi [8] independently showed that

the abelianization $IA_{n}^{\mathrm{a}\mathrm{b}}$ of $IA_{n}$ is a free abelian group of rank $n^{2}(n$

-$1)/2$. More precisely, it is isomorphic to $H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H$

as

a

$GL(n, \mathrm{Z})-$

module where $H^{*}$ is the dual group

$\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Z}}(H, \mathrm{Z})$ of $H$. We remark that

the $GL(n, \mathrm{Z})$-module structure of $IA_{n}^{\mathrm{a}\mathrm{b}}$ is determined by using the first

Johnson homomorphism of Aut$F_{n}$

.

Here we consider subgroups ofAut$F_{n}$ which corresponds to the

congru-ence

subgroup of $GL(n, \mathrm{Z})$. Let $IA_{n,d}$ be the kernel of $\pi_{d}0\rho$ : Aut $F_{n}arrow$

$GL(n, d)$, and call it the congruence $\mathrm{I}\mathrm{A}$-automorphism group of a hee

group $F_{n}$ of level $d$. The first aim of this paper is to determine the

structure of the abelianization of $IA_{n,d}$. Then our first result is

Theorem 1.1. For $n\geq 2$ and $d\geq 2$,

$IA_{n,d}^{\mathrm{a}\mathrm{b}}\simeq(IA_{n}^{\mathrm{a}\mathrm{b}}\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z})\oplus\Gamma(n, d)^{\mathrm{a}\mathrm{b}}$

In Section 3, we prove this theorem using the “extended” Johnson

ho-momorphism, introduced by Kawazumi [8], constructed from the

Z/dZ-valued Magnus expansion of Aut $F_{n}$. Considering the result of Lee and

Szczarba [10] stated

a.b

$\mathrm{o}\mathrm{v}\mathrm{e}$,

we

see

that for any odd prime

$p$, the

abelian-ization of$IA_{n}$ isisomorphicto $(\mathrm{Z}/p\mathrm{Z})^{\oplus\frac{1}{2}(n-1)(n^{2}+2n+2)}$ as an abelian group.

Next

we

consider the outer automorphism group of a free group and

the images of $IA_{n}$ and $IA_{n,d}$ by

a

natural projection. An automorphism

$\iota$ of$F_{n}$ is called an inner automorphism of $F_{n}$ if there exists

some

element

$y\in F_{n}$ such that $x^{\iota}=y^{-1}xy$ for any $x\in F_{n}$. Then the group Inn$F_{n}$ of

inner automorphisms of $F_{n}$ is

a

normal subgroup of Aut$F_{n}$

.

Let Out $F_{n}$

be the quotient group Aut$F_{n}/\mathrm{I}\mathrm{n}\mathrm{n}F_{n}$. The groups $\mathrm{I}\mathrm{n}\mathrm{n}F_{n}$ and Out $F_{n}$

are

called the inner automorphism group and the outer automorphism

(3)

quotient group of $IA_{n}$ by $\mathrm{I}\mathrm{n}\mathrm{n}F_{n}$

.

The group $IO_{n}$ is the kernel of the

natural map $\overline{\rho}$ : Out $F_{n}arrow GL(n, \mathrm{Z})$ induced by

$\rho$. It is also known

that the abelianization $IO_{n}^{\mathrm{a}\mathrm{b}}$ of $IO_{n}$ is given by $IO_{n}^{\mathrm{a}\mathrm{b}}\simeq(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)/H$.

(See [8, Theorem 6.2].) For $n\geq 2$ and $d\geq 2$,

we

define

1

$O_{n,d}$ to be

the quotient

group

of $IA_{n,d}$ by Inn$F_{n}$. The

group

$IO_{n,d}$ is the kernel of

$\pi_{d}\circ\overline{\rho}$. The second aim of this paper is to determine the structure of the

abelianization $IO_{n,d}^{\mathrm{a}\mathrm{b}}$

.

The result is

Theorem 1.2. For $n\geq 2$ and $d\geq 2$,

$IO_{n,d}^{\mathrm{a}\mathrm{b}}\simeq(IO_{n}^{\mathrm{a}\mathrm{b}}\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z})\oplus\Gamma(n, d)^{\mathrm{a}\mathrm{b}}$

Finally, in Section 5,

we

compute the integral homologygroups of $IA_{2,p}$

for

an

odd prime $p$

.

In general, to compute the integral homology groups

of $IA_{n,d}$ is quite difficult as well

as

that of$IA_{n}$. In the

case

where $n=2$

and $d=p$,

we

can

compute those

as

follows:

Theorem 1.3. For any prime $p$,

$H_{q}(IA_{2,p}, \mathrm{Z})=$

where $\alpha(p)=1+\frac{(p-1)p(p+1)}{12}$ is the rank

of

$\Gamma(2,p)$ as a

free

group.

We remark that $IO_{2,p}$ is isomrphic to the

congruence

subgroup $\Gamma(2,p)$

since $IA_{2}=\mathrm{I}\mathrm{n}\mathrm{n}F_{2}$ due to Nielsen [12], and hence, it is a free group of

rank $\alpha(p)$

.

2. PRELIMINARIES

In this section

we

review the $\mathrm{I}\mathrm{A}$-automorphism group of a

free group

and the first Johnson homomorphism of the automorphism group of a

free group. Throughout this paper we use the following notation and

conventions.

$\bullet$ The group

Aut

$F_{n}$

acts

on

$F_{n}$ from the right.

$\bullet$ For any $\sigma\in$ Aut$F_{n}$ and $x\in F_{n}$, the action of$\sigma$

on

$x$ is denoted by

$x^{\sigma}$.

$\bullet$ For elements $x$ and $y$ of

a

group, the

$-\mathrm{l}-\mathrm{l}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}$utator bracket

$[x, y]$ of

(4)

2.1. The $\mathrm{I}\mathrm{A}$-automorphism group.

In this subsection,

we

prepare generators of $IA_{n}$, and

some

basic exact

sequences which is required to prove our main theorems.

Let $F_{n}$ be a free group on $\{x_{1}, \ldots, x_{n}\}$. Magnus [11] showed that $IA_{n}$

is finitely generated by automorphisms

$K_{ij}$ :

for distinct $i,$ $j\in\{1,2, \ldots , n\}$ and

$K_{klm}$ :

for distinct $k,$ $l,$ $m\in\{1,2, \ldots , n\}$ such that

$l<m$

. Since $IO_{n}$ is the

qutient group $IA_{n}/\mathrm{I}\mathrm{n}\mathrm{n}F_{n},$ $IO_{n}$ is also generated by (the coset classes of)

automorphisms $K_{ij}$ and $K_{ijk}$

.

Next we give some basic exact sequences. Since the natural maps $\rho$

and $\overline{\rho}$ are surjective, for any $n\geq 2$ and $d\geq 2$, we have exact sequences

(1) $1arrow IA_{n}arrow IA_{n,d}\rhoarrow\Gamma(n, d)arrow 1$

and

(2) $1arrow IO_{n}arrow IO_{n,d}arrow\Gamma(n, d)arrow 1$

respectively. Furthermore, by definition,

we

have

(3) $1arrow \mathrm{I}\mathrm{n}\mathrm{n}F_{n}arrow IA_{n,d}arrow IO_{n,d}arrow 1$.

These exact sequences

are

used in later sections.

2.2. The first Johnson homomorphism.

In this subsection, we review the first Johnson homomorphism ofthe

automorphism group of a free group. For each $k\geq 1$, let $\Gamma_{n}(k)$ be the

k-th subgroup of the lower central series of $F_{n}$ defined by

$\Gamma_{n}(1):=F_{n}$, $\Gamma_{n}(k):=[\Gamma_{n}(k-1), F_{n}]$, $k\geq 1$

.

We denote the graded quotients $\Gamma_{n}(k)/\Gamma_{n}(k+1)$ by $\mathcal{L}_{n}(k)$. Set $\mathcal{L}_{n}=$

$\oplus_{k\geq 1}\mathcal{L}_{n}(k)$. Then it is well known that $\mathcal{L}_{n}$ naturally has

a

structure of

a

graded Lie algebra

over

$\mathrm{Z}$ induced from the commtator bracket

on

$F_{n}$

and it is naturally isomorphic to

a

graded free Lie algebra

over

$H$

.

In

(5)

In this paper, for any $x\in\Gamma_{n}(k)$,

we

also denote by $x$ the coset class of$x$ in $\mathcal{L}_{n}(k)$.

For each $k\geq 1$, let

$\tau’$ :

$IA_{n}arrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Z}}(H, \mathcal{L}_{n}(2))=H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H$

be the homomorphism defined by

$\sigmarightarrow(x\vdasharrow x^{-1}x^{\sigma})$.

for $\sigma\in IA_{n}$ and $x\in H$

.

The map $\tau’$ naturally induces

a

homomorphism

$\tau$ : $IA_{n}^{\mathrm{a}\mathrm{b}}arrow H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H$.

These homomorphisms $\tau’$ and

$\tau$ are called the first Johnson

homomor-phisms of Aut $F_{n}$. The map $\tau$ is a $GL(n, \mathrm{Z})$-equivariant isomorphism.

In particular, $IA_{n}^{\mathrm{a}\mathrm{b}}$ is

a

free abelian group of rank $\frac{1}{2}n^{2}(n-1)$. (See [8,

Theorem 6.1].)

Next,

we

consider $IO_{n}^{\mathrm{a}\mathrm{b}}$

.

For any $y\in F_{n}$,

we

denote by

$\iota_{y}$ the

inner

automorphism of $F_{\mathrm{n}}$ such that $x^{\iota_{y}}=y^{-1}xy$ for any $x\in F_{n}$

.

Considering

a

natural isomorphim Inn$F_{n}arrow F_{n};\iota\vdasharrow y$,

we

often identify Inn$F_{n}$ with

$F_{n}$. Then we have $($Inn$F_{n})^{\mathrm{a}\mathrm{b}}=H$. It is also known that the induced

homomorphism $($Inn$F_{n})^{\mathrm{a}\mathrm{b}}=Harrow H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H=IA_{n}^{\mathrm{a}\mathrm{b}}$from the inclusion

map Inn$F_{n^{\mathrm{c}}}\Rightarrow IA_{n}$ is injective, and whose image, which

we

identify with

$H$ by this map, is

a

direct summand of$H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H$ as a $\mathrm{Z}$-module. Hence

we

see

$IO_{n}^{\mathrm{a}\mathrm{b}}$ is isomorphic to afree abelian group $(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)/H$

of rank

$\frac{1}{2}n(n+1)(n-2)$

.

For details, see [8, Theorem 6.2].

Now, the first Johnson homomorphism $\tau’$ induces

a

homomorphism

$\tau_{d}’$ : $IA_{n}arrow(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$ .

Finally,

we

recall that $\tau_{d}’$ is extended to a homomorphism from $IA_{n,d}$

to $(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$. For any $\mathrm{Z}/d\mathrm{Z}$-valued Magnus expansion $\theta$,

Kawazumi [8] constructed

a

crossed homomorphism

$\tau^{\theta}$

: Aut$F_{n}arrow(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$

and showed that if

we

restrict it to $IA_{n,d}$, then the map $\tau^{\theta}$

is a

homo-morpism. Furthermore he also show that $\tau^{\theta}\equiv\tau_{d}’$

on

$IA_{n}$

.

Especially the

restriction $\tau^{\theta}|_{IA_{n}}$ is independent of the choice of the Magnus expansion

(6)

3. THE ABELIANIZATION OF $IA_{n,d}$

.

In this section we give a proof of Theorem 1.1. First,

we see

that

since the first Johnson homomorphism $\tau$ is a $GL(n, \mathrm{Z})$-equvariant

iso-morphism, $\tau$ induces a surjective homomorphism

$\tilde{\tau}$ :

$H_{0}(\Gamma(n, d),$$IA_{n}^{\mathrm{a}\mathrm{b}})arrow(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$

.

To show $\tilde{\tau}$ is

an

isomorphism, we

use

Lemma

3.1. For $n\geq 2$ and $d\geq 2_{f}$ we have

$d[K_{ij}]=0$ and $d[K_{klm}]=0$

in $H_{0}(\Gamma(n, d)$, I$A_{n}^{\mathrm{a}\mathrm{b}}$).

Then considering the homological five term exact sequence

$H_{2}(IA_{n}, \mathrm{Z})arrow H_{2}(IA_{n,d}, \mathrm{Z})arrow H_{0}(\Gamma(n, d),$$IA_{n}^{\mathrm{a}\mathrm{b}})$

$arrow^{\eta}IA_{n,d}^{\mathrm{a}\mathrm{b}}arrow\Gamma(nd)^{\mathrm{a}\mathrm{b}})arrow 0$.

of (1), and

a

homomorphism

$\tau^{\theta}$

: $IA_{n,d}arrow(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$

induced from a Magnus expansion $\theta$,

we

see

$\eta$ is injective. Hence we have

a split exact sequence

$0arrow(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}\etaarrow IA_{n}^{\mathrm{a}\mathrm{b}}arrow\Gamma(n, d)^{\mathrm{a}\mathrm{b}}arrow 0$.

This completes the proof of Theorem 1.1.

Here

we

consider the

case

where $d$ equals to

an

odd prime integer

$p$

.

For $n\geq 3$, Lee and Szczarba [10] showed that the abelianization $\Gamma(n,p)^{\mathrm{a}\mathrm{b}}$

ofthe congruence subgroup $\Gamma(n,p)$ is a $\mathrm{Z}/p\mathrm{Z}$-vector space of dimension

$n^{2}-1$. For $n=2$, Frasch [5] showed that the congruence subgroup $\Gamma(2,p)$

is

a

free group of rank $\alpha(p):=1+\frac{(p-1)p(p+1)}{12}$. FMrthermore Nielsen [12]

showed that $IA_{2}=\mathrm{I}\mathrm{n}\mathrm{n}F_{2}$. Hence we have

Corollary 3.1.

$IA_{n,p}^{\mathrm{a}\mathrm{b}}=$ $\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}$

$n\geq 3n=2,$

(7)

4. THE ABELIANIZATION OF $IO_{n,d}$

.

In this section

we

give a proof of Theorem 1.2. Considering the

homo-logical five term exact sequence of (3), we have

$H_{2}(IA_{n,d}, \mathrm{Z})arrow H_{2}(IO_{n,d}, \mathrm{Z})arrow H_{0}$($IO_{n,d}$, (Inn$F_{n}$) )

$arrow\delta IA_{n,d}^{\mathrm{a}\mathrm{b}}arrow IO_{n,d}^{\mathrm{a}\mathrm{b}}arrow 0$.

Since $H$ and $H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H$ is free abelian groups, the injective

homomor-phism

$H=(\mathrm{I}\mathrm{n}\mathrm{n}F_{n})^{\mathrm{a}\mathrm{b}}\mapsto IA_{n}^{\mathrm{a}\mathrm{b}}=H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H$

induces an injective homomorphism

$\psi_{d}$ : $H\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}\simarrow*(H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$.

For each $i,$ $1\leq i\leq n$, set $\iota_{i}:=\iota_{x}:$

.

Then, Inn$F_{n}$ is a free group on

$\{\iota_{1}, \ldots, \iota_{n}\}$.

Lemma 4.1. For $n\geq 2$ and $d\geq 2$,

$d[\iota_{i}]=0$, $1\leq i\leq n$

in $H_{0}$($IO_{n,d}$, (Inn $F_{n}$) ).

Hence there exists an isomorphism

$\overline{\xi}:H\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}arrow H_{0}$($IO_{n,d}$, (Inn$F_{n})^{\mathrm{a}\mathrm{b}}$)

such that $\psi_{d}=\delta\circ\overline{\xi}$, and

we

have

a

short exact sequence

$0arrow H\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}arrow IA_{n,d}^{\mathrm{a}\mathrm{b}}\deltaarrow IO_{n,d}^{\mathrm{a}\mathrm{b}}arrow 0$,

and hence

$((H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z})/(H\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z})$

$\simeq((H^{*}\otimes_{\mathrm{Z}}\Lambda^{2}H)/H)\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$,

$\simeq IO_{n}^{\mathrm{a}\mathrm{b}}\otimes_{\mathrm{Z}}\mathrm{Z}/d\mathrm{Z}$

.

This completes the proof of Theorem 1.2.

For $n\geq 2$ and an odd prime $p$, by

an

argument similar to that in

Corollary 3.1,

we

obtain

Corollary 4.1.

$IO_{n,p}^{\mathrm{a}\mathrm{b}}=$ $\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}$

$n=2n\geq 3’$

(8)

5. THE INTEGRAL HOMOLOGY GROUPS OF $IA_{2,p}$

In this section,

we

compute the integral homology groups of $IA_{2,p}$ for

any odd prime$p$

.

Since the groups $IA_{2}$ and $\Gamma(2,p)$

are

free groups stated

above, considering the homological Lyndon-Hochscild-Serre spectral

se-quence of (1) for $n=2$ and $d=p$, we see the homological dimension of

$IA_{2,p}$ is 2. Onthe other hand, since the first homology group $H_{1}(IA_{2,\mathrm{p}}, \mathrm{Z})$

is obtained in Section 3, it suffices to compute the second homology group

$H_{2}(IA_{2,p}, \mathrm{Z})$. Our result is

Theorem 5.1. For any odd prime $p$,

$H_{2}(IA_{2,p},$ $\mathrm{Z})=\mathrm{Z}^{\oplus(2\alpha(p)-2)}$

where a$(p)=1+ \frac{(p-1)p(p+1)}{12}$

.

To prove this theorem, first, we directly compute the second

cohomol-ogy groups of $IA_{2,p}$

.

Then, using the universal coefficients theorem,

we

obtain the second homology group of $IA_{2,p}$

.

Proposition 5.1. For any oddprime integer$p$, we have

$H^{2}(IA_{2,p},$$\mathrm{Z})=\mathrm{Z}^{\oplus(2\alpha(p)-2)}\oplus(\mathrm{Z}/p\mathrm{Z})^{\oplus 2}$ .

Similarly, we obtain

Proposition 5.2. For any odd prime integer$p$,

we

have

$H^{2}(IA_{2,p},$$\mathrm{Z}/q\mathrm{Z})\simeq\{^{(\mathrm{Z}/q\mathrm{Z})^{\oplus(2\alpha(p)}}(\mathrm{Z}/q\mathrm{Z})^{\oplus(2\alpha(p)2)}=^{2)}\oplus(\mathrm{Z}/p\mathrm{Z})^{\oplus 2}$ $\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}q=p^{e}(q,$

$p)=$

.

$1$,

Using Propositions 5.1 and 5.2, we obtain the second homology group

$H_{2}(IA_{2,p}, \mathrm{Z})$ by the universal coefficients theorem.

6. ACKNOWLEDGMENTS

The author would like to express his sincere gratitude to Professor

Nariya Kawazumi for his valuable advice and especially

access

to

his

un-publishedwork. He is also gratefulto Professor Fred Cohenand Professor

Benson Farb for explaining their unpublished works for the

abelianiza-ton of the $\mathrm{I}\mathrm{A}$-automorphismgroup of a

free group. Finally he would like

to express his thanks to the referee for helpful comments and

sugges-tions. The author is supported by JSPS Research Fellowships for Young

(9)

REFERENCES

[1] D. Arlettaz; Onthehomology and cohomology ofcongruencesubgroups, J. of Pure and Applied

Algebra44 (1987), 3-12.

[2] F. Cohen and J. Pakianathan; On Automorphism Groups ofFree Groups, and Their Nilpotent

Quotients, preprint.

[3] F. Cohen and J. Pakianathan; On subgroups of the automorphism group ofa free group and

associated graded Liealgebras, preprint.

[4] B. Farb; Automorphisms of$F_{n}$ which act triviallyonhomology, in preparation.

[5] H. Frasch; Die Erzeugenden der Hauptkongruenzgruppen f\"ur Primzahlstufen, Math. Ann. 108

(1933), 230-252.

[6] S. M.Gersten; A presentationfor thespecial automorphismgroup of a freegroup, J. of Pure and

AppliedAlgebra33 (1984), 269-279.

[7] A.Hatcher and K.Vogtmann; Rationalhomology of$\mathrm{A}\mathrm{u}\mathrm{t}(F_{n})$, Math. Res. Lett.5 (1998), 759-780. [8] N. Kawazumi; Cohomological aspectsof Magnus expansions, preprint, The University ofTokyo.

UTMS 2005-18 (2005), http:$//\mathrm{x}\mathrm{x}\mathrm{x}$.yukawa. kyoto-u.ac.

$\mathrm{j}\mathrm{p}/\mathrm{a}\mathrm{b}\mathrm{s}/\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{G}\mathrm{T}/0505497$.

[9] S.Krsti\v{c}andJ.McCool;Thenon-finitepresentabilityin$IA(F_{3})$and$GL_{2}(\mathrm{Z}[t,t^{-1}])$,Invent.Math.

129 (1997), 595-606.

[10] R. Lee and R. H. Szczarba; On the homology and cohomology ofcongruence subgroups, Invent.

Math. 33 (1976), 15-53.

[11] W. Magnus; \"Uber$n$-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.

[12] J.Nielsen; DieIsomorphismen derallgemeinen unendlichenGruppemitzwei Erzeugenden, Math.

Ann. 78 (1918), 385-397.

[13] J. Nielsen; Die Isomorphismengruppe derfreien Gruppen, Math Ann., 91 (1924), 169-209.

[14] C. Reutenauer; Free Lie Algebras, London Mathematical Society monographs,new series, no. 7, (Oxford UniversityPress, 1993).

GRADUATE SCHOOLOF MATHEMATICAL SCIENCES, THE UNIVERSITYOF TOKYO, 3-8-1 KOMABA

MEGURO-KU TOKYO 153-0041, JAPAN

参照

関連したドキュメント

In this paper the classes of groups we will be interested in are the following three: groups of the form F k o α Z for F k a free group of finite rank k and α an automorphism of F k

§3 recalls some facts about the automorphism group of a free group in the language of representation theory and free differential calculus.. §4 recalls elementary properties of

In this section we describe the structure of fixed subgroups of exponential au- tomorphisms where the fixed subgroup has rank one less than the ambient free group.. In order to do

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbers Q in a finitely generated group

Definition An embeddable tiled surface is a tiled surface which is actually achieved as the graph of singular leaves of some embedded orientable surface with closed braid

We give a Dehn–Nielsen type theorem for the homology cobordism group of homol- ogy cylinders by considering its action on the acyclic closure, which was defined by Levine in [12]

Thus no maximal subgroup of G/P has index co-prime to q and since G/P is supersolvable, this gives, by using a well known result of Huppert, that every maximal subgroup of G/P is

A lassial theorem of Igusa says that the monodromy representation as- soiated with a versal family of ordinary ellipti urves in harateristi p &gt; 0.. is surjetive