• 検索結果がありません。

Optimality conditions for a cone-dc vector optimization problem (Nonlinear Analysis and Convex Analysis)

N/A
N/A
Protected

Academic year: 2021

シェア "Optimality conditions for a cone-dc vector optimization problem (Nonlinear Analysis and Convex Analysis)"

Copied!
9
0
0

読み込み中.... (全文を見る)

全文

(1)

Optimality conditions for

a

cone-dc vector

optimization

problem

新潟大学大学院自然科学研究科 山田修司(Syuuji YAMADA)

Graduate School of Science andTechnology, Niigata University

新潟大学大学院自然科学研究科 田中環 (Tamaki TANAKA)

Graduate School of Science and Technology, Niigata University

大阪大学大学院工学研究科 谷野哲三(Tetsuzo TANINO)

Graduate School ofEngineering, Osaka University

Abstract. In this paper, we propose necessary and sufficient optimality conditions for three

types of solutions of

a

vector-valued cone-dc vector optimization problem in the

case

where the

ordering

cone

is obtained

as

a convexpolyhedral cone.

Keywords: Cone-dc function, Vector optimization problem, Optimalitycondition.

1

Introduction

An optimization problem including dc functions (difference oftwo convex functions) is called

dc programming. Dc programming is one of the important subjects in global optimization

and has been studied by Rosen [7], Avriel and Williams [1], Meyer [6], Ueing [9], Hillestad

and Jacobsen [2], and Tuy [8]. It is known that many global optimization problems can be

transformed intoorapproximatedbydc programming problems. For dc programming problems,

a necessary and sufficient optimality condition has been proposed by Hiriart [3].

The concept of vector-valued cone-dc function has been proposed by Hojo, Tanaka and

Ya-mada [4]. Moreover, several properties of cone-dc function have been analysed by Yamada,

Tanaka and Tanino [10]. Inparticular, it has been shown that every locally vector-valued

cone-dcfunction havingacompactconvexdomaincanberewrittenas a vector-valuedcone-dcfunction

with the

same

domain. From such results,

we

notice thatmanyvector optimization problemscan

be transformed into or approximated by vector-valuedcone-dc vector optimization problems.

In this paper, we propose necessary and sufficient optimality conditions for three types of

solutions of

an

unconstrained vector-valued cone-dc vector optimization problem by applying

Hiriart’s optimality condition in the

case

where the ordering

cone

is obtained as a

convex

poly-hedral cone. By utilizing a penalty function method, the proposed optimality conditions adapt

to aconstrained vector-valued cone-dc vector optimization problem.

The organization of this paper is

as

follows: In Section 2, we introduce

some

notation and

mathematical preliminaries in convex analysis. In Section 3, we propose optimality conditions

(2)

2

Mathematical Preliminaries

Throughout this paper, we usethe following notation: $\mathbb{R}$

denotesthe setof all realnumbers. For

a natural number$m,$$\mathbb{R}^{m}$ denotes

an

$m$-dimensional Euclidean space. Theoriginof$\mathbb{R}^{m}$

is denoted

by$O_{m}$

.

Let$\mathbb{R}_{+}^{m}:=\{x\in \mathbb{R}^{m}:x\geq 0_{m}\}$

.

Given

a

vector$x\in \mathbb{R}^{m},$$x^{T}$ denotesthe transposedvector

of$x$

.

For

a

subset $X\subset \mathbb{R}^{m}$, int$X$ denotes the interior of$X$

.

Given

a

nonempty

cone

$D\subset \mathbb{R}^{m},$

$D^{+}$ denotes the positive polar coneof $D$, that is, $D^{+}$ $:=\{u\in \mathbb{R}^{m}$ : $u^{T}x\geq 0$, for all $x\in D\}.$

Given

a

real-valued function $\alpha$ : $\mathbb{R}^{m}arrow \mathbb{R}\cup\{+\infty\}$ and

a

positive real number

$\epsilon,$ $\partial_{\epsilon}\alpha(y)$ denotes the $\epsilon$-subdifferential of$\alpha$ at $y$, that is,

$\partial_{\epsilon}\alpha(y)$ $:=\{a\in \mathbb{R}^{m}:a^{T}(x-y)+\alpha(y)-\epsilon\leq\alpha(x)$ for all $x\in \mathbb{R}^{m}\}.$

Moreover,

we use

the following conceptsof

convex

analysis.

Definition 2.1 (Real-valued dc function) Let $X$ be

a

nonempty

convex

subset

on

$\mathbb{R}^{m}.$ $A$

function $\alpha$ : $Xarrow \mathbb{R}$ is said to be $dc$ on $X$ if there exist two real-valued

convex

functions $\beta,$

$\gamma$ :$Xarrow \mathbb{R}$ such that

$\alpha(x)=\beta(x)-\gamma(x)$ forall $x\in X$

.

(1)

The representation (1) is called

a

$dc$ decomposition of $\alpha$

on

$X$

.

When $X=\mathbb{R}^{m},$ $F$ is simply

called a $dc$ function and the representation (1) is simply called a $dc$ decomposition.

Proposition 2.2 (See Hiriart [3]) Let $\beta$ : $\mathbb{R}^{m}arrow \mathbb{R}\cup\{+\infty\}$ be

an

arbitraryt

function

and

$\gamma$ :$\mathbb{R}^{m}arrow \mathbb{R}\cup\{+\infty\}$

a convex

proper $l.s.c$

function.

A point $x\in$ (dom $\beta$) $\cap(dom\gamma)$ is

a

global

minimizer

of

$\beta(x)-\gamma(x)$

of

$\mathbb{R}^{m}$

if

and only

if

$\partial_{\epsilon}\gamma(x)\subset\partial_{\epsilon}\beta(x)$ for each $\epsilon>$ O.

Let $C\subset \mathbb{R}^{n}$ be a convexpolyhedral cone defined as

$C:=\{x\in \mathbb{R}^{n}:(c^{i})^{T}x\geq 0,$ $i=1$,

. .

.

,$l\}.$

We

assume

that int $C\neq\emptyset$ and that $\dim\{c^{1}, . . . , c^{l}\}=n$

.

Then,

we

note that $C$is pointed.

Now,

we

define the order $\leq c$

as

follows:

$x\leq cy$ if $y-x\in C$ for$x,$$y\in \mathbb{R}^{n}.$

Moreover,

we

review the following concept for vector-valued functions.

Definition 2.3 $(C-$convexity, $see, e.g., Luc [5],$ Definition $6.1)$ Let$X\subset \mathbb{R}^{m}$ benonempty and

convex.

A vector-valued function$g:Xarrow \mathbb{R}^{n}$ is said to be $C$

-convex on

$X$ ifforeach$x^{1},$$x^{2}\in X$

and $0\leq\lambda\leq 1,$ $g$ satisfies that

$g((1-\lambda)x^{1}+\lambda x^{2})\leq c(1-\lambda)g(x^{1})+\lambda g(x^{2})$

.

Proposition 2.4 (See, e.g., Luc [5], Proposition 6.2) Let$X\subset \mathbb{R}^{m}$ be anonempty

convex

subset.

Then, a vector-valued

function

$g$ : $Xarrow \mathbb{R}^{n}$ is $C$

-convex

on $X$

if

and only

if

$c^{T}g(\cdot)$ is a

(3)

Definition 2.5 (C-dc function,

see

Hojo, Tanakaand Yamada [4]) Let $X\subset \mathbb{R}^{m}$ be nonempty

and

convex.

A vector-valued function $f$ : $Xarrow \mathbb{R}^{n}$ is said to be C-dc

on

$X$ ifthere exist two

$C$

-convex

functions$g$ and $h$on $X$ such that

$f(x)=g(x)-h(x)$ (2)

for all$x\in X$

.

Moreover, formulation (2) is called C-dc decomposition of$f$

over

$X.$

Definition 2.6 (Efficiency,

see

Luc [5], Definition 2.1) Let $X\subset \mathbb{R}^{m}$ be nonempty and let

$f$ : $Xarrow \mathbb{R}^{n}$ be a vector-valued function. We say that

(i) $y\in X$ is an ideal efficient point of $f$ over $X$ with respect to $C$ if$f(y)\leq cf(x)$ for all

$x\in X.$

(ii) $y\in X$ is

an

efficient point of$f$ over $X$with respect to $C$ if$f(x)\leq_{C}f(y)$ for

some

$x\in X,$

then $f(y)\leq_{C}f(x)$.

(iii) $y\in X$ is a weakly efficient point of $f$ over $X$ with respect to $C$ if $f(x)\leq\{0_{n}\}\cup intCf(y)$

for

some

$x\in X$, then $f(y)\leq\{0_{n}\}\cup intCf(x)$.

3

Optimality conditions for

a

cone-dc

vector optimization

problem

Let us consider the following mathematical programming problem.

(C-DC) C-min $f(x):=g(x)-h(x)$

st. $x\in \mathbb{R}^{m},$

where $g,$$h$ : $\mathbb{R}^{m}arrow \mathbb{R}^{n}$

are

C-dc functions and C-min denotes minimizing with respect to the

ordering

cone

$C\subset \mathbb{R}^{n}.$

By applying Proposition 2.2 to (C-DC), we obtain the following theorems.

Theorem 3.1 A vector$y\in \mathbb{R}^{m}$ is

an

ideal

efficient

point

of

(C-DC)

if

and only

if

$\partial_{\epsilon}(c^{i})^{T}h(y)\subset\partial_{\epsilon}(c^{i})^{T}g(y)$ for each $i\in\{1, . . . , l\}$ and $\epsilon\in \mathbb{R}_{+}.$

Proof. We

assume

that $y\in \mathbb{R}^{m}$ is an ideal efficient point of (C-DC). From Definition 2.6,

$f(x)-f(y)\in C$ for all $x\in \mathbb{R}^{m}$

.

This implies that

$(c^{i})^{T}(f(x)-f(y))\geq 0$ for each $x\in \mathbb{R}^{m}$ and$i\in\{1, . . . , l\}.$

Hence, we have

$(c^{i})^{T}f(y)=(c^{i})^{T}(g(y)-h(y))= \min\{(c^{i})^{T}(g(x)-h(x)):x\in \mathbb{R}^{m}\}$ for all$i\in\{1, . . . , l\}.$

By Proposition 2.4, we note that $(c^{i})^{T}h(x)$ is

convex

for each $i\in\{1, . . . , l\}$. Hence, it follows

from Proposition 2.2 that

(4)

Next,

we

assume

that

$\partial_{\epsilon}(c^{i})^{T}h(y)\subset\partial_{\epsilon}(c^{i})^{T}g(y)$ foreach $i\in\{1, . . . , l\}$ and $\epsilon\in \mathbb{R}_{+}.$

From Proposition 2.2,

$(c^{i})^{T}f(y)= \min\{(c^{i})^{T}f(x)$ : $x\in \mathbb{R}^{m}\}$ for all$i\in\{1, . . . , l\}.$

Hence,

we

have

$(c^{i})^{T}(f(x)-f(y))\geq 0$ for each $x\in \mathbb{R}^{m}$ and$i\in\{1, . . . , l\}.$

From the definition of$C$,

we

have $f(x)-f(y)\in C$ for each $x\in \mathbb{R}^{m}$

.

Therefore, $y\in \mathbb{R}^{m}$ is

an

ideal efficient point of (C-DC). $\square$

Theorem 3.2 A vector$y\in \mathbb{R}^{m}$ is

an

efficient

point

of

(C-DC)

if

and only

if

$y$

satisfies

$( \bigcap_{a^{i}\in\partial_{\epsilon_{i}}}^{l}\bigcup_{(c)^{T}h(y)}\{x\in \mathbb{R}^{m}:\geq(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\})$

$\cap(\bigcup_{a^{j}\in\partial_{\epsilon_{j}}(c^{j})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{j})^{T}(g(x)-g(y))(a^{j})^{T}(x-y)-\epsilon_{j}\})=\emptyset$

for

each$j\in\{1, \}l$

}

and$\epsilon=(\epsilon_{1}, \ldots, \epsilon_{n})^{T}\in \mathbb{R}_{+}^{n}.$

Proof. We

assume

that $y$ is an efficient point of (C-DC). In order to obtain

a

contradiction,

we

suppose that there exists $x’\in \mathbb{R}^{m}$ satisfying

$x’ \in(_{i\neq j}\bigcap_{i_{=}1.(c)^{T}h(y)}^{l}.\cdot\{x\in \mathbb{R}^{m}\geq(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\cap(\bigcup_{a^{j}\in\^{o}_{\epsilon_{j}}(c^{j})^{T}h(y)}^{a^{i}\in\partial_{\epsilon}^{\cup}}\{x\in \mathbb{R}^{m}(a^{j})^{T}(x-y)-\epsilon_{j}>(\dot{d})^{T}(g(x)-g(y))$

for

some

$j\in\{1, . . . , l\}$ and $\epsilon=(\epsilon_{1}, \ldots, \epsilon_{n})^{T}\in \mathbb{R}_{+}^{n}$

.

Then, for all $i\in\{1, . . ., l\}\backslash \{j\}$, there exists

$a^{i}\in\partial_{\epsilon}.$ $(c^{i})^{T}h(y)$ such that

$(c^{i})^{T}(h(x’)-h(y))\geq(a^{i})^{T}(x’-y)-\epsilon_{i}\geq(c^{i})^{T}(g(x’)-g(y))$ .

Moreover, there exists $a^{j}\in\partial_{\epsilon_{j}}(c^{;})^{T}h(y)$ such that

$(c^{;})^{T}(h(x’)-h(y))\geq(a^{j})^{T}(x’-y)-\epsilon_{j}>(c^{;})^{T}(g(x’)-g(y))$

.

Hence, for all$i\in\{1, . . . , l\},$

$(c^{i})^{T}(g(y)-h(y))\geq(c^{i})^{T}(g(x’)-h(x’))$ for all $i\in\{1, \cdots, l\}\backslash \{j\},$

(5)

This impliesthat

$f(y)-f(x’)\in C$and $f(x’)-f(y)\not\in C.$

This contradicts the efficiency of$y$

.

Therefore,

$( \bigcap_{i\neq j}^{l}\bigcup_{a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)}\{x\in \mathbb{R}^{m}:\geq(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\})$

$\cap(\bigcup_{a^{j}\in\partial_{\epsilon_{j}}(c^{j})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{\rho’})^{T}(g(x)-g(y))(a^{j})^{T}(x-y)-\epsilon_{j}\})=\emptyset$

foreach $j\in\{1, . . . , l\}$ and$\epsilon=(\epsilon_{1}, \ldots, \epsilon_{n})^{T}\in \mathbb{R}_{+}^{n}.$

Next,

we

assume

that $y$ satisfies

$( \bigcap_{i\neq j}^{l}\bigcup_{a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)}\{x\in \mathbb{R}^{m}:\geq(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\})$

$\cap(\bigcup_{a^{j}\in\partial_{\epsilon_{j}}(c^{j})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{j})^{T}(g(x)-g(y))(a^{j})^{T}(x-y)-\epsilon_{j}\})=\emptyset$

for each $j\in\{1, . . . , l\}$ and $\epsilon=(\epsilon_{1}, \ldots, \epsilon_{n})^{T}\in \mathbb{R}_{+}^{n}$

.

In order to obtain a contradiction,

we

suppose that $y$ is not efficient for (C-DC). Then, from Definition 2.6, there exists $x’\in \mathbb{R}^{m}$ such

that

$f(y)-f(x’)\in C$ and $f(x’)-f(y)\not\in C,$

that is, $f(y)-f(x’)\in C\backslash \{0_{n}\}$. Hence, for each $i\in\{1, . . . , l\},$ $(c^{i})^{T}(g(y)-h(y))\geq(c^{i})^{T}(g(x’)-h(x’))$.

Moreover, there exists$j\in\{1, . . . , l\}$ such that

$(c^{i})^{T}(g(y)-h(y))>(\dot{d})^{T}(g(x’)-h(x’))$ .

Let $a^{i}\in\partial(c^{i})^{T}h(x’)$ for each $i\in\{1, . . . , l\}$

.

Since $(c^{i})^{T}h(x’)$ is a

convex

function for each

$i\in\{1, . . ., l\}\backslash \{j\}$,

we

have

$0\leq(c^{i})^{T}h(y)-(c^{i})^{T}h(x’)-(a^{i})^{T}(y-x’)=:\epsilon_{i}.$

Moreover, wehave

$0\leq(c^{i})^{T}h(y)-(c^{;})^{T}h(x’)-(a^{j})^{T}(y-x’)$ $<(c^{i})^{T}h(y)-(c^{;})^{T}h(x’)-(a^{i})^{T}(y-x’)$

(6)

Then, for each$z\in \mathbb{R}^{m}$ and $i\in\{1, . . ., l\}\backslash \{j\},$

$(c^{i})^{T}h(z)\geq(a^{i})^{T}(z-x’)+(c^{i})^{T}h(x’)$

$=(a^{i})^{T}(z-y)+(a^{i}1^{T}(y-x’)+(c^{i})^{T}h(y)-(C^{i}J^{T_{h(y)+(c^{i})h(x’)}}$

$=(a^{i}) (z-y)+(c^{i})^{T}h(y)-\epsilon_{i}.$

Moreover, for each $z\in \mathbb{R}^{m},$

$(c^{i})^{T}h(z)\geq(4l^{j})^{T}(z-x’)+(\dot{d})^{T}h(x’)$

$=(a^{j})^{T}(z-y)+(a^{j}1^{T}(y-x’)+(c^{;})^{T}h(y)-(dJ^{T_{h(y)+(c^{i})h(x’)}}$

$=(a^{j})(z-y)+(a^{j}1_{h^{(y-x’)+(c^{;})^{T}h(y)}}^{T}-(c^{;})^{T}h(y)+(c^{;})(x’)$

$(c^{i})^{T}(g(y)-h(y)-g(x’)+h(x’))$

$=(a^{j;^{2_{T}}})^{T}(z-y)+(c)h(y)-\epsilon_{j}.$

Hence, $a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)$ foreach $i\in\{1, . . . , l\}$. Here,

we

have

$(a^{i})^{T}(x’-y)-\epsilon_{i}-(c^{i})^{T}(g(x’)-g(y)))$

$=(a^{i})^{T}(x’-y)-(c^{i})^{T}(g(x’)-g(y)))-(c^{i})^{T}h(y)+(c^{i})^{T}h(x’)$

$+(a^{i})^{T}(y-x’)$

$=(c^{i})^{T}(g(y)-h(y)-g(x’)+h(x’))\geq 0$

for each $i\in\{1, . .. , l\}\backslash \{j\}$

.

Moreover,

$(a^{j})^{T}(x’-y)-\epsilon_{j}-(c^{;})^{T}(g(x’)-g(y)))$

$=(a^{j})^{T}(x’-y)-(c^{;})^{T}(g(x’)-g(y)))-(c^{;})^{T}h(y)+(c^{i})^{T}h(x’)$

$+(a^{j})^{T}(y-x’)- \frac{(c^{i})^{T}(g(y)-h(y)-g(x’)+h(x’))}{2}$

$= \frac{(\dot{d})^{T}(g(y)-h(y)-g(x’)+h(x’))}{2}>0$

for each $i\in\{1, . . . , l\}$

.

This implies that

$x’ \in(_{i\neq j}\bigcap_{=1(c^{i})^{T}h(y)}^{l}.\{x\in \mathbb{R}^{m}\geq(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}n\dot{.}(\bigcup_{a^{j}\in\partial_{\epsilon_{j}}(c^{j})^{T}h(y)}^{a^{i}\in\partial_{\epsilon}^{\cup}}\{x\in \mathbb{R}^{m}(a^{j})^{T}(x-y)-\epsilon_{j}>(c^{i})^{T}(g(x)-g(y))$

(7)

Theorem 3.3 A vector$y\in \mathbb{R}^{m}$ is a weakly

efficient

point

of

(C-DC)

if

and only

if

$y$

satisfies

$\bigcap_{i=1}^{l}\bigcup_{a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\}=\emptyset$

for

each $\epsilon=(\epsilon_{1}, \ldots, \epsilon_{n})^{T}\in \mathbb{R}_{+}^{n}.$

Proof. We

assume

that $y\in \mathbb{R}^{m}$ is a weakly efficient point of (C-DC). In order to obtain a

contradiction, we suppose that thereexists $x’\in \mathbb{R}^{m}$ satisfying

げ $\in\bigcap_{i=1}^{l}\bigcup_{a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\}$

for

some

$\epsilon\in \mathbb{R}_{+}^{n}$

.

Then, for all $i\in\{1, . . . , l\}$, there exists $a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)$ such that

$(c^{i})^{T}(h(x’)-h(y))\geq(a^{i})^{T}(x’-y)-\epsilon_{i}>(c^{i})^{T}(g(x’)-g(y))$

.

Hence, for all $i\in\{1, . . . , l\},$

$(c^{i})^{T}(g(y)-h(y))>(c^{i})^{T}(g(x’)-h(x’))$.

This implies that

$f(y)-f(x’)\in\{0_{n}\}U$int $C$ and$f(x’)-f(y)\not\in\{0_{n}\}\cup intC.$

This contradicts the weak efficiency of$y$

.

Therefore,

$\bigcap_{i=1}^{l}\bigcup_{a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\}=\emptyset$

for each $\epsilon=(\epsilon_{1}, \ldots, \epsilon_{n})^{T}\in \mathbb{R}_{+}^{n}.$

Next, we

assume

$y\in \mathbb{R}^{m}$ satisfying

$\bigcap_{i=1}^{l}\bigcup_{a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\}=\emptyset$

foreach $\epsilon=(\epsilon_{1}, \ldots, \epsilon_{n})^{T}\in \mathbb{R}_{+}^{n}$

.

In order to obtain

a

contradiction,

we

suppose that $y$ is not

a

weakly efficient point of (C-DC). Then, from Definition 2.6, there exists $x’\in \mathbb{R}^{m}$ such that

$f(y)-f(x’)\in\{0_{n}\}\cup intC$and $f(x’)-f(y)\not\in\{0_{n}\}\cup intC,$

that is, $f(y)-f(x’)\in intC$

.

Hence, for each$i\in\{1, . . . , l\},$

(8)

Let $a^{i}\in\partial(c^{i})^{T}h(x’)$ for each $i\in\{1, \cdots, l\}$

. Since

$(c^{i})^{T}h(x’)$ is

a

convex

function for each $i\in\{1, . . . , l\}$,

we

have

$0\leq(c^{i})^{T}h(y)-(c^{i})^{T}h(x’)-(a^{i})^{T}(y-x’)$ $<(c^{i})^{T}h(y)-(c^{i})^{T}h(x’)-(a^{i})^{T}(y-x’)$

$+ \frac{(c^{i})^{T}(g(y)-h(y)-g(x’)+h(x’))}{2}=:\epsilon_{i}.$

Then, for each $z\in \mathbb{R}^{m}$ and $i\in\{1, . . . , l\},$

$(c^{i})^{T}h(z)\geq(a^{i})^{T}(z-x’)+(c^{i})^{T}h(x’)$ $=(a^{i})^{TT}(z-y)+(a^{i}1^{(y-X’)+(C^{i})^{T}h(y)}$ $-(C^{i}1^{T_{h(y)+(c^{i})}} h(x’)$ $=(a^{i}) (z-y)+(a^{i}1^{T}(y-x’)+(c^{i})^{T}h(y)$ $-(c^{i})^{T}h(y)+(c^{i}) h(x’)$ $=(a- \frac{(c^{i})^{T}(g(y)-h(y)-g(x’)+.h(x’))}{i)^{T}(z-y)+(c^{i})^{2_{7}}h(y)-\epsilon_{i}}$

Hence, $a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)$ foreach $i\in\{1, . . . , l\}$

.

Moreover, we have

$(a^{i})^{T}(x’-y)-\epsilon_{i}-(c^{i})^{T}(g(x’)-g(y)))$

$=(a^{i})^{T}(x’-y)-(c^{i})^{T}(g(x’)-g(y)))-(c^{i})^{T}h(y)+(c^{i})^{T}h(x’)$

$+(a^{i})^{T}(y-x’)- \frac{(c^{i})^{T}(g(y)-h(y)-g(x’)+h(x’))}{2}$

$= \frac{(c^{i})^{T}(g(y)-h(y)-g(x’)+h(x’))}{2}>0$

for each $i\in\{1, . . . , l\}$

.

This implies that

$x’ \in\bigcap_{i=1}^{l}\bigcup_{a^{i}\in\partial_{\epsilon_{i}}(c^{i})^{T}h(y)}\{x\in \mathbb{R}^{m}:>(c^{i})^{T}(g(x)-g(y))(a^{i})^{T}(x-y)-\epsilon_{i}\}\cdot$

Thisis

a

contradiction. Therefore, $y$ is aweakly efficient point of (C-DC). $\square$

References

[1] M. Avriel and A.C. Williams, Complementary Geometric Programming, SIAM Journal of

Applied Mathematics 19(1) (1970), 125-141.

[2] R.J. Hillestad andS.E. Jacobsen, Reverse ConvexProgramming, AppliedMathematics and

optimization 6(1) (1980), 63-78.

[3] J.-B. Hiriart-Urruty, From

convex

optimization to

nonconvex

optimization, Part I:

Neces-sary and sufficient conditions for global optimality, Nonsmooth optimization and related

(9)

[4] M. Hojo, T. Tanaka and S. Yamada, Optimality Condition for Vector-Valued DC

Program-ming Problems, Journal

of

Nonlinear and Convex Analysis13(1) (2012),

57-64.

[5] D.T. Luc, Theory of Vectoroptimization.InLectureNotes in Economics andMathematical

Systems 319, Springer, Berlin (1989).

[6] R. Meyer, The Validity of

a

Family of optimization Methods, SIAM Journal on Control

8(1) (1970),

42-54.

[7] J.B. Rosen, Iterative Solution of Nonlinear Optimal Control Problems, SIAM Journal on

Control4(1) (1966), 223-244.

[8] H. Tuy, Convex Programs with

an

Additional Reverse Convex Constraint, Journal

of

Op-timization Theory and Applications 52(3) (1987),

463-486.

[9] U.A. Ueing, A Combinatorial Method to Compute

a

Global Solution ofCertain Nonconvex optimization Problems, Numerical Methods

for

Nonlinear optimization Edited by $F.A.$

Lootsma, Academic Press, New York (1972), 223-230.

[10] S. Yamada, T. Tanaka and T. Tanino, Relationships betweenvector-valued cone-dc and

10-cally cone-dc functions, Hournal

of

MathematicalAnalysis and Applications, 398(2) (2013),

参照

関連したドキュメント

The performance of scheduling algorithms for LSDS control is usually estimated using a certain number of standard parameters, like total time or schedule

Murota: Discrete Convex Analysis (SIAM Monographs on Dis- crete Mathematics and Applications 10, SIAM, 2003). Fujishige: Submodular Functions and Optimization (Annals of

Under the assumption that we can reach from any feasible state any feasible sequence of states in bounded time, we show that every e ffi cient solution is also overtaking, thus

Under the assumption that we can reach from any feasible state any feasible sequence of states in bounded time, we show that every e ffi cient solution is also overtaking, thus

VRP is an NP-hard problem [7]; heuristics and evolu- tionary algorithms are used to solve VRP. In this paper, mutation ant colony algorithm is used to solve MRVRP with

pole placement, condition number, perturbation theory, Jordan form, explicit formulas, Cauchy matrix, Vandermonde matrix, stabilization, feedback gain, distance to

More precisely, suppose that we want to solve a certain optimization problem, for example, minimization of a convex function under constraints (for an approach which considers

The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any