• 検索結果がありません。

Study on Estimation Method of Seismic Safety Margin of Aged Piping System and Equipment

N/A
N/A
Protected

Academic year: 2021

シェア "Study on Estimation Method of Seismic Safety Margin of Aged Piping System and Equipment"

Copied!
78
0
0

読み込み中.... (全文を見る)

全文

(1)

ᯏེ࡮㈩▤♽ߩ⚻ᐕᄌൻߦ઻߁⠴㔡቟ో⵨ᐲ⹏ଔᚻᴺߩ⎇ⓥޓႎ๔ᦠ

ਛ᧛޿ߕߺ࡮ᄢ⼱┨ੳ㧖㧖࡮⊕㠽ᱜ᮸㧖㧖㧖

Study on Estimation Method of Seismic Safety Margin of Aged Piping System and Equipment

Izumi NAKAMURA*, Akihito OTANI**, and Masaki SHIRATORI***

* National Research Institute for Earth Science and Disaster Prevention, Japan

** Ishikawajima-Harima Heavy Industries Co., Ltd., Japan

*** Yokohama National University, Japan

Abstract

ޓޓ㧖㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲޓ✚ว㒐ἴ⎇ⓥㇱ㐷

ޓ㧖㧖⍹Ꮉፉ᠞⏴㊀Ꮏᬺᩣᑼળ␠ޓේሶജ੐ᬺㇱ

㧖㧖㧖ᮮᵿ࿖┙ᄢቇᄢቇ㒮ޓᎿቇ⎇ⓥ㒮

In order to clarify the behavior of degraded pipes under seismic events, cyclic four-point bending tests on straight pipe and shaking table tests using piping system models were conducted. The degradation used in this study were wall thinning or cracks, which were considered to be caused in piping systems due to the effects of aging. Cyclic bending tests were conducted on straight pipe elements to investigate the relation between the failure mode and degradation condition. Shaking table tests were also conducted to investigate the influence of degradation on piping system behavior and clarify the failure mode of degraded piping systems. Through these tests, the failure modes of aged piping were obtained under varying loading and degradation conditions.

In addition to these experiments, elastic-plastic FEM analysis using ABAQUS were conducted on pipe elements with wall thinning or a crack. It has been found that the failure modes observed in the tests were well simulated by this analysis. With this analysis, the strain concentrated point could be predicted and the cause of its generation could be explained by the simulated deformation behavior of the pipe.

In order to predict the piping system’s maximum response under elastic-plastic response, a simple response prediction method was proposed in this report. This method takes account of the dissipation energy caused by plastic deformation. It has been found that this prediction method provided a conservative value compared with the test results, but not too conservative a value as an elastic response analysis.

Key Words : Aging effect, Piping, Cracks, Wall thinning, Shaking table test, Failure mode, FEM analysis, Simple elastic-plastic response prediction method

* ** ***

(2)

4.㈩▤ⷐ⚛ߦኻߔࠆ⹦⚦⸃ᨆ 36

4.1ᧄ┨ߩ⋡⊛߅ࠃ߮᭴ᚑ 36

4.2ዪᚲ⊛ᷫ⡺ㇱࠍ᦭ߔࠆ㈩▤ߩ⸃ᨆ⊛∋ഭ⹏ଔ1㧔⋥▤㧕 36

4.2.1ታ㛎᭎ⷐ 36

4.2.2⸃ᨆࡕ࠺࡞ߣ᧦ઙ 36

4.2.3ታ㛎⚿ᨐߣ⸃ᨆ⚿ᨐߩᲧセ 37

4.2.4ᷫ⡺㈩▤ߩ߈ⵚ⊒↢ࡔࠞ࠾࠭ࡓߣ⎕უ᜼േ 39

4.2.5⚥Ⓧ∋ഭ៊்ೣࠍ↪޿ߚኼ๮⹏ଔ 42

1.ߪߓ߼ߦ 4

1.1⢛᥊ 4

1.2ߎࠇ߹ߢߦⴕࠊࠇߚ⎇ⓥߩ⃻⁁ 4

1.3ᧄ⎇ⓥߩ⋡⊛ 5

2.ታ㛎ᣇᴺ 6

2.1ⷐ⚛⹜㛎 6

2.1.1⹜㛎૕ߩ᭎ⷐ 6

2.1.2タ⩄᧦ઙ 7

2.1.3⸘᷹ 8

2.2㈩▤♽ᝄേ⹜㛎 11

2.2.1ᐔ㕙㈩▤♽ᝄേ⹜㛎 11

2.2.1.1⹜㛎૕ߩ᭎ⷐ 11

2.2.1.2タ⩄᧦ઙ 11

2.2.1.3⸘᷹ 12

2.2.2┙૕㈩▤♽ᝄേ⹜㛎 14

2.2.2.1⹜㛎૕ߩ᭎ⷐ 14

2.2.2.2タ⩄᧦ઙ 15

2.2.2.3⸘᷹ 15

3.ታ㛎⚿ᨐ 17

3.1ⷐ⚛⹜㛎 17

3.1.1߈ⵚઃ߈㈩▤ 17

3.1.1.1⎕៊⁁ᴫ 17

3.1.1.2߈ⵚઃ߈㈩▤ߩ⩄㊀ᄌᒻ․ᕈ 17

3.1.1.3SCC߈ⵚߣEDM߈ⵚߩ⎕៊ኼ๮Ყセ 19

3.1.1.4⎕㕙⸃ᨆ 19

3.1.2ᷫ⡺㈩▤߅ࠃ߮ஜో㈩▤ 21

3.1.2.1⎕៊⁁ᴫ 21

3.1.2.2ᷫ⡺㊂ߣ࡜࠴ࠚ࠶࠻ᄌᒻ㊂ߩ㑐ଥ 23

3.1.2.3ᷫ⡺㊂ߣ⹜㛎૕෻ജߩ㑐ଥ 24

3.1.2.4ஜో⹜㛎૕ߩ⩄㊀ᄌᒻ․ᕈ 24

3.2㈩▤♽⹜㛎 25

3.2.1ᐔ㕙㈩▤♽⹜㛎 25

3.2.1.1⎕៊⁁ᴫ 25

3.2.1.2ᝄേᢙߩᄌൻ 28

3.2.1.3ഠൻ᧦ઙߣᔕ╵୯ߩ㑐ଥ 29

3.2.1.4⹜㛎૕ߩᄖᓘᄌൻ 30

3.2.2┙૕㈩▤♽⹜㛎 31

3.2.2.1⎕៊⁁ᴫ 31

3.2.2.2ഠൻ᧦ઙߣᔕ╵୯ߩ㑐ଥ 34

3.2.2.3ࠛ࡞ࡏߩᄖᓘᄌൻ 35

(3)

4.3ዪᚲ⊛ᷫ⡺ㇱࠍ᦭ߔࠆ㈩▤ߩ⸃ᨆ2㧔ᦛ▤㧕 47

4.3.1⸃ᨆࡕ࠺࡞ߣ᧦ઙ 47

4.3.2ࠛ࡞ࡏ㈩▤ߩ߈ⵚ⊒↢ࡔࠞ࠾࠭ࡓߣ⎕უ᜼േ 49

4.3.3Shellࡕ࠺࡞ߦࠃࠆ◲ᤃ⸃ᨆᚻᴺ 51

4.4⴫㕙߈ⵚઃ߈㈩▤ߩૐࠨࠗࠢ࡞∋ഭ߈ⵚㅴዷ⹏ଔ 53

4.4.1࡜ࠗࡦࠬࡊ࡝ࡦࠣⷐ⚛ࠍ↪޿ߚ߈ⵚㅴዷ⸃ᨆ 53

4.4.1.1࡜ࠗࡦࠬࡊ࡝ࡦࠣⷐ⚛ 53

4.4.1.2➅ࠅ㄰ߒJⓍಽ▸࿐∆ Jߩ⹏ଔ 53

4.4.1.3߈ⵚㅴዷೣ 53

4.4.1.4߈ⵚㅴዷߩ⹏ଔᚻ㗅 53

4.4.2⸃ᨆࡕ࠺࡞ߣ᧦ઙ 54

4.4.3⸃ᨆ⚿ᨐߣ⠨ኤ 55

4.5ᧄ┨ߩ߹ߣ߼ 59

ޣၫ╩ᜂᒰޤ

╙1┨ޓ㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲޓਛ᧛ޓ޿ߕߺ

╙2┨ޓ㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲޓਛ᧛ޓ޿ߕߺ

╙3┨

3.1ޓ㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲޓਛ᧛ޓ޿ߕߺ 3.2.1⍹Ꮉፉ᠞⏴㊀Ꮏᬺޓޓᄢ⼱ޓ┨ੳ ޓ3.2.2㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲޓਛ᧛ޓ޿ߕߺ

╙4┨ޓᮮᵿ࿖┙ᄢቇޓޓޓޓ⊕㠽ޓᱜ᮸

╙5┨ޓ⍹Ꮉፉ᠞⏴㊀Ꮏᬺޓޓᄢ⼱ޓ┨ੳ

╙6┨ޓ㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲޓਛ᧛ޓ޿ߕߺ

╙7┨ޓ㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲޓਛ᧛ޓ޿ߕߺ

5.㈩▤♽ߩേ⊛ᔕ╵ߦኻߔࠆ⹏ଔ 60

5.1᭎ⷐ 60

5.2ᒢ႟ᕈᔕ╵੍᷹ᚻᴺߩ᭎ᔨ 60

5.3 ᒢ႟ᕈᔕ╵੍᷹ᚻᴺߩ⸘▚ߩ⹦⚦ 61

5.3.1ᶖᢔࠛࡀ࡞ࠡࠍ᳞߼ࠆߚ߼ߩFEM⸃ᨆ 61

5.3.2ᝄേࡕ࡯࠼⸃ᨆ 62

5.3.3ᝄേᔕ╵⸃ᨆ 63

5.3.4╬ଔᷫ⴮Ყ෸߮ᦨᄢᔕ╵㊂ߩ⸘▚ 65

5.4ᒢ႟ᕈᔕ╵੍᷹⚿ᨐ 65

6.߹ߣ߼ 67

7.޽ߣ߇߈ 67

㧨⻢ㄉ㧪 67

㧨ෳ⠨ᢥ₂㧪 68

㧨㑐ㅪ⊒⴫⺰ᢥ㧪 70

ⷐޓᣦ 71

㧨ᷝઃ1㧪ޓޟᯏེ࡮㈩▤♽ߩ⚻ᐕᄌൻߦ઻߁⠴㔡቟ో⵨ᐲ⹏ଔᚻᴺߩ⎇ⓥޠታ㛎ታᣉᆔຬળޓฬ★ 72

㧨ᷝઃ2㧪ޓታ㛎⚿ᨐ╬ࠞ࡜࡯࿑ ޓ 73

(4)

0 1 2 3 4 5 6

1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999

Comercial Operation Year

Number of NPP Closed

Closed 51

ߪߓ߼ߦ

⢛᥊

ޓᚒ߇࿖ߢߪ1960ᐕߦ⊒㔚↪ේሶἹߩㆇォ߇ᆎ߹ࠅ㧘 1970ᐕߦ໡ᬺ↪ේሶἹ߇Ⓙ௛ࠍ㐿ᆎߒߚ㧚੹ᣣߢߪ2001 ᐕ4᦬⃻࿷ߢ51ၮߩ໡ᬺ↪ේሶജ⊒㔚ᚲ߇Ⓙ௛ߒߡ߅ࠅ㧘

ේሶജߦࠃࠆ⊒㔚㊂ߪ✚⊒㔚㊂ߩ3ഀએ਄ࠍභ߼ߡ޿ࠆ㧚

৻ᣇ㧘ේሶജ⊒㔚ᚲߩㆇ↪㐿ᆎᐕߏߣߩේሶἹၮᢙߪ࿑

ߩࠃ߁ߦߥࠅ㧘ㆇ↪㐿ᆎ߆ࠄ20ᐕએ਄⚻ㆊߒߡ޿ࠆᣉ

⸳ߪ20ၮߣߥࠆ߇㧘⃻࿷ේሶജ⊒㔚ᣉ⸳ߩᣂⷙᑪ⸳ߪ෩ ߒ޿ᖱ൓ߢ޽ࠅ㧘ᣢሽߩᣉ⸳ࠍ⛽ᜬ଻ోߒߟߟ⛮⛯ߒߡ

૶↪ߔࠆᔅⷐ߇޽ࠆ㧚ේሶജ⊒㔚ᣉ⸳ߩ⠴↪ᐕᢙߪᓥ᧪

30ᐕߣߐࠇߡ߈ߚ߇㧘1999ᐕߦㅢ↥⋭࡮⾗Ḯࠛࡀ࡞ࠡ࡯

ᐡߪㆇォ㐿ᆎᓟ30ᐕㄭߊࠍ⚻ߚේሶജ⊒㔚ᣉ⸳3ၮߦߟ

޿ߡ㧘60ᐕࠍⷞ㊁ߦ౉ࠇߚ㐳ᦼㆇォ߇ᛛⴚ⊛ߦน⢻ߣߔ ࠆႎ๔ᦠ1)ࠍឭ಴ߒߚ㧚ߒ߆ߒ㧘㐳ᦼߦࠊߚߞߡ૶↪ߐࠇ ߚᣉ⸳ߦߪ㜞⚻ᐕൻߦ઻޿᭴ᚑᯏེ࡮㈩▤ߩഠൻ߇⊒↢

ߔࠆߣ⠨߃ࠄࠇࠆߎߣ߆ࠄ㧘㐳ኼ๮ൻࠍታ⃻ߔࠆߚ߼ߦ ߪ㧘ㆡಾߥ▤ℂࠍⴕ޿㧘㜞⚻ᐕൻࡊ࡜ࡦ࠻ߩᡷㅧᎿ੐ࠍ฽

߼ߚ⚻ᐕൻኻ╷ࠍ⻠ߓ㧘቟ోᕈࠍ⏕଻ߔࠆᔅⷐ߇޽ࠆ㧚 ޓ৻⥸ߦ㧘ࡊ࡜ࡦ࠻ߦ߅ߌࠆਥⷐ᭴ᚑⷐ⚛ߩ৻ߟߢ޽ࠆ

㈩▤♽ߦߪޔ㜞⚻ᐕൻߦࠃࠅㅢᏱߩᾲ∋ഭߛߌߢߥߊޔᔕ ജ⣣㘩ഀࠇ߿⣣㘩࡮უ㘩ߥߤߦࠃࠆᷫ⡺ߣ޿ߞߚഠൻ߇

⊒↢ߔࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ㧚㊀ⷐᐲߩ㜞޿㈩▤♽ߦ⎕

უ߇↢ߓߚ႐ว㧘ࠪࠬ࠹ࡓో૕ߦᵄ෸ߔࠆᓇ㗀߇ᄙᄢߢ

޽ࠆߎߣ߆ࠄ㧘ߘߩஜోᕈࠍ⛽ᜬߔࠆߎߣߪ㊀ⷐߢ޽ࠆ㧚

․ߦᣣᧄߪ࿾㔡࿖ߢ޽ࠆߚ߼㧘ഠൻࠍᗐቯߒߚ㜞⚻ᐕࡊ

࡜ࡦ࠻ߩ቟ోᕈߪᄢ࿾㔡ᤨߦ߅޿ߡ߽චಽ⏕଻ߐࠇߥߌ ࠇ߫ߥࠄߥ޿㧚㈩▤♽ߦ⊒↢ߔࠆᷫ⡺߿߈ⵚߩࠃ߁ߥഠ ൻߩ⸵ኈഠൻၮḰߩᬌ⸛ߦ߅޿ߡߪ㧘ታ㛎߿⸃ᨆߦၮߠ ߊวℂ⊛ߥᬌ⸽࠺࡯࠲ࠍ⫾Ⓧߔࠆᔅⷐ߇޽ࠆ㧚߹ߚ㧘ᣣᧄ ߪ࿾㔡࿖ߢ޽ࠆߚ߼㧘ߘߩࠃ߁ߥഠൻ߇ᬌ಴ߐࠇߚ႐ว

ߩ㊀ⷐߥ໧㗴ߩ৻ߟߣߒߡ㧘ᒰ⹥ഠൻ⁁ᴫ߇⠴㔡਄⸵ኈ ߐࠇࠆ߆ߤ߁߆ߩ⹏ଔ߇ᔅⷐߢ޽ࠆ㧚ߘߩߚ߼ߦߪߎߩ ࠃ߁ߥഠൻㇱ߇㈩▤♽ߩേ⊛᜼േ߅ࠃ߮⠴㔡቟ో⵨ᐲߦ ਈ߃ࠆᓇ㗀ࠍ᣿ࠄ߆ߦߒ㧘࿾㔡േࠍฃߌࠆ⚻ᐕഠൻ㈩▤

ߩ᜼േࠍวℂ⊛ߦ⹏ଔߔࠆᚻᴺ߇ᔅⷐߣߥࠆ㧚 ߎࠇ߹ߢߦⴕࠊࠇߚ⎇ⓥߩ⃻⁁

ޓഠൻㇱࠍ᦭ߔࠆ㈩▤♽ߩஜోᕈ⹏ଔ߿⠴㔡቟ో⵨ᐲߦ 㑐ߔࠆ⎇ⓥߣߒߡߪ㧘ߎࠇ߹ߢߦ߈ⵚઃ߈㈩▤ࠍኻ⽎ߣ ߒߡ㧘ᄙߊߩ⎇ⓥ߇ⴕࠊࠇߡ߈ߚ㧚ᣣᧄේሶജ⎇ⓥᚲߢ

ߪ㧘1ᰴ಄ළ㈩▤ߦߟ޿ߡ᭴ㅧᒝᐲ਄ߩା㗬ᕈࠍታ㛎⊛ߦ

ᬌ⸽ߔࠆߎߣࠍ⋡⊛ߣߒߡ㧘1975ᐕ߆ࠄ1992ᐕߦ߆ߌߡ

㈩▤ା㗬ᕈታ⸽⹜㛎߇ታᣉߐࠇߚ2)㧚ߎߩ⹜㛎⎇ⓥߢߪ㧘 ਥߦ߈ⵚઃ߈㈩▤ࠍኻ⽎ߣߒߡ㧘㈩▤∋ഭ⹜㛎㧘ਇ቟ቯ⎕

უ⹜㛎㧘⎕ᢿ⹜㛎㧘⸃ᨆ⹏ଔ߇ታᣉߐࠇߚ㧚߹ߚ㧘⎇ⓥᦼ 㑆ਛߩ1986ᐕߦ☨࿖Surryේሶജ⊒㔚ᚲߢᷫ⡺ࠛ࡞ࡏߩ⎕

ᢿ੐᡿߇⊒↢ߒߚ3)ߚ߼㧘ᷫ⡺㈩▤ߩ⎕უ㒢⇇ࠍ᳞߼ࠆ⹜

㛎߽ታᣉߐࠇߚ㧚߹ߚ㧘㔚ജਛᄩ⎇ⓥᚲߢߪࠕࡔ࡝ࠞේሶ ജⷙ೙ᆔຬળ㧔NRC㧕߇ਥ௅ߒߚ࿖㓙౒ห⎇ⓥߢ޽ࠆ߈ ⵚઃ߈㈩▤ߩஜోᕈ⹏ଔᚻᴺࠍ⏕┙ߔࠆߚ߼ߩ⎇ⓥ

㧔IPIRG㧕4)ߦෳടߒ㧘ᣣᧄ࿖ౝߩ὇⚛㍑㈩▤ߦኻߔࠆታᢿ 㕙ᔕജၮḰߩㆡ↪ᕈߩᬌ⸛㧘േ⊛➅ࠅ㄰ߒ⩄㊀ਅߦ߅ߌ ࠆ߈ⵚㅴዷ⹏ଔߥߤߩ⎇ⓥࠍታᣉߒߚ5)

ᷫ⡺ߩࠃ߁ߥ㕖߈ⵚ⁁ᰳ㒱ߩஜోᕈ⹏ଔߦኻߒߡߪ㧘 ᄢቇ߿᳃㑆ડᬺߦࠃࠅᷫ⡺ࠍᮨᡆߒߚ㈩▤ߩ⚳ዪᒝᐲ߿

⎕უᒻᘒࠍᓧࠆታ㛎⎇ⓥ߇ታᣉߐࠇᆎ߼6)-8)㧘ഠൻᒻ⁁ߣ

⎕៊᧦ઙߣߩ㑐ㅪߠߌ߇ⴕࠊࠇߡ޿ࠆ㧚߹ߚ㧘ේሶജ⊒㔚 ᛛⴚᯏ᭴㧔NUPEC㧕ߢߪ㧘ᐔᚑ12ᐕᐲࠃࠅᐔᚑ17ᐕᐲ߹

ߢߩ੍ቯߢ㧘ᷫ⡺㈩▤ߩ⠴㔡ታ⸽⹜㛎ࠍታᣉߒߡ޿ࠆ9)㧚 ߒ߆ߒ㧘ో૕ߣߒߡߪഠൻ᧦ઙߣߒߡᷫ⡺ࠍኻ⽎ߣߒߚ

㈩▤ߩ⠴㔡቟ోᕈ⹏ଔߦ㑐ߔࠆ⎇ⓥߪ߹ߛᢙ߇ዋߥ޿㧚

࿑ ᣣᧄߦ߅ߌࠆ໡ᬺ↪ේሶἹߩㆇ↪㐿ᆎᐕߏߣߩၮᢙ

Fig.1-1 Numbers of Nuclear Power Plants in commercial operation (Japan).

(5)

ᄢ࡟ࡌ࡞ߩ࿾㔡ࠍᗐቯߒߚ㈩▤♽ߩᒢ႟ᕈᔕ╵ߦ㑐ߔࠆ

⎇ⓥߪ㧘ஜో㈩▤ࠍኻ⽎ߣߒߚ߽ߩ߇ਥߢ޽ࠅ㧘ഠൻ㈩▤

ߦ߅ߌࠆ⚳ዪᒝᐲ߿⎕៊ᒻᘒࠍኻ⽎ߣߒߚ߽ߩߪ㧘਄⸥

ߩNUPECߢ੹ᓟታᣉߔࠆ੍ቯߩ⎇ⓥ⺖㗴એᄖߦߪ߶ߣࠎ ߤ⷗ฃߌࠄࠇߥ޿㧚ஜో㈩▤♽ࠍኻ⽎ߣߒߚ߽ߩߣߒߡ ߪ㧘1971ᐕ㨪1973ᐕߦታᣉߐࠇߚ㧘࿾㔡ᤨߦ߅ߌࠆේሶ ജᣉ⸳ߩ㒢⇇⸳⸘ߦ㑐ߔࠆ⹜㛎⎇ⓥ㧔ᣣᧄ㔚᳇දળ㧕10)

㈩▤⠴㔡⸳⸘ၮḰߩวℂൻ⎇ⓥ㧔㔚ജ౒ㅢ⎇ⓥ㧕11)߿㧘 NUPECߦࠃࠅታᣉߐࠇߡ޿ࠆ㈩▤ߩ⚳ዪᒝᐲ⠴㔡ታ⸽⹜

12)߇᜼ߍࠄࠇࠆ㧚߹ߚ㧘ᶏᄖߢⴕࠊࠇߡ޿ࠆ⎇ⓥߣߒ ߡ㧘☨࿖ߩEPRIߢታᣉߐࠇߚ㈩▤ߩേ⊛ା㗬ᕈ⹏ଔߦ㑐 ߔࠆ⎇ⓥࡊࡠࠣ࡜ࡓ㧔PFDRP㧕13)߇޽ࠅ㧘ߎߩታ㛎⚿ᨐ

߿⸃ᨆ⚿ᨐ߆ࠄ㧘㈩▤♽ߩ⚳ዪ⎕៊ᒻᘒ߿⸳⸘ၮḰᄌᦝ ߦ㑐ߔࠆ⼏⺰߇ⴕࠊࠇߡ޿ࠆ14)㧚߹ߚ㧘ࡈ࡜ࡦࠬߢߪේሶ ജᐡ㧔CEA㧕ߦࠃࠅ㧘ၮḰߩ✭๺ࠍ⋡⊛ߣߒߡ㧘ታⷙᮨߩ

㈩▤ࠍ↪޿ߚᝄേ⎕უታ㛎ߣ㧘◲ᤃ⸃ᨆࠦ࡯࠼ߩ㐿⊒߇ ⴕࠊࠇߚ15)

ᧄ⎇ⓥߩ⋡⊛

⢛᥊ߢㅀߴߚࠃ߁ߦ㧘㜞⚻ᐕ㈩▤♽ߩᄢ࿾㔡ᤨߦ߅ߌ ࠆ቟ో⵨ᐲࠍวℂ⊛ߦ⹏ଔߔࠆߚ߼ߦߪ㧘ߘߩࠃ߁ߥ㈩

▤♽ߩ㒢⇇ᒝᐲ߿ᦨ⚳⎕៊ᒻᘒࠍᛠីߔࠆᔅⷐ߇޽ࠆ㧚 ߒ߆ߒ㧘߈ⵚ߿ᷫ⡺ߣ޿ߞߚ᭴ㅧഠൻ߇޽ࠆ㈩▤♽ߩ㕒

⊛⩄㊀ਅߦ߅ߌࠆ㒢⇇ᒝᐲߦ㑐ߔࠆ⎇ⓥ㧘޽ࠆ޿ߪஜో

㈩▤♽ߩᒢ႟ᕈᔕ╵ߦ㑐ߔࠆ⎇ⓥߪᢙᄙߊߥߐࠇߡ޿ࠆ ߇㧘᭴ㅧഠൻ߇޽ࠆ㈩▤♽ߢ࿾㔡⩄㊀ࠍኻ⽎ߣߒ㧘㒢⇇ᒝ ᐲ߿ᒢ႟ᕈᔕ╵ࠍኻ⽎ߣߒߚ⹜㛎⎇ⓥߪ߶ߣࠎߤߥߐࠇ ߡ޿ߥ޿㧚ߘߎߢ㧘㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲߢߪ㧘ᮮᵿ࿖┙ᄢ ቇ㧘⍹Ꮉፉ᠞⏴㊀Ꮏᬺߣߩਃ⠪౒หߢ㧘࿾㔡േࠍฃߌࠆ⚻

ᐕഠൻ㈩▤ߩേ⊛᜼േ߅ࠃ߮⎕៊ᒻᘒࠍታ㛎⊛ߦ᣿ࠄ߆ ߦߒ㧘⚻ᐕഠൻ㈩▤ߩ⠴㔡ᕈࠍวℂ⊛ߦ⹏ଔߔࠆᚻᴺࠍ ᬌ⸛ߔࠆߎߣࠍ⋡⊛ߣߒߡ㧘ᐔᚑ8ᐕᐲ߆ࠄᐔᚑ12ᐕᐲ ߦ߆ߌߡ㧘ේሶജ቟ో⎇ⓥޟᯏེ࡮㈩▤♽ߩ⚻ᐕᄌൻߦ઻

߁⠴㔡቟ో⵨ᐲ⹏ଔᚻᴺߩ⎇ⓥޠࠍታᣉߒߚ㧚

ᧄ⎇ⓥߢߪ㧘⚻ᐕᄌൻࠍᗐቯߒߚޔᒝᐲ⊛ߦ෩ߒ޿ᒻ

⁁ߩ߈ⵚ߹ߚߪᷫ⡺ࠍ㈩▤ࡕ࠺࡞ߦዉ౉ߒታ㛎ࠍⴕ߁ߎ ߣߦࠃࠅ㧘ഠൻᒻ⁁ߦࠃࠆ⎕៊ᒻᘒߩ㆑޿㧘ഠൻㇱߩ᦭ή ߦࠃࠆ㈩▤♽ߩ࿾㔡ᔕ╵ߩᄌൻ╬ࠍ᣿ࠄ߆ߦߔࠆߎߣࠍ

⋡⊛ߣߒߚ㧚ߎߩߚ߼㧘ታ㛎ߢߪ⚻ᐕഠൻࠍᮨᡆߒߚ⋥▤

ࠍ↪޿ߡ➅ࠅ㄰ߒ4ὐᦛߍ⹜㛎ࠍⴕ߁ⷐ⚛⹜㛎ߣ㧘ഠൻㇱ ಽࠍ᦭ߔࠆ㈩▤♽ߦኻߒߡᝄേบࠍ↪޿ߡടᝄࠍⴕ߁㈩

▤♽ᝄേ⹜㛎ࠍታᣉߒߚ㧚߹ߚ㧘ߎࠇࠄߩታ㛎࠺࡯࠲ߦၮ ߠ߈㧘⹦⚦⸃ᨆߦࠃࠆ⎕៊ࡔࠞ࠾࠭ࡓߩ⠨ኤ߿ᒢ႟ᕈᔕ

╵ᄌ૏ߩ◲ᤃ੍᷹ᴺߩᬌ⸛ࠍⴕߞߚ㧚ᧄႎ๔ᦠߪ5ࡩᐕߦ ࠊߚࠅታᣉߒߚታ㛎ౝኈߣ⸃ᨆ⹏ଔߦߟ޿ߡߣࠅ߹ߣ߼

ߚ߽ߩߢ޽ࠆ㧚╙2┨ߢߪ㧘ᧄ⎇ⓥߢታᣉߒߚታ㛎ߩ᭎ⷐ

ࠍ㧘╙3┨ߢߪታ㛎⚿ᨐߩ᭎⇛ࠍㅀߴࠆ㧚╙4┨߅ࠃ߮╙

5┨ߢߪ㧘ߎࠇࠄߩታ㛎⚿ᨐࠍ〯߹߃ਃᯏ㑐߇ߎࠇ߹ߢታ ᣉߒߚ⸃ᨆ⹏ଔߦߟ޿ߡㅀߴࠆ㧚ߎࠇࠄߩ⸃ᨆ⹏ଔߪฦ ᯏ㑐߇ߘࠇߙࠇߩⷞὐ߆ࠄታᣉߒߚ߽ߩߦߟ޿ߡ㧘ᧄႎ ๔ᦠࠍߣࠅ߹ߣ߼ߚᤨὐߦ߅ߌࠆᬌ⸛⁁ᴫࠍㅀߴߚ߽ߩ ߢ޽ࠅ㧘⃻⁁ߢߪᔅߕߒ߽⋧੕ߦㅪ៤ߩߣࠇߚ⛔৻ᕈߩ

޽ࠆౝኈߣߪߥߞߡ޿ߥ޿㧚⸃ᨆߦ߅ߌࠆⷞὐߩ⛔৻ߣ

⹏ଔᴺ߳ߩឭ᩺ߦߟ޿ߡߪᐔᚑ13ᐕᐲࠃࠅታᣉߔࠆᰴᦼ

ේሶജ቟ో⎇ⓥ㧘ޟ࿾㔡⩄㊀ࠍฃߌࠆᷫ⡺㈩▤ߩ⎕უㆊ⒟

⸃᣿ߦ㑐ߔࠆ⎇ⓥޠߩਛߢ⛮⛯ߒߡ޿ߊߎߣߣߒߡ޿ࠆ㧚 ߥ߅㧘ᧄ⎇ⓥߪේሶജ቟ో⎇ⓥᐕᰴ⸘↹㧔ᐔᚑ8ᐕᐲ㨪 ᐔᚑ12ᐕᐲ㧘ේሶജ቟ోᆔຬળ╷ቯ㧕16)ߦၮߠ޿ߡ߅ࠅ㧘

⑼ቇᛛⴚᐡ࿖┙ᯏ㑐ේሶജ⹜㛎⎇ⓥ⾌ࠍゲߦ㧘ฦᯏ㑐⁛

⥄ߩ⎇ⓥ⾌߽೑↪ߒߡታᣉߐࠇߚ߽ߩߢ޽ࠆ㧚߹ߚ㧘ᧄ⎇

ⓥߩታᣉߦ޽ߚࠅ㧘ታ㛎ታᣉᆔຬળ㧔એਅAPᆔຬળ㧘ᆔ

ຬ㐳㧦⊕㠽ᱜ᮸ᮮᵿ࿖┙ᄢቇᢎ᝼㧕ࠍ⚵❱ߒ㧘ታ㛎ߩታᣉ㧘

⸃ᨆ⹏ଔߦߟ޿ߡ⼏⺰ࠍⴕߞߚ㧚ᧄ⎇ⓥߢߪ࿾㔡ߦࠃࠆ

㈩▤ߩᒢ႟ᕈᔕ╵߆ࠄ㈩▤ߩ⎕៊ߦ⥋ࠆ߹ߢߩ㗔ၞࠍኻ

⽎ߣߒߚߚ߼㧘⎕უജቇߣᝄേᔕ╵ߩਔಽ㊁ߩኾ㐷ኅ߆ ࠄߥࠆᆔຬળߣߒߚ㧚߹ߚ㧘ታോ⊛ߥⷰὐ߆ࠄߩᗧ⷗ࠍ޿

ߚߛߊߚ߼㧘㔚ജળ␠෸߮ࡊ࡜ࡦ࠻ࡔ࡯ࠞ࡯߽߳ᆔຬߩ ᵷ㆜ࠍଐ㗬ߒߚ㧚ᷝઃ1ߦAPᆔຬળᆔຬฬ★ࠍ␜ߔ㧚

(6)

ታ㛎ᣇᴺ ⷐ⚛⹜㛎

⹜㛎૕ߩ᭎ⷐ

ޓⷐ⚛⹜㛎ߢߪ㧘ഠൻᒻ⁁߿タ⩄ጁᱧߦࠃࠆ⎕៊ᒻᘒߩ

㆑޿ࠍ⏕⹺ߔࠆߎߣࠍ⋡⊛ߣߒߡഠൻㇱࠍ᦭ߔࠆ⋥▤ࠍ

↪޿ߚᄌ૏೙ᓮߩ4ὐᦛߍ⹜㛎ࠍⴕߞߚ㧚ᐔᚑ8ᐕᐲߦߪ タ⩄ⵝ⟎ߩ⵾૞ࠍⴕ޿㧘ᐔᚑ9ᐕᐲ㨪ᐔᚑ12ᐕᐲߦ߆ߌ ߡタ⩄⹜㛎ࠍታᣉߒߚ㧚

ޓⷐ⚛⹜㛎ߢዉ౉ߒߚഠൻ᧦ઙߪ㧘ᔕജ⣣㘩ഀࠇ㧔SCC㧕㧘

᡼㔚ടᎿ㧔EDM㧕߈ⵚ㧘߹ߚߪᷫ⡺ߩ޿ߕࠇ߆ߣߒߚ㧚߹

ߚ㧘ᷫ⡺⹜㛎૕ߣหߓ᧚⾰ߢஜో⡺ෘߩ⹜㛎૕ߦߟ޿ߡ

߽タ⩄ࠍⴕ޿㧘⩄㊀ᄌᒻ․ᕈߩᲧセࠍⴕߞߚ㧚㈩▤ߩ᧚⾰

ߪ㧘SCC⹜㛎૕߅ࠃ߮EDM߈ⵚઃ߈⹜㛎૕㧔એਅEDM

⹜㛎૕㧕ߢߪࠬ࠹ࡦ࡟ࠬ㍑SUS304ࠍ㧘ᷫ⡺⹜㛎૕߅ࠃ߮

ஜో⹜㛎૕ߢߪ὇⚛㍑STS410ࠍ૶↪ߒߚ㧚ߥ߅㧘ᧄ⎇ⓥ

ߢߪ⚻ᐕᄌൻߦ઻߁᧚⾰ᄌൻߩᓇ㗀ߪ⠨ᘦߒߡ޿ߥ޿㧚 ଏ⹜ㇱߩ㈩▤ߪ100A㧘sch80㧔ᄖᓘ㧦114.3mm㧘⡺ෘ㧦8.6mm㧕 ߣߒߚ㧚߹ߚ㧘4ὐᦛߍ⹜㛎ⵝ⟎ߩᡰὐㇱಽߦ߅ߌࠆዪㇱ ᄌᒻࠍ㒐ᱛߔࠆߚ߼㧘⵬ᒝ▤ߣߒߡ⹜㛎૕ㇱಽߩ㈩▤ߩ ਔ┵ߦ100A㧘sch160㧔ᄖᓘ㧦114.3mm㧘⡺ෘ㧦13.5mm㧕ߩ

㈩▤ࠍṁធߒߚ㧚⹜㛎૕ㇱಽߩ㈩▤㐳ߐߪ400mm߹ߚߪ

200mmߣߒ㧘ṁធߔࠆ⵬ᒝ▤ߩ㐳ߐࠍ⺞▵ߒߡో૕ߩ㐳

ߐࠍ3010mmߣߒߚ㧚

ޓ⹜㛎૕ߪ㧘SCC⹜㛎૕8૕㧘EDM⹜㛎૕9૕㧘ᷫ⡺⹜

㛎૕9૕㧘ஜో⹜㛎૕2૕ߩ⸘28૕ࠍ⵾૞ߒߚ㧚ฦഠൻߩ ዉ౉ᣇᴺߣഠൻᒻ⁁ߪએਅߩㅢࠅߢ޽ࠆ㧚

(1) SCC

⹜㛎㈩▤ߦṁធࠍᣉߒߡᒁᒛᱷ⇐ᔕജࠍዉ౉ߒ㧘㜞᷷

㜞࿶ਅߩࠝ࡯࠻ࠢ࡟࡯ࡉౝߦ200ᤨ㑆㨪800ᤨ㑆⒟ᐲ

ᩰ⚊ߒ㧘SCCࠍ↢ᚑߐߖߚ㧚↢ᚑߒߚSCCߩ߈ⵚ૏⟎

ߣᷓߐߪታ㛎೨ߦᶐㅘត்㧔PT㧕ᬌᩏߢ⺞ᩏߒ㧘ᦨ

߽ᄢ߈޿ߣᕁࠊࠇࠆ߈ⵚ૏⟎߇ᦨᄢᦛߍᣇะߦ৻⥌ߔ ࠆࠃ߁⹜㛎૕ߩ⸳⟎૏⟎ࠍ⺞ᢛߒߚ㧚

ޓSCC⹜㛎૕ߪ⹜㛎⚳ੌᓟ㧘⎕㕙ᬌᩏࠍⴕߞߡೋᦼ SCCᒻ⁁ࠍ᷹ቯߒߚ㧚࿑ ߦ⹜㛎૕ߩᒻ⁁ࠍ㧘࿑ ߦSCCㇱಽߢ߈ⵚ߇⽾ㅢߒߚ⹜㛎૕ߩೋᦼSCC ᒻ⁁ࠍ␜ߔ㧚

(2) EDM߈ⵚ

᡼㔚ടᎿߦࠃࠅ㈩▤ౝ㕙ߦ߈ⵚࠍዉ౉ߒߚ㧚߈ⵚᒻ⁁

ߪ㧘ౝⷺ360q߈ⵚᷓߐ4.3mm㧔⡺ෘߩ50%㧕ߩో๟

߈ⵚࠍᜬߟ⹜㛎૕ࠍ4૕㧘ౝⷺ90qᷓߐ4.3mmߩ⍱ᒻ ߈ⵚࠍᣉߒߚ߽ߩࠍ2૕㧘SCC߈ⵚࠍᮨᡆߒߚඨᬦ౞

߈ⵚࠍᣉߒߚ߽ߩࠍ3૕⵾૞ߒߚ㧚ߎߎߢ㧘SCC߈ⵚ ࠍᮨᡆߒߚEDM߈ⵚઃ߈⹜㛎૕ߪ㧘SCCߩࠃ߁ߥ⥄

ὼ߈ⵚߣEDM߈ⵚߩࠃ߁ߥੱᎿᰳ㒱ߣߩ⎕៊ኼ๮ߩ

8.6 114.3 4.3

90q

Loading direction

6.5q 37q

13q (a) EM01 - EM04. (b) EM05, EM09.

࿑ ޓSCC⹜㛎૕ߩᒻ⁁

Fig.2.1-1 Geometry of the specimens with SCC.

࿑ SCC⹜㛎૕ߩೋᦼSCC߈ⵚᒻ⁁

Fig.2.1-2 Initial shape of SCC in SCC specimens.

࿑ EDM⹜㛎૕ߩᒻ⁁

Fig.2.1-3 Geometry of the specimens with an EDM notch.

࿑ EDM⹜㛎૕ߩೋᦼ߈ⵚᒻ⁁

Fig.2.1-4 Initial crack shapes of EDM notched pipe specimens.

(a) Initial SCC in SC01. (b) Initial SCC in SC03.

(c) Initial SCC in SC07. (d) Initial SCC in SC08.

Semieliptical EDM notch Depth : 4.25 mm Width : 21.8 mm

(c) EM06. (d) EM07. (e) EM08.

Semieliptical EDM notch Depth : 4.2 mm Width : 12.6 mm

Semieliptical EDM notch Depth : 2.9 mm Width : 14.1 mm SCC induced area

200

8.68.6 Ǿ114.3

13.5

100 100

SCC induced area 400

8.6

8.6 Ǿ114.3

13.5

200 200

(b) SC05, SC06.

(a) SC01 - SC04, SC07, SC08.

400

400

8.68.6 Ǿ114.3

13.5

200 200

EDM notch 400

(7)

㆑޿ࠍ⏕⹺ߔࠆߚ߼ߦታᣉߒߚ㧚⹜㛎૕ߦዉ౉ߒߚ߈ ⵚߪSCC⹜㛎૕ߩ⎕ᢿ㕙ߦ޽ࠆೋᦼSCCᒻ⁁ࠍ㧘╬

ଔߥᷓߐߣᢿ㕙Ⓧࠍᜬߟඨᬦ౞ᒻ⁁ߩEDM߈ⵚߢᮨ

ᡆߒߚ㧚࿑ ߦ⹜㛎૕ߩᒻ⁁ࠍ㧘࿑ ߦዉ౉

ߒߚ߈ⵚᒻ⁁ࠍ␜ߔ㧚 (3)ᷫ⡺

ᯏ᪾ടᎿߦࠃࠅ㈩▤ߩ⡺ෘࠍૐᷫߒߚ㧚ᷫ⡺ߪో๟ᷫ

⡺ߣߒ㧘ᷫ⡺㊂ߪ⡺ෘߩ50%㧔⡺ෘ4.3mm㧕ߩ߽ߩࠍ 6૕㧘75%ߩ߽ߩ㧔⡺ෘ2.15mm㧕㧘60%ߩ߽ߩ㧔⡺ෘ

3.44mm㧕㧘25%ߩ߽ߩ㧔⡺ෘ6.45mm㧕ࠍฦ1૕⵾૞ߒ ߚ㧚࿑ ߦ⹜㛎૕ߩᒻ⁁ࠍ␜ߔ㧚

ޓ߹ߚ㧘ߎߩઁߦஜో⹜㛎૕ࠍ2૕૞ᚑߒߚ㧚ஜో⹜㛎૕

ߩᒻ⁁ࠍ࿑ ߦ␜ߔ㧚

タ⩄᧦ઙ

ޓ㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲᚲ᦭ߩ৻ᰴరᄢဳᝄേบࠍ↪޿㧘 ᝄേบߣၮ␆ߣߩ⋧ኻᄌ૏ࠍ೑↪ߒߚᄌ૏೙ᓮߩ➅ࠅ㄰

ߒ4ὐᦛߍ⹜㛎ࠍⴕߞߚ㧚⴫ ߦᄢဳᝄേบߩၮᧄᕈ

⢻ࠍ㧘࿑ ߦ4ὐᦛߍ⹜㛎ⵝ⟎ࠍ␜ߔ㧚4ὐᦛߍ⹜㛎 ⵝ⟎ߩᡰᜬὐࠬࡄࡦߪ2,400mm㧘⽶⩄ὐࠬࡄࡦߪ800mm ߢ޽ࠆ㧚タ⩄ጁᱧߪቯᏱᝄ᏷ߦࠃࠆタ⩄ߣ࡜ࡦ࠳ࡓᝄ᏷

ߦࠃࠆタ⩄ߩ⎕უߦ෸߷ߔᓇ㗀ࠍᛠីߔࠆߚ߼ߦ㧘ᝄ᏷

400

8.68.6 Ǿ114.3

13.5

400

8.6 114.3

13.54.3

100 62.5 37.5

62.5 100 R200

400

8.6 114.3

13.5

2.15

100 62.8 37.2

62.8 100 R200

R200

Ǿ114.3

62.5

37.5 62.5 400

6.45 13.5

R200 400

8.6

62.5

37.5 62.5

3.45 Ǿ114.3

13.5

(a) 50% thinned wall specimen (EC01 - EC06).

(b) 75% thinned wall specimen (EC07).

(c) 25% thinned wall specimen (EC08).

(d) 60% thinned wall specimen (EC09).

࿑ ᷫ⡺⹜㛎૕ߩᒻ⁁

Fig.2.1-5 Geometry of the specimens with wall thinning.

࿑ ޓஜో⹜㛎૕ߩᒻ⁁㧔EA01߅ࠃ߮EA02㧕 Fig.2.1-6 Geometry of the specimens without wall thinning (EA01 & EA02).

࿑ 4ὐᦛߍ⹜㛎ⵝ⟎

Fig.2.1-7 Four-point bending test equipment.

࿑ ౉ജᄌ૏ᵄᒻ

Fig.2.1-8 Time histories of input displacement.

Disp.[mm]

Time[sec]

Disp.[mm]

Time[sec]

(a) Sinusoidal wave.

(b) Random amplitude wave.

Table 15.0 m ˜ 14.5 m

Weight: 160 ton Driving system Electro – hydraulic

servo control system Actuators 360 ton (90 ton ˜ 4) Max. model weight 500 ton

Max. amplitude r220 mm Max. velocity 75 cm/sec

Max. acceleration 0.55G (with 500-ton model) / 2.2G (without model) Frequency range DC – 50 Hz

Input wave typ es Sinusoidal wave Random wave Earthquake wave

⴫ ᝄേบ⻉ర

Table 2.1-1 Specification of the shaking table.

800 800

800

Anchor

Specimen

Loading Direction Shaking Table

Load Cell

Displacement meter Load Cell

(8)

߇৻ቯߢ޽ࠆᱜᒏᵄߣථ⿧ᝄേᢙ߇1Hzߢ޽ࠆ࡜ࡦ࠳ࡓ ᝄ᏷ᵄࠍ૶↪ߒߚ㧚ᱜᒏᵄߪቯᏱㇱಽߩᵄᢙ߇26ᵄߢ㧘⹜

㛎૕ߦㆊᄢߥടㅦᐲ߇૞↪ߔࠆߩࠍ㒐ᱛߔࠆߚ߼㧘೨ᓟ 10⑽㑆ߦᝄ᏷ߩẋჇ࡮ẋᷫㇱࠍㅊടߒߡ޿ࠆ㧚࡜ࡦ࠳ࡓ ᝄ᏷ᵄߪේሶജᑪደߩᐥᔕ╵ࠍ㈩▤♽ߦ౉ജߒߡᓧࠄࠇ ߚᔕ╵ᄌ૏ᵄᒻࠍථ⿧ᝄേᢙ߇1Hzߣߥࠆࠃ߁ᤨ㑆ゲࠍ

⺞ᢛߔࠆߎߣߦࠃࠅ૞ᚑߒߚ㧚࡜ࡦ࠳ࡓᝄ᏷ᵄߦ฽߹ࠇ ࠆᵄᢙߪ46ࠨࠗࠢ࡞ߢ޽ࠆ㧚࿑ ߦߎࠇࠄߩタ⩄ᵄ ᒻࠍ␜ߔ㧚

ޓ⹜㛎૕ߦߪᏱ᷷᳓ߢౝ࿶ࠍ⽶⩄ߒߚ㧚ౝ࿶ߪ㧘SCC⹜㛎

૕ߣEDM⹜㛎૕ߢ8MPa㧘ᷫ⡺⹜㛎૕ߣஜో⹜㛎૕ߢ

11MPaߣߒߚ㧚ߚߛߒ㧘ᷫ⡺⹜㛎૕ߩ߁ߜ1૕ߦߟ޿ߡ

ߪ㧘ౝ࿶߇⎕៊ᒻᘒߦਈ߃ࠆᓇ㗀ࠍᛠីߔࠆߚ߼ߦ㧘ౝ࿶

߅ࠃ߮ౝㇱ᳓ߥߒߢ⹜㛎ࠍⴕߞߚ㧚ᐔᚑ12ᐕᐲߦታᣉߒ ߚ⹜㛎૕㧔SC07㧘SC08㧘EM08㧘EM09㧘EC08㧘EC09㧕ߦ ߟ޿ߡߪౝㇱ᳓ߩṳᵨࠍ⏕⹺ߒߚᤨὐߢタ⩄ࠍ⚳ੌߐߖ ߚ߇㧘ߘߩઁߩ⹜㛎૕ߢߪ߈ⵚ⽾ㅢᓟ㧘࿑ߦ␜ߒߚ

౉ജᄌ૏ᵄᒻ߇⚳ੌߔࠆ߹ߢタ⩄ࠍ⛮⛯ߒߚ㧚

ታ㛎ߢ૶↪ߒߚ⹜㛎૕ߩฬ⒓㧘ഠൻ᧦ઙ㧘ౝ࿶᧦ઙࠍ߹ߣ

߼ߡ⴫ ߦ␜ߔ㧚

⸘᷹

ޓታ㛎ߢߪએਅߩ㗄⋡ࠍ⸘᷹ߒߚ㧚 (1)⹜㛎૕߳ߩ౉ജᄌ૏

(2)෻ജ (3)ౝ࿶

(4)⹜㛎૕ᄖ⴫㕙ߩゲᣇะ߅ࠃ߮๟ᣇะ߭ߕߺ (5)⹜㛎૕ౝ㕙ߩゲᣇะ߅ࠃ߮๟ᣇะ߭ߕߺ㧔ஜో

⹜㛎૕ߣᷫ⡺⹜㛎૕ߩ৻ㇱ㧕

(6)߈ⵚ㐿ญᄌ૏㧔EDM⹜㛎૕ߩߺ㧕

ޓ࿑ ߦฦ⹜㛎૕ߩ⸘᷹ὐࠍ␜ߔ㧚ߎࠇࠄߪోߡ 500Hzߩࠨࡦࡊ࡝ࡦࠣ๟ᵄᢙߢ෼㍳ߒߚ㧚߹ߚ㧘ᷫ⡺⹜㛎

૕߅ࠃ߮ஜో⹜㛎૕ߢߪ㧘ߎߩઁߦ⹜㛎ߩ೨ᓟߦ߅޿ߡ

㈩▤ᄖᓘࠍ᷹ቯߒߚ㧚

Condition of defect Name Material Sy

[MPa] Su

[MPa] Sm

[MPa] Type of defect

Full angle in circumference [deg.]

Depth of defect*

Internal pressure (P) [MPa]

SC01 SC02 SC03 SC04 SC05 SC06 SC07 SC08

SUS304 311 617 206 SCC Natural crack Natural

Crack 8

EM01 EM02 EM03 EM04

360 0.5 t

EM05 90 0.5 t

EM06 25.73*1 0.49 t*1

EM07 14.87*2 0.49 t*2

EM08 16.64*3 0.34 t*3

EM09

SUS304 311 617 206 EDM

90 0.5 t

8

EC01 EC02 EC03 EC04 EC05

11

EC06

0.5 t

0

EC07 0.75 t

EC08 0.25 t

EC09

STS410 312 470 157 Wall

thinning 360

0.6 t

11 EA01

EA02 STS410 312 470 157 No

defect 0 0 11

* ‘t’ denotes the normal pipe thickness

*1 Same size as SCC in SC01 *2 Same size as SCC in SC03 *3 Same size as SCC in SC07

⴫ ⷐ⚛⹜㛎ޓ⹜㛎૕৻ⷩ

Table 2.1-2 Specifications for pipe element tests.

(9)

A : Accelerometer L : Load Cell P : Pressure Gauge D : Displacement S : Strain Gauge

(Hoop & Axial at each position) 50

P01

P02

S11 S12

S13 S14 S16 S15

S17 S18

0㫦(Top)

270㫦 90㫦

180㫦(Bottom)

270㫦S24 90㫦

S23 S22 S21 A01

Ground L01 D01 South

A

A B

B

A - A B - B

50

0㫦(Top)

180㫦(Bottom)

0 (Top)

180 (Bottom)

50 50 A : Accelerometer

L : Load Cell P : Pressure Gauge D : Displacement S : Strain Gauge

(Hoop & Axial at each position) C : Crip Gauge

(2ch for EM01 - EM04 and EM06, 1ch for EM05, EM07 - EM09) A0

P01

S11

P02

C01 S12 S13 S14 S16 S15

S17 S18

S24

S23 S22 S21 Ground

L01 D01

A

A

A - A South

B - B

C - C C

B

B

(a) Measurement points of SCC specimens.

(b) Measurement points of EDM specimens.

࿑ ⷐ⚛⹜㛎૕⸘᷹ὐ㧔1/2㧕

Fig.2.1-9 Measurement points of specimens for pipe element tests (1/2).

(10)

0 (Top) 30 30 150

L01 D01 A01

P01 P02

S11 S12 S13 S15 S14 S16 S17

S18 S24

S23 S22 S21

Ground

S52

S53

S54 S31

S42

S43

S44 S32

S33 S34 150

S02 S01

A

A

A - A South

B - B

C - C

D - D E - E

B

B C

C D

D E

E S51

S41

180(Bottom)

A : Accelerometer L : Load Cell P : Pressure Gauge D : Displacement S : Strain Gauge

(Hoop & Axial at each position)

* S01 & S02 are measured only for EC05, EC06 and EC07

0(Top

180 (Bottom) 30 30 150

P01 P02

S11 S12

S13 S15 S14 S16 S17

S18 S24

S23 S22 S21

L01 D01 A01 Ground

S51 S52 S53

S54 S41 S31

S42

S43

S44 S32

S33 S34 150

S02 S01 A

A

A - A South

B - B

C - C

D - D E - E

B

B C

C D

D E

E G

G

F

F 100 100 S74

G - G

S64

F - F

A : Accelerometer L : Load Cell P : Pressure Gauge D : Displacement S : Strain Gauge

(Hoop & Axial at each position) (c) Measurement points of EC01 - EC07.

(d) Measurement points of EC08, EC09, EA01 and EA02.

࿑ ⷐ⚛⹜㛎૕⸘᷹ὐ㧔2/2㧕

Fig.2.1-9 Measurement points of specimens for pipe element tests (2/2).

(11)

㈩▤♽ᝄേ⹜㛎

㈩▤♽⹜㛎ߢߪ㧘ᝄേบ਄ߦഠൻㇱಽࠍ᦭ߔࠆ㈩▤♽

ࠍ⸳⟎ߒടᝄታ㛎ࠍⴕߞߚ㧚⹜㛎ߩ⋡⊛ߪഠൻㇱಽ߇ሽ

࿷ߔࠆ㈩▤♽ߩᝄേ․ᕈߣ⎕៊᜼േࠍ⏕⹺ߔࠆߎߣߢ޽

ࠆ㧚⹜㛎૕ߦߪᐔ㕙Zဳߩᐔ㕙㈩▤♽ߣ㧘┙ߜ਄߇ࠅㇱࠍ ᜬߟ┙૕Zဳߩ┙૕㈩▤♽ߩ2⒳㘃ࠍ૶↪ߒߚ㧚 ᐔ㕙㈩▤♽ᝄേ⹜㛎

⹜㛎૕ߩ᭎ⷐ

ޓᐔ㕙㈩▤♽ᝄേ⹜㛎ߪᐔᚑ10ᐕᐲߦታᣉߒߚ㧚࿑ ߦ⹜㛎૕ߩᒻ⁁ࠍ␜ߔ㧚⹜㛎૕ߪഠൻࠍዉ౉ߔࠆㇱಽ

㧔ㇱಽA㧕ߣ㧘ഠൻࠍዉ౉ߒߥ޿ㇱಽ㧔ㇱಽB㧕ߦಽ߆ࠇ㧘

ࡈ࡜ࡦࠫߢធวߒߚ㧚ߚߛߒធวㇱಽߩࡈ࡜ࡦࠫߪ㐽ᱛ ߒߡ޽ࠅ㧘ㇱಽAߣㇱಽBߩ㈩▤⚻〝ߪಽ㔌ߒߡ޿ࠆ㧚ᐔ 㕙㈩▤♽⹜㛎ߢዉ౉ߒߚഠൻ᧦ઙߪ⋥▤ㇱᷫ⡺߅ࠃ߮ࠛ

࡞ࡏㇱᷫ⡺ߩ2⒳㘃ߣߒߚ㧚߹ߚ㧘Ყセߩߚ߼ߦഠൻㇱಽ

߇ߥ޿ஜో㈩▤♽⹜㛎૕ߦߟ޿ߡ߽ടᝄታ㛎ࠍⴕߞߚ㧚

૶↪ߒߚ㈩▤ߩ᧚⾰ߪోߡ὇⚛㍑STPT370ߢ㧘㈩▤ญᓘ ߪⷐ⚛⹜㛎ߣห᭽100Aߣߒߚ㧚⡺ෘߪ㧘⹜㛎૕ㇱಽߢ޽

ࠆㇱಽAߢߪⷐ⚛⹜㛎ߣห᭽sch80㧔⡺ෘ8.6mm㧕㧘ㇱಽB

ߢߪsch120㧔⡺ෘ11.1mm㧕ߣߒߚ㧚ㇱಽBߪߔߴߡߩ⹜

㛎ߢ౒ㅢߦ૶↪ߒߚ㧚⹜㛎૕ߩฬ⒓ߣዉ౉ഠൻ᧦ઙߪએ ਅߩㅢࠅߢ޽ࠆ㧚

(1)ޓ⹜㛎૕ฬ㧦2D_A01 ഠൻ᧦ઙ㧦ഠൻߥߒ (2)ޓ⹜㛎૕ฬ㧦2D_B01

ഠൻ᧦ઙ㧦⋥▤ㇱᷫ⡺

࿑ߦ␜ߒߚ૏⟎ߩ⋥▤ㇱಽߩ⡺ෘࠍᯏ᪾ട ᎿߦࠃࠅㅢᏱ⡺ෘߩ50%ߦૐᷫߒ㧘ో๟ᷫ⡺ࠍ

ᮨᡆߒߚ㧚 (3)ޓ⹜㛎૕ฬ㧦2D_C01

ഠൻ᧦ઙ㧦ࠛ࡞ࡏㇱᷫ⡺

࿑ ߦ␜ߒߚࠛ࡞ࡏ1ࠍsch40ߩࠛ࡞ࡏߣߔ ࠆߎߣߦࠃࠅో๟ᷫ⡺ࠍᮨᡆߒߚ㧚sch40ߩࠛ࡞

ࡏߩ⡺ෘߪ౏⒓6.0mmߢ޽ࠅ㧘ᷫ⡺㊂ߪ30%ߣ ߥࠆ㧚

ޓ⴫ߦ⹜㛎૕ߩ․ᕈࠍ߹ߣ߼ߡ␜ߔ㧚߹ߚ㧘࿑ ߦ࿕᦭୯⸃ᨆߢ᳞߼ߚ2D_A01ߩ࿕᦭ᝄേᢙߣᝄേࡕ࡯

࠼ࠍ␜ߔ㧚⹜㛎૕ߩ1ᰴ࿕᦭ᝄേࡕ࡯࠼ߢᡰ㈩⊛ߥᄌᒻߪ

ࠛ࡞ࡏ1㧘2㧘3ߩ㕙ౝᄌᒻߢ޽ࠅ㧘ஜో⁁ᘒߩ႐ว㧘ᦨᄢ ᔕജ߇⊒↢ߔࠆߩߪࠛ࡞ࡏ1ߣߥࠆ߇㧘ࠛ࡞ࡏ2ߩᔕജ߽

߶߷ห⒟ᐲߢ޽ߞߚ㧚 タ⩄᧦ઙ

ޓ㈩▤♽ࡕ࠺࡞ߦኻߒߡ㧘㒐ἴ⑼ቇᛛⴚ⎇ⓥᚲᚲ᦭ߩ৻

ᰴరᄢဳᝄേบࠍ↪޿ߡടᝄታ㛎ࠍⴕߞߚ㧚ടᝄᵄᒻߪ

⹜㛎૕ߩ1ᰴ࿕᦭ᝄേࡕ࡯࠼ߩߺࠍബ⿠ߔࠆߚ߼㧘2.5Hz 㨪3.5Hzߩ⁜Ꮺၞ࡜ࡦ࠳ࡓᵄࠍ૞ᚑߒߡ૶↪ߒߚ㧚࿑ ߦ⁜Ꮺၞ࡜ࡦ࠳ࡓᵄߩടㅦᐲᤨೞᱧᵄᒻߣᔕ╵ࠬࡍࠢ࠻

࡞ࠍ␜ߔ㧚ታ㛎ߪߎߩ⁜Ꮺၞ࡜ࡦ࠳ࡓᵄߩ౉ജ࡟ࡌ࡞ࠍ

Condition of defect Name Material Sy*1

[MPa]

Su*1 [MPa]

Sm*1 [MPa]

Internal pressure

(P)

[MPa] Type Configuration Defected part

2D_A01 No defect --- ---

2D_B01

Full circumferential thinning

Depth : 0.5 t*

Straight pipe near the anchor (See Fig. 2.2-1)

2D_C01

STPT370 302 473 158 11

Wall thinning

Full circumferential thinning

Depth : 0.3 t*

Elbow 1

* ‘t’ denotes the normal pipe thickness

⴫ ᐔ㕙㈩▤♽⹜㛎ޓ⹜㛎૕৻ⷩ

Table 2.2-1 Specimens for 2-D piping system tests.

࿑ ᐔ㕙㈩▤♽⹜㛎ޓ⹜㛎૕ᒻ⁁

Fig.2.2-1 2-D piping model for piping system test.

Thinned wall part of B01

Thinned wall part of C01

Weight (200kg)

760

2900

Shaking Direction

4210 1410

100A, Sch120 100A, Sch80

4270

Part A

Part B (Elbow1)

Elbow2

Elbow3

Thinned wall part of 2D_C01

Thinned wall part of 2D_B01

(12)

ᒢᕈ࡟ࡌ࡞߆ࠄᦨᄢ1600Gal⒟ᐲ߹ߢჇടߐߖ㧘ฦ౉ജ࡟

ࡌ࡞ߢߩᔕ╵ᕈ⁁ࠍᓧࠆߣߣ߽ߦᦨᄢ࡟ࡌ࡞ߢ⹜㛎૕߇

⎕៊ߔࠆ߹ߢ౉ജࠍ➅ࠅ㄰ߒߚ㧚ஜో㈩▤♽⹜㛎૕ߦߟ

޿ߡߪฦടᝄ࡟ࡌ࡞ߢ5࿁ߕߟടᝄࠍⴕ޿㧘ᔕ╵ᕈ⁁ࠍᓧ ߚߩߺߢ⎕៊ߐߖߕߦ⹜㛎ࠍ⚳ੌߐߖߚ㧚

ޓ⹜㛎૕ߩㇱಽAߦߪᏱ᷷᳓ࠍḩߚߒ㧘ౝ࿶ࠍ⽶⩄ߒߚ㧚

ౝ࿶ߪߔߴߡߩ⹜㛎૕ߢ11MPaߣߒߚ㧚ㇱಽBߪౝ࿶ߥ ߒ㧔ౝㇱ᳓ߥߒ㧕ߢ⹜㛎ࠍⴕߞߚ㧚⹜㛎ߢߪ㧘⹜㛎૕߇៊

்ߒౝㇱ᳓ߩṳᵨࠍ⋡ⷞ⏕⹺ߒߚᤨὐߢᝄേบߩ౉ജࠍ

⚳ੌߐߖߚ㧚

⸘᷹

ޓታ㛎ߢߪએਅߩ㗄⋡ࠍ⸘᷹ߒߚ㧚 (1) ᝄേบടㅦᐲ

(2) ⹜㛎૕ߩᔕ╵ടㅦᐲ (3) ਛᄩㇱᔕ╵ᄌ૏

(4) ౝ࿶

(5) ⹜㛎૕ᄖ⴫㕙ߩゲᣇะ߅ࠃ߮๟ᣇะ߭ߕߺ ޓ࿑ߦ⹜㛎૕ߩ⸘᷹ὐࠍ␜ߔ㧚ߎࠇࠄߪోߡ500Hz ߩࠨࡦࡊ࡝ࡦࠣ๟ᵄᢙߢ෼㍳ߒߚ㧚߹ߚ㧘ߎߩઁߦ㧘⹜㛎 ߩ೨ᓟߦ߅޿ߡࠛ࡞ࡏㇱಽ߅ࠃ߮ᷫ⡺ዉ౉ㇱಽߩ㈩▤ᄖ ᓘࠍ᷹ቯߒߚ㧚

࿑ ޓᐔ㕙㈩▤♽⹜㛎૕ߩᝄേࡕ࡯࠼

Fig.2.2-2 The vibration mode of the 2-D piping model.

-100 0 -500 0 500 100 0

0 5 1 0 1 5 20 25 30

Acc.[Gal]

Time[s]

0 5 10 15 20

0 1 2 3 4 5

Magnification of Response Acc.[Gal/Gal]

Frequency [Hz]

h=0.005 h=0.01

h=0.02 h=0.05

h=0.10 h=0.15

h=0.20 h=0.25

1st mode : 3.2Hz 2nd mode : 5.7Hz 3rd mode : 14.3Hz Shaking direction

(a) Time history of input acceleration.

(b) Response spectrum (h: damping ratio).

࿑ ޓᐔ㕙㈩▤♽⹜㛎ߢ૶↪ߒߚ⁜Ꮺၞ࡜ࡦ࠳ࡓᵄ Fig.2.2-3 Narrow band random wave used for the piping system test of the 2-D piping model.

(13)

S014 S013

S012

S011

A011

㪉㪐㪇㪇

A002 A001

(Shaking direction and vertical direction) D011

P01 A012

A013 S024 S023

S022

S021 S034 S033

S032

S031

S043

S042

S041 S044

S054 S053

S052

S051

S074 S068 S066 S065S064

S067S063

S062S061

S073

S072

S071 S084 S083

S082

S081 S098 S097 S096 S095S094S093

S092S091

S108 S107 S106 S105S104S103

S102S101

S118 S117 S116 S115S114S113

S112S111 Accelerometer Displacement Strain gauge (Axial direction) Strain gauge (Hoop direction) A-A ޓᐔ㕙㈩▤♽⹜㛎૕ޓ⸘᷹ὐ Fig.2.2-4 Measurement points of the 2-D piping model.

(14)

┙૕㈩▤♽ᝄേ⹜㛎

⹜㛎૕ߩ᭎ⷐ

ޓᐔᚑ11ᐕᐲ߅ࠃ߮ᐔᚑ12ᐕᐲߦ㧘┙૕㈩▤♽⹜㛎૕ࠍ

↪޿ߚടᝄታ㛎ࠍታᣉߒߚ㧚࿑ߦ⹜㛎૕ߩᒻ⁁ࠍ␜

ߔ㧚⹜㛎૕ߪࠛ࡞ࡏ1ࠍ฽߻ㇱಽ㧔ㇱಽA㧕㧘ࠛ࡞ࡏ2ࠍ฽

߻ㇱಽ㧔ㇱಽB㧕㧘ࠛ࡞ࡏ3ࠍ฽߻ㇱಽ㧔ㇱಽC㧕ߩ3ߟ߆ ࠄᚑࠅ㧘ࡈ࡜ࡦࠫߢធวߒߚ㧚┙૕㈩▤♽⹜㛎૕ߪㇱಽ

A㧘B㧘C߇ߟߥ߇ࠅ৻ߟߩ㈩▤⚻〝ߣߥߞߡ޿ࠆ㧚┙૕

㈩▤♽ߢዉ౉ߒߚഠൻ᧦ઙߪ㧘ࠛ࡞ࡏㇱᷫ⡺߹ߚEDM߈ ⵚߩ2⒳㘃ߣߒߚ㧚ᐔ㕙㈩▤♽⹜㛎ߣห᭽㧘ഠൻㇱಽߩߥ

޿ஜో㈩▤♽⹜㛎૕ߦߟ޿ߡ߽ടᝄታ㛎ࠍⴕߞߚ㧚⸳ቯ ߔࠆഠൻ᧦ઙߦᓥ޿ㇱಽA߹ߚߪㇱಽBߩ㈩▤ߩ৻ㇱߦ ഠൻࠍዉ౉ߒߚ㧚ㇱಽCߪోߡߩ⹜㛎૕ߢ౒ㅢߦ૶↪ߒ

ߚ㧚

ޓ㈩▤ߩ᧚⾰ߪၮᧄ⊛ߦᐔ㕙㈩▤♽ߣห᭽㧘὇⚛㍑

STPT370ߣߒߚ߇㧘ᷫ⡺ࠛ࡞ࡏߪ὇⚛㍑㈩▤FSGPࠛ࡞ࡏ ߢઍ↪ߒߚߚ߼ࠛ࡞ࡏㇱᷫ⡺⹜㛎૕ߢߪᷫ⡺ࠛ࡞ࡏㇱಽ ߩߺ᧚⾰߇⇣ߥߞߡ޿ࠆ㧚߹ߚ㧘EDM߈ⵚઃ߈⹜㛎૕ߢ ߪ߈ⵚዉ౉ㇱಽߩ㈩▤ߦࠬ࠹ࡦ࡟ࠬ㍑SUS304ࠍ૶↪ߒ ߚ㧚㈩▤ญᓘߪ100A㧘sch80ߣߒߚ㧚⹜㛎૕ߩฬ⒓ߣዉ౉

ഠൻ᧦ઙߪએਅߩㅢࠅߢ޽ࠆ㧚 (1) ⹜㛎૕ฬ㧦3D_A01

ഠൻ᧦ઙ㧦ഠൻߥߒ (2)ޓ⹜㛎૕ฬ㧦3D_C01

ഠൻ᧦ઙ㧦ࠛ࡞ࡏ1߅ࠃ߮ࠛ࡞ࡏ2ᷫ⡺

࿑ ߦ␜ߒߚࠛ࡞ࡏ1߅ࠃ߮ࠛ࡞ࡏ2ㇱಽࠍ FSGPࠛ࡞ࡏߣߔࠆߎߣߦࠃࠅో๟ᷫ⡺ࠍᮨᡆߒ ߚ㧚FSGPࠛ࡞ࡏߩ⡺ෘߪ౏⒓4.5mmߢ޽ࠅ㧘ᷫ

⡺㊂ߪ48%ߣߥࠆ㧚 (3)ޓ⹜㛎૕ฬ㧦3D_C02

ഠൻ᧦ઙ㧦ࠛ࡞ࡏ1ᷫ⡺

ࠛ࡞ࡏ1ࠍFSGPࠛ࡞ࡏߣߔࠆߎߣߦࠃࠅᷫ⡺㊂ 48%ߩో๟ᷫ⡺ࠍᮨᡆߒߚ㧚

(4)ޓ⹜㛎૕ฬ㧦3D_C03 ഠൻ᧦ઙ㧦ࠛ࡞ࡏ2ᷫ⡺

ࠛ࡞ࡏ2ࠍFSGPࠛ࡞ࡏߣߔࠆߎߣߦࠃࠅᷫ⡺㊂ 48%ߩో๟ᷫ⡺ࠍᮨᡆߒߚ㧚

(5)ޓ⹜㛎૕ฬ㧦3D_D01

ഠൻ᧦ઙ㧦EDM߈ⵚ㧔ㇱಽ߈ⵚ㧕

࿑ߦ␜ߔࠛ࡞ࡏ1ㄭறߩ⋥▤ㇱಽߦඨᬦ౞

ᒻ⁁ߩEDM߈ⵚࠍዉ౉ߒߚ㧚ዉ౉ߒߚEDM߈ ⵚߩᒻ⁁ߪ㧘࿑ ߦ␜ߒߚⷐ⚛⹜㛎૕EM07 ߣห৻ᒻ⁁ߣߒ㧘ᦨᄢ߈ⵚᷓߐࠍᦛߍࡕ࡯ࡔࡦ

3000

2600

3000 2600

Elbow1

Elbow2

Elbow3

Crack induced position Weight (200kg + 60kg)

(for 3D_D01 & 3D_D02)

Shaking direction

࿑ ┙૕㈩▤♽⹜㛎ޓ⹜㛎૕ᒻ⁁

Fig.2.2-5 3-D piping model for piping system test.

⴫ ┙૕㈩▤♽⹜㛎ޓ⹜㛎૕৻ⷩ

Table 2.2-2 Specimens for 3-D piping system tests.

Condition of defect

Name Material Sy*1

[MPa]

Su*1 [MPa]

Sm*1 [MPa]

Internal pressure

(P) [MPa] Type Configuration Defected part

3D_A01 STPT370 302 473 158 10 No

defect --- ---

3D_C01

FSGP Elbow (Elbow 1 & Elbow 2)

/ STPT370 (Ordinary part)

351 452 151 Elbow 1

and Elbow 2

3D_C02

FSGP Elbow (Elbow 1) / STPT370 (Ordinary part)

351 452 151 Elbow 1

3D_C03

FSGP Elbow (Elbow 2) / STPT370 (Ordinary part)

351 452 151

10 Wall

thinning

Full circumferential thinning Depth : 0.48 t*2

Elbow 2

3D_D01 SUS304 (Part A) / STPT370 (Part B & Part C)

311 617 206 Partial EDM notch

Depth : 0.49 t*2

Full crack angle : 14.87[deg.]

3D_D02

SUS304 (Part A & Part B)

/ STPT370 (Part C)

311 617 206

8 EDM

Full circumferential EDM notch Depth : 0.5 t*2

Full crack angle : 360[deg.]

Straight pipe near Elbow 1 (See Fig. 2.2-5)

*1 Value at defected part

*2 ‘t’ denotes the normal pipe thickness

(15)

࠻߇ᦨᄢߣߥࠆᣇะ㧔Zゲ㧗ᣇะ㧕ߦ৻⥌ߐߖߚ㧚 (6)ޓ⹜㛎૕ฬ㧦3D_D02

ഠൻ᧦ઙ㧦EDM߈ⵚ

3D_D01ߣหߓ૏⟎ߩࠛ࡞ࡏ1ㄭறߩ⋥▤ㇱಽߦ

ో๟EDM߈ⵚࠍዉ౉ߒߚ㧚߈ⵚᷓߐߪ⡺ෘߩ

50%ߣߒߚ㧚

ޓ⴫ߦ⹜㛎૕ߩ․ᕈࠍ߹ߣ߼ߡ␜ߔ㧚߹ߚ㧘࿑ ߦ࿕᦭୯⸃ᨆߢ᳞߼ߚ3D_A01ߩ࿕᦭ᝄേᢙߣᝄേࡕ࡯

࠼ࠍ␜ߔ㧚⹜㛎૕ߩ1ᰴ࿕᦭ᝄേࡕ࡯࠼ߢᡰ㈩⊛ߥᄌᒻߪ

ࠛ࡞ࡏ1߅ࠃ߮2ߩ㕙ౝᄌᒻߢ޽ࠆ㧚ஜో⁁ᘒߩ႐ว㧘ᦨ ᄢᔕജ߇⊒↢ߔࠆߩߪࠛ࡞ࡏ1ߢ޽ࠅ㧘ࠛ࡞ࡏ2ߩᔕജߪ

ࠛ࡞ࡏ1ߦᲧߴ14%⒟ᐲૐ޿୯ߣߥߞߚ㧚 タ⩄᧦ઙ

ޓ೨㗄ߦ᜼ߍߚ㈩▤♽ࡕ࠺࡞ߦኻߒߡ㧘৻ᰴరᄢဳᝄേ

บࠍ↪޿ߡടᝄታ㛎ࠍⴕߞߚ㧚ടᝄᵄᒻߪ⹜㛎૕ߩᰴ࿕

᦭ᝄേࡕ࡯࠼ߩߺࠍബ⿠ߔࠆߚ߼㧘1.5Hz㨪3.0Hzߩ⁜Ꮺ

ၞ࡜ࡦ࠳ࡓᵄࠍ૞ᚑߒߡ૶↪ߒߚ㧚࿑ߦታ㛎ߢ↪޿

ߚ⁜Ꮺၞ࡜ࡦ࠳ࡓᵄߩടㅦᐲᤨೞᱧᵄᒻߣᔕ╵ࠬࡍࠢ࠻

࡞ࠍ␜ߔ㧚ታ㛎ߪߎߩ⁜Ꮺၞ࡜ࡦ࠳ࡓᵄߩ౉ജ࡟ࡌ࡞ࠍ ᒢᕈ࡟ࡌ࡞߆ࠄᦨᄢ1800Gal⒟ᐲ߹ߢჇടߐߖ㧘ฦ౉ജ࡟

ࡌ࡞ߢߩᔕ╵ᕈ⁁ࠍᓧࠆߣߣ߽ߦᦨᄢ࡟ࡌ࡞ߢ⹜㛎૕߇

⎕៊ߔࠆ߹ߢ౉ജࠍ➅ࠅ㄰ߒߚ㧚

ޓ⹜㛎૕ߦߪᏱ᷷᳓ࠍḩߚߒߡౝ࿶ࠍ⽶⩄ߒߚ㧚ౝ࿶୯ ߪ㧘ஜో⹜㛎૕߅ࠃ߮ᷫ⡺⹜㛎૕ߢ10MPa㧘߈ⵚߟ߈⹜

㛎૕ߢ8MPaߦ⸳ቯߒߚ㧚ᐔᚑ11ᐕᐲߦታᣉߒߚ⹜㛎૕

㧔3D_A01㧘3D_C01㧘3D_D01㧕ߦߟ޿ߡߪ㧘⹜㛎૕߇⎕៊

ߒౝㇱ᳓ߩṳᵨࠍ⋡ⷞ⏕⹺ߒߚᤨὐߢᝄേบߩ౉ജࠍ⚳

ੌߐߖߚ߇㧘ᐔᚑ12ᐕᐲߦታᣉߒߚ⹜㛎૕㧔3D_C02㧘

3D_C03㧘3D_D02㧕ߢߪ㧘ṳᵨࠍ⏕⹺ߒߚᓟ߽㧘࿑

ߦ␜ߒߚടㅦᐲ౉ജ߇⚳ੌߔࠆ߹ߢടᝄࠍ⛮⛯ߒߚ㧚

⸘᷹

ޓታ㛎ߢߪએਅߩ㗄⋡ࠍ⸘᷹ߒߚ㧚 (1) ᝄേบടㅦᐲ

(2) ⹜㛎૕߅ࠃ߮ࠕࡦࠞ࡯ߩᔕ╵ടㅦᐲ (3) ࠛ࡞ࡏ1ߣࠛ࡞ࡏ2ߩ㕙ౝ㐿㐽ᄌ૏

࿑ ޓ┙૕㈩▤♽⹜㛎૕ߩᝄേࡕ࡯࠼

Fig.2.2-6 The vibration mode of the 3-D piping model.

(4) ౝ࿶

(5) ⹜㛎૕ᄖ⴫㕙ߩゲᣇะ߅ࠃ߮๟ᣇะ߭ߕߺ (6) ࠛ࡞ࡏ3ߩ૏⟎ߦ߅ߌࠆਃᰴర⛘ኻᄌ૏

(7) ߈ⵚ㐿ญᄌ૏㧔߈ⵚߟ߈⹜㛎૕ߩߺ㧕

ޓ࿑ߦ⹜㛎૕ߩ⸘᷹ὐࠍ␜ߔ㧚ߎࠇࠄߪోߡ500Hz ߩࠨࡦࡊ࡝ࡦࠣ๟ᵄᢙߢ෼㍳ߒߚ㧚߹ߚ㧘ஜో⹜㛎૕߅ࠃ

߮ᷫ⡺⹜㛎૕ߢߪ㧘ߎߩઁߦ⹜㛎ߩ೨ᓟߦ߅޿ߡࠛ࡞ࡏ ㇱಽߩ㈩▤ᄖᓘࠍ᷹ቯߒߚ㧚

-1000 -500 0 500 1000

0 5 10 15 20 2 5 3 0 35 40 45 50 55 6 0 65

Acc.[Gal]

Time[s]

0 5 10 15 20 25

0 1 2 3 4 5

Magnification of Response Acc.[Gal/Gal]

Frequency [Hz]

h=0.005

h=0.01 h=0.02

h=0.05 h=0.10 h=0.15

h=0.20 h=0.25 + Z

+ Y + X

Shaking direction

1st mode: 2.58Hz 2nd mode: 6.26Hz 3rd mode: 8.39Hz

(a) Time history of input acceleration.

(b) Response spectrum (h: damping ratio).

࿑ ┙૕㈩▤♽⹜㛎ߢ૶↪ߒߚ⁜Ꮺၞ࡜ࡦ࠳ࡓᵄ Fig.2.2-7 Narrow band random wave used for the piping system test of the 3-D piping model.

(16)

#:

#:

#;

#<

: Accelerometer

#;

#<

: Crip gauge (for 3D_D01 & 3D_D02)

%

: Displacement

&

#<

#;

#:

#<

#

#; :

#<

#

#; :

&

510 50

500 50

&:

Z Y

X

50 100

50

100 S095

S094 S093 S091 S092 S098 S097

S096

S105 S104

S103 S102 S101 S108 S107

S106

S085 S084

S083 S082 S081 S088 S087 S013 S086

S012 S011 S014

S121 S122 S123 S124

S111 S112 S113 S114

S071 S072 S073 S074

S021 S022 S023 S024 ԙ

Ԟ Ԣ

ԟ Ԙ

Ԡ ԡ ԣ

D00

A07

D02

A01 A03

A06

#

#<

;

#:

A05

#<

A02

#

#;

:

#<

A04

#:

#;

A00 #:

(Top) (Top) (Top)

(Top)

(Top)

(Top)

(Top) (Top)

ᱡࠥ࡯ࠫߪࠕࡦࠞὐ #㨪# ߦะ߆ߞߡ

ᤨ⸘๟ࠅޕ

┙ߜ਄߇ࠅ㈩▤ߪ㨆ᣇะߦะ߆ߞߡޔ㨅ࠍ ၮḰߦᤨ⸘๟ࠅߣߔࠆޕ

%

&

: Strain gauge (Axial) : Strain gauge (Hoop)

For 3D_D01 & 3D_D02 X

Y Z

50 50

50 500

510

: Strain gauge (45deg between axial and hoop)

S031 S038 S037

S036 S035

S034 S033 S032

S045 S044

S043 S042 S041 S048 S047

S046 S055

S054 S053 S052 S051 S058 S057

S056 S061

S062 S063 S064

Ԛ ԛ

Ԝ ԝ

C01

D01 P01

&<

D03

(from outside of the shaking table)

&;

&:

Anchor A-02

(Top) Anchor A-01

: Pressure

࿑ ┙૕㈩▤♽⹜㛎૕ޓ⸘᷹ὐ

Fig.2.2-8 Measurement points of the 3-D piping model.

(17)

ታ㛎⚿ᨐ ⷐ⚛⹜㛎 ߈ⵚઃ߈㈩▤

⎕៊⁁ᴫ

ⷐ⚛⹜㛎ߩ߁ߜ߈ⵚઃ߈㈩▤ߩ⹜㛎⚿ᨐࠍ⴫ߦ ߣࠅ߹ߣ߼ߡ␜ߔ㧚⹜㛎૕ߩ߁ߜᱜᒏᵄߦࠃࠅタ⩄ߒߚ

߽ߩߦߟ޿ߡߪ㧘߈ⵚ⽾ㅢ߹ߢߦⷐߒߚᱜᒏᵄቯᏱㇱಽ ߩᵄᢙࠍ⴫ਛߦ૬⸥ߒߚ㧚ഠൻᒻ⁁ߏߣߩ⎕៊⁁ᴫߪએ ਅߩࠃ߁ߦߥߞߚ㧚

(1)ޓSCC⹜㛎૕

8૕ታᣉߒߚSCC⹜㛎૕ߩ߁ߜ㧘4૕ߢ➅ࠅ㄰ߒ タ⩄ߦ઻޿ዉ౉ߒߚೋᦼSCC߆ࠄ∋ഭ߈ⵚ߇ㅴ ዷߒ㧘⽾ㅢߒߚ㧚߈ⵚ⽾ㅢㇱಽߦሽ࿷ߒߚೋᦼ SCCᒻ⁁ߪ࿑ߦ␜ߒߚߣ߅ࠅߢ޽ࠆ㧚߈ⵚ

⽾ㅢᓟߩᓟ⛯ࠨࠗࠢ࡞ߦࠃࠆ๟ᣇะ߳ߩᕆㅦવ

᠞ߪ↢ߓߥ߆ߞߚ㧚࿑ ߦ⹜㛎૕SC01ߩ

⎕៊⁁ᴫࠍ␜ߔ㧚ೋᦼSCC߆ࠄ߈ⵚ߇⽾ㅢߒߥ ߆ߞߚ4૕ߪ㧘⹜㛎㈩▤ࠍ⵬ᒝ▤ߣធวߔࠆߚ߼

ߦടᎿߒߚṁធㇱಽ߿࠹࡯ࡄ㐿ᆎㇱߢ߈ⵚ߇⽾

ㅢߒߚ㧚࿑ߦSCC⹜㛎૕ߩ⎕៊૏⟎ࠍ␜

ߔ㧚

(2)ޓో๟50%ᷓߐߩEDM߈ⵚઃ߈⹜㛎૕

㧔EM01㨪EM04㧕

ోߡߩ⹜㛎૕ߦ߅޿ߡ㧘ᦨᄢᦛߍࡕ࡯ࡔࡦ࠻߇

૞↪ߔࠆᣇะߢ➅ࠅ㄰ߒタ⩄ߦ઻޿߈ⵚ߇⡺ෘ

ᣇะߦㅴዷߒ㧘⽾ㅢߒߚ㧚⽾ㅢߒߚ߈ⵚߪᓟ⛯ߩ ᢙࠨࠗࠢ࡞ߦࠃࠅ๟ᣇะߦㅴዷߒ㧘ో๟⎕ᢿࠍ

⿠ߎߒߚ㧚࿑ߦEM02ߩ⎕៊⁁ᴫࠍ␜ߔ㧚 ታ㛎ߢߪᱜᒏᵄߣ࡜ࡦ࠳ࡓᝄ᏷ᵄࠍ↪޿ߡタ⩄

ߒߚ߇㧘౉ജᵄᒻߦࠃࠆ⎕៊ᒻᘒߩ㆑޿ߪ⷗ࠄ ࠇߥ߆ߞߚ㧚

(3)ޓౝⷺ90q50%ᷓߐߩEDM߈ⵚઃ߈⹜㛎૕

㧔EM05㧘EM09㧕

➅ࠅ㄰ߒタ⩄ߦ઻޿ೋᦼEDM߈ⵚㇱಽ߆ࠄ߈ⵚ ߇ㅴዷߒ㧘⽾ㅢߒߚ㧚߈ⵚߪ⽾ㅢߩߺߢᓟ⛯ࠨࠗ

ࠢ࡞ߦࠃࠆ๟ᣇะ߳ߩᕆㅦવ᠞ߪ↢ߓߥ߆ߞߚ㧚

(4)ޓSCCࠍᮨᡆߒߚEDM߈ⵚઃ߈⹜㛎૕

㧔EM06㨪EM08㧕

ోߡߩ⹜㛎૕ߢዉ౉ߒߚEDM߈ⵚㇱಽ߆ࠄ߈ⵚ ߇ㅴዷߒ㧘⽾ㅢߒߚ㧚SCC⹜㛎૕ߣห᭽㧘⎕៊ᒻ ᘒߪ߈ⵚߩ⽾ㅢ߅ࠃ߮ṳᵨߢ㧘ᓟ⛯ࠨࠗࠢ࡞ߦ ࠃࠆ๟ᣇะ߳ߩ߈ⵚߩᕆㅦવ᠞ߪ↢ߓߥ߆ߞߚ㧚 એ਄߆ࠄ㧘ᧄታ㛎ߢ⏕⹺ߐࠇߚ߈ⵚઃ߈㈩▤ߩ⎕៊ᒻᘒ ߪ㧘ㇱಽ߈ⵚઃ߈㈩▤ߢߪ߈ⵚߩ⽾ㅢ㧘ో๟߈ⵚઃ߈㈩▤

ߢߪో๟⎕ᢿߣߥߞߚ㧚

߈ⵚઃ߈㈩▤ߩ⩄㊀ᄌᒻ․ᕈ

࿑ߦEDM⹜㛎૕ߩᦨᄢ౉ജᄌᒻⷺߣᦛߍࡕ࡯

ࡔࡦ࠻ߣߩ㑐ଥࠍ␜ߔ㧚ߚߛߒ㧘EM01ߪ౉ജ࡟ࡌ࡞ࠍㅜ ਛߢᄌᦝߒߡ޿ࠆߩߢ㧘એਅߩᬌ⸛ߢߪኻ⽎ᄖߣߒߚ㧚࿑

ߢߪ㧘⹜㛎૕ߩᄌᒻߪోߡ߈ⵚㇱಽߢ⿠߈ߡ޿ࠆߣߒߡ౉

࿑ ೋᦼSCC߈ⵚ߆ࠄߩ⽾ㅢ㧔SC01㧕 Fig. 3.1.1-1 Crack penetration from initial SCC (SC01).

Thicker wall pipe Test specimen SCC induced area

Broken position of

SC02 & SC04 Broken position of SC05 & SC06

Broken position of SC01, SC03,SC07 & SC08 (Broken from initial SCC)

13.5 8.6

࿑ ฦSCC⹜㛎૕ߩ߈ⵚ⽾ㅢ૏⟎

Fig. 3.1.1-2 Broken positions of SCC specimens.

࿑ ో๟⎕ᢿߩ⁁ᴫ

㧔EM02㧘ో๟EDM߈ⵚઃ߈⹜㛎૕㧕

0 10 20 30 40 50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

EM02 EM03 EM04 EM05 EM06 EM07 EM08 EM09

Bending moment [kN-m]

Rotation angle [rad]

Fig. 3.1.1-3 Full circumferential break

(EM02, with full circumferential initial EDM notch).

࿑ EDM⹜㛎૕ߦ߅ߌࠆᦨᄢ౉ജᄌᒻⷺߣ ᦨᄢᦛߍࡕ࡯ࡔࡦ࠻ߩ㑐ଥ

Fig. 3.1.1-4 Relation between max. input rotation angle and max. bending moment of EDM specimen.

(18)

Input condition Max. amp. of input Name Type of defect

Internal pressure (P) [MPa]

Hoop stress byP (VH) [MPa] VH /SyPattern of input disp. wave [mm] [rad]

No. of loadingMax. reaction force [kN] Test results SC01 49 0.16 5 (108 cycles)96 Crack penetration at SCC SC02 49 0.16 21 83 Crack penetration at the tapering section SC03 49 0.16 5 (128 cycles)95 Crack penetration at SCC SC04 49 0.16 6 92 Crack penetration at the tapering section SC05 48 0.16 6 104 Crack penetration near the weld SC06 49 0.16 4 114 Crack penetration near the weld SC07 50 0.16 5 (127 cycles)92 Crack penetration at SCC SC08

SCC 8 49 0.16

Sinusoidal 50 0.13 5 (117 cycles) 93 Crack penetration at SCC 15 0.04 35 EM01 49 0.16 Random 30 0.08 2 71 Full circumferential break EM02 49 0.16 Sinusoidal 25 0.06 1 (16 cycles) 67 Full circumferential break EM03 49 0.16 Random25 0.06 10 69 Full circumferential break EM04 49 0.16 Sinusoidal 21 0.05 1 (18 cycles)66 Full circumferential break EM05 50 0.16 Random35 0.09 4 79 Crack penetration at EDM notch EM06 49 0.16 Sinusoidal 50 0.13 2 (32 cycles) 94Crack penetration at EDM notch EM07 48 0.16 Sinusoidal 50 0.13 3 (55 cycles) 108Crack penetration at EDM notch EM08 51 0.16 Sinusoidal 50 0.13 4 (108 cycles)90Crack penetration at EDM notch EM09

EDM 8 48 0.16 Sinusoidal 35 0.09 1 (19 cycles) 77Crack penetration at EDM notch

ⷐ⚛⹜㛎ޓ߈ⵚઃ߈㈩▤⹜㛎૕⹜㛎⚿ᨐ Table 3.1.1-1 Test results of pipe element tests using cracked specimens

(19)

ജᄌ૏ࠍ࿁ォⷺߦ㧘4ὐᦛߍ⹜㛎ⵝ⟎ߩᐞ૗ቇ⊛ᒻ⁁߆ࠄ

෻ജࠍᦛߍࡕ࡯ࡔࡦ࠻ߦ឵▚ߒߡ␜ߒߚ㧚ߎߎߢ㧘౉ജᄌ

૏ࠍδ㧘4ὐᦛߍ⹜㛎ⵝ⟎ߩᡰὐ㑆〒㔌ࠍl㧘࿁ォⷺࠍφ㧘 ࡠ࡯࠼࠮࡞⸘᷹୯ࠍP㧘⹜㛎૕ߦ૞↪ߔࠆᦛߍࡕ࡯ࡔࡦ࠻

Mߣߔࠆߣ㧘φ㧘M㧘ߪߘࠇߙࠇએਅߩᑼߢ⴫ߐࠇࠆ㧚 (3.1.1)

(3.1.2)

⹜㛎૕ߩ෻ജ߆ࠄ⸘▚ߒߚᦛߍࡕ࡯ࡔࡦ࠻ߩᦨᄢ୯ߪ

౉ജߩᄢ߈ߐߦᔕߓߡ⚂25kN-m߆ࠄ40kN-mߩ▸࿐ߦಽ Ꮣߒߡ޿ࠆ㧚࡜ࡦ࠳ࡓᝄ᏷ᵄߢタ⩄ߒߚEM03ߣEM05ߪ㧘 ᱜᒏᵄߢタ⩄ߒߚEM02߅ࠃ߮EM09ߣ߶߷ห╬ߩ෻ജߣ ߥࠅ㧘౉ജᵄᒻߦࠃࠆ෻ജߩ㆑޿ߪ޽ࠄࠊࠇߥ߆ߞߚ㧚

࿑ߦ㧘ᱜᒏᵄタ⩄ࠍⴕߞߚEM02㧘EM06㧘EM09 ߦߟ޿ߡ㧘ᱜᒏᵄߩẋჇㇱಽߢߩ࿁ォⷺߣ⹜㛎૕෻ജߣ ߩ㑐ଥࠍ␜ߔ㧚EM02ߪో๟߈ⵚࠍ㧘EM06ߪSCCࠍᮨᡆ

ߒߚEDM߈ⵚࠍ㧘EM09ߪౝⷺ90qߩ⍱ᒻ߈ⵚࠍടᎿߒ

ߡ޽ࠆ߇㧘࿑߆ࠄ㧘ߎࠇࠄߩ߈ⵚߩᄢ߈ߐߪ⹜㛎

૕ߩ෻ജߦ߶ߣࠎߤᓇ㗀ࠍਈ߃ߡ޿ߥ޿ߣ⸒߃ࠆ㧚 5%% ߈ⵚߣ '&/ ߈ⵚߩ⎕៊ኼ๮Ყセ

EDM⹜㛎૕EM06㧘EM07㧘EM08ߪ㧘ߘࠇߙࠇSCC⹜ 㛎૕SC01㧘SC03㧘SC07ߩೋᦼSCCᒻ⁁ࠍ╬ଔߥ߈ⵚᷓߐ ߣ㕙Ⓧࠍᜬߟඨᬦ౞ᒻ⁁ߢᮨᡆߒߚEDM߈ⵚࠍઃਈߒߚ

⹜㛎૕ߢ޽ࠆ㧚ߎࠇࠄߩ⹜㛎૕ߢߪ㧘⥄ὼ߈ⵚߣੱᎿᰳ㒱 ߩ⎕៊ኼ๮ߩᲧセࠍⴕ߁ߚ߼ߦ㧘ౝ࿶㧘⹜㛎૕ߩ᧚⾰㧘౉

ജᄌ૏㧘౉ജᵄᒻߩ᧦ઙࠍห৻ߦߒߡタ⩄⹜㛎ࠍⴕߞߚ㧚 ߘߩ⚿ᨐ㧘߈ⵚ⽾ㅢߦⷐߒߚᱜᒏᵄߩቯᏱㇱಽߩࠨࠗࠢ

࡞ᢙߪ㧘SC01ߢ108ࠨࠗࠢ࡞㧘SC01ߩSCCࠍᮨᡆߒߚ EM06ߢ32ࠨࠗࠢ࡞ߢ޽ߞߚ㧚ห᭽ߦ㧘SC03ߢ128ࠨࠗ

ࠢ࡞㧘EM07ߢ55ࠨࠗࠢ࡞㧘SC07ߢ117ࠨࠗࠢ࡞㧘EM08 ߢ108ࠨࠗࠢ࡞ߣߥߞߚ㧚EM06ߣEM07ߢߪᮨᡆߒߚSCC ߦኻߒߡ߈ⵚ⽾ㅢ߹ߢߦ2㨪3୚ߩ➅ࠅ㄰ߒᢙ߇ᔅⷐߛߞ

ߚߩߦኻߒ㧘EM08ߢߪ߶߷ห⒟ᐲߣߥߞߚ㧚⃻ᤨὐߢߪ ߎߩ㆑޿߇↢ߓߚℂ↱ߪ᣿⏕ߢߪߥ޿߇㧘࿶❗タ⩄ᤨߦ ߅ߌࠆ߈ⵚ㕙ߩធ⸅ߦ઻߁࿶❗߭ߕߺߩ಴ᣇߩ㆑޿߿㧘

ೋᦼSCCߩ┙૕⊛ᒻ⁁ߥߤ㧘߈ⵚᒻ⁁ࠍᮨᡆߔࠆ㓙ߦ⠨

ᘦߒߚᛩᓇ߈ⵚ㕙Ⓧએᄖߩⷐ࿃߇߈ⵚㅴዷߦᓇ㗀ࠍਈ߃ ߡ޿ࠆน⢻ᕈ߇⠨߃ࠄࠇࠆ㧚

⎕㕙⸃ᨆ

EDM⹜㛎૕ߩ߁ߜ㧘ో๟EDM߈ⵚઃ߈㈩▤ߢᱜᒏᵄ ࠍ↪޿ߡタ⩄ߒߚEM02㧘࡜ࡦ࠳ࡓᝄ᏷ᵄߢタ⩄ߒߚ

EM03㧘ౝⷺ90qߩ⍱ᒻEDM߈ⵚࠍᜬߜ㧘࡜ࡦ࠳ࡓᝄ᏷

ᵄߢタ⩄ߒߚEM05ߩ3૕ߦߟ޿ߡ㧘⿛ᩏဳ㔚ሶ㗼ᓸ㏜

㧔SEM㧕ࠍ૶↪ߒߚ⎕㕙ⷰኤࠍⴕߞߚ㧚⎕㕙ߩⷰኤ૏⟎ߪ

࿑ ߦ␜ߒߚ૏⟎ߢ޽ࠆ㧚

ࡑࠢࡠ⊛ߥ⎕㕙ߪ㧘࿑ߦ␜ߒߚࠃ߁ߦ㧘タ⩄ߦ ࠃࠅ߈ⵚ߇ㅴዷߒߚㇱಽ㧔એਅㇱಽAߣߔࠆ㧕ߣᕆㅦ⎕

ᢿㇱಽ㧔એਅㇱಽBߣߔࠆ㧕ߦಽ߆ࠇߚ㧚ߎߩ߁ߜ㧘࡜ࡦ

࠳ࡓᝄ᏷ᵄߢタ⩄ߒߚ⹜㛎૕ߩㇱಽAࠍSEMߢⷰኤߔࠆ ߣ㧘࿑ߦ␜ߔࠃ߁ߦ❋ᮨ᭽߇⹺߼ࠄࠇࠆ㗔ၞ㧔A- 1㧘ࠬ࠻࡜ࠗࠛ࡯࡚ࠪࡦ㗔ၞ㧕ߣ㧘߶ߣࠎߤ․ᓽߩ⃻ࠇߥ

޿㗔ၞ㧔A-2㧘ࠬ࠻࡟࠶࠴࠱࡯ࡦ㗔ၞ㧕ߩ2⒳㘃ߩ⎕㕙߇

੤੕ߦ⃻ࠇࠆߎߣ߇⏕⹺ߐࠇߚ㧚࿑ Dߦ␜ߒߚ࡜

ࡦ࠳ࡓᝄ᏷ᵄߢタ⩄ߒߚ႐วߦ߈ⵚㅴዷㇱಽߢ2⒳㘃ߩ⎕

㕙߇⃻ࠇࠆߩߪ㧘ᦨᄢᝄ᏷એᄖߩㇱಽߢA-1ߩ⎕㕙߇㧘ᦨ ᄢᝄ᏷ㇱಽߢA-2ߩ⎕㕙߇ᒻᚑߐࠇࠆߚ߼ߣ⠨߃ࠄࠇࠆ㧚 ᓥߞߡ㧘A-1ߣA-2ߩ⎕㕙1⚵߇࡜ࡦ࠳ࡓᝄ᏷ᵄ1ᵄߦࠃ ࠆ߈ⵚㅴዷ㊂ߦ⋧ᒰߔࠆ㧚৻ᣇ㧘ᱜᒏᵄߢタ⩄ߒߚEM02 ߩSEMⷰኤ⚿ᨐߢߪA-1ߩࠃ߁ߥ⎕㕙ߪ⹺߼ࠄࠇߕ㧘ో

ߡㇱಽA-2ߣห᭽ߩ⎕㕙ߢ޽ࠅ㧘SEMⷰኤ⚿ᨐ߆ࠄᔕജ ࠨࠗࠢ࡞Ფߩ߈ⵚㅴዷ㊂ࠍ․ቯߔࠆߎߣߪߢ߈ߥ߆ߞߚ㧚

0 5 10 15 20 25 30 35

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

EM 02 EM 06 EM 09

Bending moment [kN-m]

Rotation angle [rad]

࿑ ᱜᒏᵄߩᝄ᏷ẋჇㇱߦ߅ߌࠆ౉ജᄌᒻⷺߣ ᦛߍࡕ࡯ࡔࡦ࠻ߩ㑐ଥ

Fig. 3.1.1-5 Relation between input rotation angle and bending moment at amplitude increasing part of Sinusoidal input wave.

Loading direction

8.6 114.3 4.3

90q

Observation point (a) EM02 & EM03. (b) EM05.

࿑ ೋᦼEDM߈ⵚᒻ⁁ߣSEMⷰኤὐ

Fig. 3.1.1-6 Geometry of initial EDM notch and observation point by SEM.

࿑ ߈ⵚㅴዷ㕙ߩࡑࠢࡠ᭽⋧㧔EM03㧕 Fig. 3.1.1-7 View of crack surface (EM03).

Initial EDM notch Fatigue crack propagation

Dimple area 2

l φ = δ

2 M=P l

(20)

⴫ߦታ㛎⚿ᨐߣ㧘╙5┨ߢㅀߴࠆ೎ㅜታᣉߐࠇ ߚFEMߦࠃࠆ߈ⵚㅴዷ⸃ᨆ⚿ᨐߦࠃࠅᓧࠄࠇߚ߈ⵚ⽾ㅢ

߹ߢߩタ⩄࿁ᢙࠍ␜ߔ㧚⸃ᨆߢߪታ㛎⚿ᨐߣᲧセߒߡዋ ߥ޿➅ࠅ㄰ߒᢙߢ߈ⵚ߇⽾ㅢߔࠆ⚿ᨐ߇ᓧࠄࠇߡ޿ࠆ㧚

৻ᣇ㧘࡜ࡦ࠳ࡓᝄ᏷ᵄߢタ⩄ߒߚ2૕ߦߟ޿ߡ㧘SEMⷰ ኤߦࠃࠆ߈ⵚㅴዷㇱಽߢ⏕⹺ߐࠇߚ⎕㕙A-1ߣA-2ߩ⚵

ߪ㧘EM03ߢ10⚵㧘EM05ߢ4⚵ߣߥߞߚ㧚਄ㅀߩࠃ߁ߦ㧘

⎕㕙ߩ➅ࠅ㄰ߒᢙߪ߈ⵚ⽾ㅢߦⷐߒߚ࡜ࡦ࠳ࡓᝄ᏷ᵄߩ タ⩄࿁ᢙߦ⋧ᒰߔࠆ㧚ᓥߞߡ㧘ታ㛎ߢ߈ⵚ⽾ㅢ߹ߢߦⷐߒ ߚ➅ࠅ㄰ߒᢙߩ߁ߜ㧘߈ⵚ⊒↢ߦᶖ⾌ߐࠇߚ࿁ᢙߪήⷞ ߢ߈ࠆ⒟ᐲߢ޽ࠅ㧘߶ߣࠎߤߪ߈ⵚߩવ᠞ߦ⾌߿ߐࠇߡ

޿ࠆߣ⠨߃ࠄࠇࠆ㧚

ᰴߦ㧘SEMⷰኤߢ⺒ߺߣߞߚࠬ࠻࡜ࠗࠛ࡯࡚ࠪࡦ㑆㓒 㧔S㧕߅ࠃ߮ࠬ࠻࡟࠶࠴࠱࡯ࡦ᏷㧔SZW㧕ߣ㧘ታ㛎ߢᓧࠄࠇ ߚᔕജ᜛ᄢଥᢙ▸࿐ࠍኻᔕߐߖ㧘da/dN - ∆K㑐ଥࠍ᳞߼

ߚ㧚ߥ߅㧘EM02ߦߟ޿ߡߪSEMⷰኤߦࠃࠆฦタ⩄ࠨࠗ

ࠢ࡞Ფߩ߈ⵚㅴዷ㊂ߩ․ቯߪߢ߈ߥ߆ߞߚ߇㧘ታ૕㗼ᓸ

㏜౮⌀ࠃࠅ⎕ᢿ೨2ࠨࠗࠢ࡞ಽߩ߈ⵚㅴዷ㊂ࠍ․ቯߢ߈ߚ ߚ߼㧘ߎߩ2ࠨࠗࠢ࡞ߦߟ޿ߡᔕജᝄ᏷ߣ߈ⵚㅴዷ㊂ࠍኻ ᔕߐߖߚ㧚ߎߎߢ㧘ࠬ࠻࡜ࠗࠛ࡯࡚ࠪࡦ㗔ၞߢߪ㧘S߇⪺

ߒߊᄌൻߒߡ޿ߥ޿ᢙᵄߩᐔဋ୯ࠍda/dNߦ૶↪ߒ㧘ࠬ࠻

࡟࠶࠴㗔ၞߢߪSZWࠍ࡜ࡦ࠳ࡓᝄ᏷ᵄߩᦨᄢᝄ᏷ᵄߦ ࠃࠆda/dNߣߒߚ㧚߹ߚ㧘ᔕജ᜛ᄢଥᢙ▸࿐∆Kߪਅᑼߢ

᳞߼ߚ㧚

ߎߎߢ㧘Fξ㧦K୯ߩ⵬ᱜଥᢙޓ∆σ㧦૞↪ᔕജᝄ᏷ޓ ޓޓޓޓa㧦߈ⵚ㐳ߐ

૞↪ᔕജᝄ᏷∆σߪ㧘ᑼ3.1.2ߢᓧࠄࠇࠆ෻ജ߆ࠄ⸘▚

ߒߚࡕ࡯ࡔࡦ࠻ࠍᢿ㕙ଥᢙZߢ㒰ߒߡ᳞߼ߚ㧚ߐࠄߦ㧘⎕

㕙ⷰኤ૏⟎ߦ߅ߌࠆᔕജ⁁ᘒࠍ㧘ㄭૃ⊛ߦ ஥ߦ߈ⵚߩ

޽ࠆᏪ᧼ߩ৻᭽ᒁᒛ㧛࿶❗ߣߒߡ⠨߃㧘ᔕജᝄ᏷ߣ߈ⵚ 㐳ߐ߆ࠄᓧࠄࠇࠆ∆Kߦኻߒ㧘ᰴᑼߢਈ߃ࠄࠇࠆ⵬ᱜଥᢙ ࠍਸ਼ߓߡ୯ࠍ⵬ᱜߒߚ㧚

ߎߎߢ㧘ξ = a/W a㧦߈ⵚ㐳ߐ㧘W㧦᧼ෘ

ⷰኤ⚿ᨐߣSasakiࠄߩ㜞ࠨࠗࠢ࡞∋ഭ⹜㛎⚿ᨐ5ࠍ࿑

ߦ␜ߔ㧚࿑ਛ㧘⊕ᛮ߈ߩ⪉ᒻ߇Sasakiࠄߦࠃࠆታ 㛎⚿ᨐ㧘Ⴃࠅߟ߱ߒߚὐ߇⎕㕙⸃ᨆ߆ࠄᓧࠄࠇߚda/dN -

K㑐ଥߢ޽ࠆ㧚ታ✢ߢ␜ߒߚ⋥✢ߪSasakiࠄߦࠃࠆታ㛎

⚿ᨐߩ߈ⵚવ᠞ㅦᐲߩㄭૃᑼߢ޽ࠅ㧘ਅᑼߢ⴫ߐࠇࠆ㧚ߎ ߎߢ㧘da/dNߪmm/cycle㧘∆KߪMPa㨯m1/2ߢ޽ࠆ㧚

(3.1.5)

࿑ߦ␜ߒߚࠃ߁ߦ㧘ᧄታ㛎ߢ⎕㕙⸃ᨆ߆ࠄᓧࠄ ࠇߚ߈ⵚવ᠞ㅦᐲߪ㧘ᣢᓔߩ⎇ⓥߢᓧࠄࠇߡ޿ࠆda/dN -

K㑐ଥߣ⦟ߊ৻⥌ߒߚ㧚ᧄታ㛎ߢ૶↪ߒߚ࡜ࡦ࠳ࡓᝄ᏷

ᵄߩࠃ߁ߥᄌേᝄ᏷ߩ⩄㊀߇૞↪ߔࠆ႐ว㧘߈ⵚㅴዷߦ

Striation(A-1)

Stretched zone (A-2)

Striation(A-1)

Stretched zone (A-2)

⴫ ታ㛎㧘FEM⸃ᨆ㧘߅ࠃ߮SEMⷰኤ߆ࠄᓧࠄࠇߚ߈ⵚ⽾ㅢߦⷐߒߚ౉ജ➅ࠅ㄰ߒᢙ Table 3.1.1-2 Number of loading blocks obtained from tests, FEM analysis and SEM observation.

࿑ ⎕㕙ߩSEMⷰኤ⚿ᨐ 㧔EM03㧘╙2㨪╙3ࡉࡠ࠶ࠢ㧕 Fig. 3.1.1-8 SEM image of fracture surface (EM03, block No.2-No.3).

( ) K Fξ σ πa

∆ = ⋅ ∆ (3.1.3)

2 3 4

( ) 1.12 0.231 10.55 21.72 30.39

Fξ = − ξ+ ξ − ξ + ξ (3.1.4)

1.76 109

da K

dN

= ∗ ⋅ ∆

10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

1 10 100 10 00 104

Ref.5) E M 02(S) E M 03(S) E M 05(S) SZW by test SUS304(R=-1)

da/dN[m/cycle]

K[MPa*m1/2]

࿑ ߈ⵚㅴዷ㊂㧙ᔕജ᜛ᄢଥᢙ▸࿐㑐ଥ

Fig. 3.1.1-9 Relation between crack propagation rate and stress intensity factor range.

* ‘t’ denotes the thickness at normal part ** Results from FEM analysis in Chapter 5

Condition of defect Loading times

Name

Type Full angle Depth*

Type of

loading Max. 'V

[MPa] Test results FEM** SEM

EM02 Sinusoidal 707 1

(16 cycles) 1

(8cycles) -- EM03

360q

Random 700 10 2 10

EM05 EDM

90q

0.5t

Random 820 4 2 4

* ‘t’ denotes the normal pipe thickness

Table 2.2-1  Specimens for 2-D piping system tests.
Table 2.2-2  Specimens for 3-D piping system tests.
Fig. 3.1.1-9   Relation between crack propagation rate and stress                     intensity factor range.
Fig. 3.1.2-4  Position of the longitudinal cracks that appeared in                      EC07.
+7

参照

関連したドキュメント

Correspondence should be addressed to Salah Badraoui, sabadraoui@hotmail.com Received 11 July 2009; Accepted 5 January 2010.. Academic Editor:

An example of a database state in the lextensive category of finite sets, for the EA sketch of our school data specification is provided by any database which models the

Notice that for the adjoint pairs in corollary 1.6.11 conditions (a) and (b) hold for all colimit cylinders as in (1.93), since (F ? , F ∗ ) is an equipment homomorphism in each

In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi

We find the criteria for the solvability of the operator equation AX − XB = C, where A, B , and C are unbounded operators, and use the result to show existence and regularity

F igueiredo , Positive solution for a class of p&amp;q-singular elliptic equation, Nonlinear Anal.. Real

As application of our coarea inequality we answer this question in the case of real valued Lipschitz maps on the Heisenberg group (Theorem 3.11), considering the Q − 1

In this work, our main purpose is to establish, via minimax methods, new versions of Rolle's Theorem, providing further sufficient conditions to ensure global