• 検索結果がありません。

2 Generalized Dedekind Eta function

N/A
N/A
Protected

Academic year: 2022

シェア "2 Generalized Dedekind Eta function"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Elliptic analogue of the Hardy sums related to elliptic Bernoulli functions

Yilmaz Simsek

Abstract

In this paper, we define generalized Hardy-Berndt sums and ellip- tic analogue of the generalized Hardy-Berndt sums related to elliptic Bernoulli polynomials. We give relations between the Weierstrass

(z)-function, Hardy-Bernd sums, theta functions and generalized Dedekind eta function.

2000 Mathematical Subject Classification: Primary 11F20, 11B68;

Secondary 14K25, 14H42.

Key words and phrases: Bernoulli polynomials and Bernoulli functions,, Dedekind sums, Dedekind-Rademacher sums, Hardy sums, Theta functions.

1 Introduction, definitions and notations

The Dedekind eta function, η(z) is defined by η(z) = eπiz12

n=1

(1−e2πinz), 3

(2)

where z H = {z C:Im(z)>0}. The behavior of this function under the modular group, Γ(1) is given by the following functional equation:

Theorem 1. ([1]) Let A =

a b c d

Γ(1),

logη(Az) = logη(z) + πi(a+d)

12c −πi(s(d, c)−1 4) + 1

2log(cz+d), where s(d, c) is the Dedekind sum, which is defined as follows:

s(d, c) =

c−1

n=1

((n

c))((dn c )), and

((x)) =

⎧⎨

x−[x] 12, x /∈Z 0, x∈Z

[x] denotes the greatest integer functions cf. (see also [1], [6], [3], [2], [7], [22], [11], [23], [25], [30]).

Generalized Dedekind eta functions defined by [22]:

Letg and h be integers, and N be a positive integer. We define ηg,h(z;N) =αg,h(N) exp(πizB2

g N

)mg(N), m>0

1−ζhNqNm

m≡−g(N), m>0

1−ζNhqmN

for z H where ζN =e2πiN , qN =e2πizN and αg,h(N) =

⎧⎨

exp(πiB1h

N

)

1−ζNh

, if g 0, h≡modN, 1, otherwise.

B1 and B2 in the formulae are Bernoulli functions:

B1(x) =x−[x] 1

2, B2(x) = (x[x])2(x[x]) + 1 6.

(3)

Here Bn(x) is the nth Bernoulli functions, which are defined by Bn(x) =Bn(x[x]) =

⎧⎨

0, if n= 1, x∈Z, Bn({x}) , otherwise

, where Bn(x) denotes Bernoulli polynomials:

tetx et1 =

j=0

Bj(x)tj j!,

cf. ([34], [35], [38], [31]). The functionsηg,h(z;N) are holomorphic forz H and depend upon g, h modulo N. Furthermore, ηg,h(z;N) =ηg,h(z;N) for each g and h,and ηg,h(z;N) =η2(z) for (g, h)(0,0) (modN) (see for detail [22], [37], [19], [23], [25]).

Halbritter[12] and Hall et at.[13] defined generalized Dedekind sums as follows:

Definition 1. Let a, b and c be positive integers, and x, y and z be real numbers.

(1) Sm,n(a, b, c:x, y, z) =

kmodc

Bm(ak+z

c −x)Bn(bk+z c −y).

The classical theta-functions,ϑn(0, q)(n = 2, 3, 4) are defined as follows ([38], [16], [24], [30])

ϑ2(0, q) = 2q14

n=0

qn(n+1) = 2q14 n=1

(1−q2n)(1 +q2n)2, ϑ3(0, q) = 1 + 2

n=1

qn2 = n=1

(1−q2n)(1 +q2n−1)2, ϑ4(0, q) = 1 + 2

n=1

(1)nqn2 = n=1

(1−q2n)(1−q2n−1)2,

(4)

q = eπiz, z C, |q| < 1. Throughout of this paper, we denote ϑ2(0, q), ϑ3(0, q) and ϑ4(0, q) by ϑ2(q),ϑ3(q) and ϑ4(q), respectively.

Relations between theta functions and η-function are given by (see [16], [19], [23]):

(2) ϑ2(z) = 2η2(2z)

η(z) , ϑ3(z) = η5(z)

η2(2z)η2(z2), ϑ4(z) = η2(z2) η(z) .

Letτ H,e(x) = e2πix. Jacobi’s theta function is defined by ([17], [18]) θ(x, τ) =

m∈Z

e

(m+12)2

2 τ+ (m+ 1

2)(x+1 2)

.

Observe that θ(x+ 1, τ) = −θ(x, τ), θ(x+τ, τ) = −e(−τ2 −x)θ(x, τ).

In [17] and [18], Machide defined the following generating function of the elliptic Bernoulli functions (Kronecker’s double series), Bm(y, x;τ):

F(y, x;a, τ) = e(ax)f(−y+xτ, a;τ)

= m=0

Bm(y, x;τ)(2πi)m m! am−1, where

f(x, a;τ) =

∂θ(x,τ)

∂x θ(x+a, τ) θ(x, τ)θ(a, τ) , x, a C\Z+τZ.

We note that Bm(y+ 1, x;τ) = Bm(y, x+ 1;τ) = Bm(y, x;τ) cf. ([17], [18], [21]).

Proposition 1. ([18]) Let x and y be real numbers and y /∈ Z. Then we have

τlimiBm(y, x;τ) =

⎧⎨

1+e(y)

2(1−e(y)) = icot(2), m= 1 and x∈Z Bm(x), otherwise

,

(5)

especially

Re

τlimiBm(y, x;τ)

=Bm(x). Here Rew means the real part of a complex number w.

In [18], Machide defined the elliptic Dedekind-Rademacher sums as fol- lows:

Let a, a, b, b, c, c be positive integers and x, x, y, y, z, z be real numbers. Suppose that

az −cx ∈/< a, c >Z and bz −cy ∈/< b, c >Z, where < a, b > is the greatest common divisor ofa and b.

Set (−→a ,−→

b ,−→c) = ((a,a),(b, b),(c, c)), (−→x ,−→y ,−→z) = ((x, x),(y,y),(z,z)).

The elliptic Dedekind-Rademacher sums are defined by [18]

Sm,nτ (−→a ,−→

b ,−→c;−→x ,−→y ,−→z ) = jmodc lmodc

Bm

al+z

c −x,aj+z c −x;a

(3)

×Bn

bl+z

c −y,bj+z c −y;b

. Observe that if m= 1, n = 1, or ifaz −cx /∈< a, c >Z and bz−cy /∈< b, c >Z, then

τlimiSm,nτ (−→a ,−→

b ,−→c;−→x ,−→y ,−→z ) =Sm,n(a, b, c;x, y, z).

Hardy-Berndt sums derived from the transformation formulae for logϑn(z) (n = 2, 3, 4), which are similar to Dedekind sum. Forh, k Zwith k > 0,

(6)

Hardy-Berndt sums are defined as follows ([7], [23], [26], [36]):

S(h, k) =

k−1

j=1

(1)j+1+[hjk], s1(h, k) = k j=1

(1)[hjk]((j k)), (4)

s2(h, k) = k

j=1

(1)j((j k))((hj

k )), s3(h, k) = k

j=1

(1)j((hj k )), s4(h, k) =

k−1

j=1

(1)[hjk], s5(h, k) = k j=1

(1)j+[hjk]((j k)).

The relations between Hardy sums and Dedekind sums are given as follows:

Theorem 2. ([36]) Let (h, k) = 1. Then if h+k is odd, S(h, k) = 8s(h,2k) + 8s(2h, k)20s(h, k), if h is even,

s1(h, k) = 2s(h, k)4s(h,2k), if k is even,

s2(h, k) =−s(h, k) + 2s(2h, k), if k is odd,

s3(h, k) = 2s(h, k)4s(2h, k), if h is odd,

s4(h, k) = 4s(h, k) + 8s(h,2k), if h+k is even,

s5(h, k) =10s(h, k) + 4s(2h, k) + 4s(h,2k)

and each one of S(h, k) (h+k even), s1(h, k) (h odd), s2(h, k) (k odd), s3(h, k) (k even), s4(h, k) (h even) and s5(h, k) (h+k odd) is zero.

(7)

Recently, relations between Hardy-Berndt sums and theta function were studied cf. ([6], [7], [29], [23], [24], [26], [36]).

The manin motivations of this paper are given as follows:

In Section 2, we give some identities related to the Weierstrass ℘(z)- function, Hardy-Bernd sums, theta functions and generalized Dedekind eta function. We give relations between the Weierstrass ℘(z)-function, Hardy- Bernd sums, theta functions and generalized Dedekind eta function.

In Section 3, we define generalized Hardy-Bernd sums. By using these generalizations, we construct elliptic analogue of the generalized Hardy- Berndt sums related to elliptic Bernoulli polynomials.

2 Generalized Dedekind Eta function

In this section, we give relations between the Weierstrass℘-function, Dedekind sums, Hardy-Berndt sums and generalized Dedekind eta functions. In [37], Tzeng and Miao defined the following relations related to the generalized Dedekind eta function:

η2(2τ) = 1

2η01(τ,2)η2(τ), η2

τ + 1 2

=η10(τ,2)η2(τ), η2

τ+ 1 2

=eπi12η11(τ,2)η2(τ), η(3τ) = 1

3η10(τ,3)η(τ), η

τ 3

=η10(τ,3)η(τ),

(8)

η

τ+ 1 3

=eπi36η11(τ,3)η(τ), η

τ+ 2 3

=eπi18η11(τ,3)η(τ). By the above equations and (2), we have

(5) ϑ3(z) = η2(z)

η10(z)η(z+ 1), cf.[20], and

logϑ3(z) = logη(z)logη10(z) πi

12, cf.[20].

By using (5), we obtain

(6) logη10(Az) = logη(Az)−logϑ3(Az) πi 12, where A∈Γ(1).

The Weierstrass ℘-function is defined as follows:

Let Λτ =Z+τZ, τ H be a lattice and z C

℘(z; Λτ) = 1

z2 +

0=w∈Λτ

1

(z−w)2 1 w2

cf. ([39], [22], [38]).

Relation between the function and ϑ3 is given by

(7) y(z) =℘(1

2)−℘(z

2) = π2ϑ43(z) cf. ([15], [24]).

By using (6) and (7), we have the following theorem:

Theorem 3.

(8) logη10(Az) = logη(Az)− logy(Az)−2 logπ

4 πi

12

(9)

By using(8), we obtain logη10(Az

2) = logη(Az

2)logy(Az2)2 logπ

4 πi

12 Substitutingz = τcd into Theorem 1, we have

(9) logη(z

2) = logη(a− 1τ

2c ) πi(a+d−6c)

24c +πis(d,2c) 1

2log(τ), and

(10) logη(2z) = logη(2a 21τ

c )−πi(2a+ 2d3c)

12c +πis(2d, c)−1

2log(τ).

By substituting (9) and (10) into (2), if c+d is odd, then we obtain (11) logϑ3(Aτ) = logϑ3(τ) + πi

4(S(d, c)4) 1 2logτ, where S(d, c) denotes Hardy-Berndt sum.

By using (7), (8) and (11), we arrive at the following theorem:

Theorem 4. If a+d is odd, then we have

logη10(Aτ) = logη10(τ)−πiS(d, c) + 4s(d, c)−3

4 + logτ.

If a+d is even, then we have

logη10(Aτ) = logη10(τ)−πis5(d, c) + 2s(d, c)

2 3πi

4 + logτ.

3 Elliptic analogue of generalized Hardy-Berndt sums

Recently, elliptic Bernoulli polynomials, elliptic analogue of the generalized Dedekind-Rademacher, Dedekind-Apostol and Hardy-Berndt sums have stud- ied by many mathematicians (for detail see [10], [6], [7], [9], [13], [17], [18], [21], [22], [25], [26], [12], [5])

(10)

In this section, we introduce generalized Hardy-Berndt sums and elliptic analogue of the generalized Hardy-Berndt sums related to elliptic Bernoulli polynomials.

Hardy-Berndt sums in (4), are redefined as follows:

Leth and k be integers withk > 0,the Hardy-Berndt sums are defined as follows

S(h, k) = 4

k−1

j=1

(((h+k)j 2k )), (12)

s1(h, k) = k

j=1

((j k))

2((hj

k ))4((hj 2k))

,

s2(h, k) =4

k−1

j=1

((hj 2k)), s5(h, k) =

k j=1

((j k))

2((hj

k ))4(((h+k)j 2k ))

,

for detail see cf. ([8], [32], [27], [24]). By using (12) and Bernoulli functions, we arrive at the fallowing definition ([8], [27]):

Definition 2. Let h and k be integers with k > 0, the Hardy sums are defined as follows:

S(h, k :m) = 4

k−1

j=1

Bm((h+k)j 2k ), s1(h, k :m) =

k−1

j=1

B1(j

k)(2Bm(hj

k )4Bm(hj 2k))

= 2s(h, k:m)−4

k−1

j=1

B1(j

k)Bm(hj 2k),

(11)

s2(h, k :m) =

k−1

j=1

(1)jB1(j

k)Bm(hj k ), s3(h, k :m) = 4

k−1

j=1

(1)jBm(hj k ),

s4(h, k:m) = 4

k−1

j=1

Bm(hj k ), s5(h, k:m) =

k−1

j=1

B1(j k)

2Bm(hj

k )4Bm(jh+k 2k )

= 2s(h, k:m)−4

k−1

j=1

B1(j

k)Bm((h+k)j 2k ), where s(h, k :m) is generalized Dedekind sums, which is defined by

s(h, k :m) =

jmodk

j

kBm(hj

k ) cf. ([1], [3], [2], [4], [32], [30], [25]).

By using Definition 2 and (1), we define (13) S2,m,n(a, b, c:x, y, z) =

kmodc

(1)kBm(ak+z

c −x)Bn(bk+z c −y).

By using (3) and (13), we arrive at the following Theorem:

Theorem 5. Let a, a, b, b, c, c be positive integers and x, x, y, y, z, z be real numbers. Suppose that

az −cx ∈/< a, c >Z and bz −cy ∈/< b, c >Z,

(12)

where < a, b > is the greatest common divisor of a and b.

S2τ,m,n(−→a ,−→

b ,−→c;−→x ,−→y ,−→z) = jmodc lmodc

(1)j+lBm

al+z

c −x,aj+z

c −x;a

×Bn

bl+z

c −y,bj+z c −y;b

. Remark 1. If m= 1, n= 1, or if az−cx /∈< a, c >Z and bz−cy /∈< b, c > Z, then

τlimiS2τ,m,n(−→a ,−→

b ,−→c;−→x ,−→y ,−→z ) =S2,m,n(a, b, c;x, y, z), Let a, b and c be positive integers, and x, y and z be real numbers.

S2,m,n(a, b, c:x, y, z) =

kmodc

(1)kBm(ak+z

c −x)Bn(bk+z c −y).

If m = a = 1 and x = y = z = 0, then S2,m,n(a, b, c : x, y, z) reduces to s2(b, c:m).

By using Definition 2 and (1), we define S5,m,n(a, b, c : x, y, z) = 2

kmodc

Bm(ak+z

c −x)Bn(bk+z c −y)

4

kmodc

Bm(ak+z

c −x)Bn((b+c)k+z 2c −y), or

(14) S5,m,n(a, b, c:x, y, z) = 2Sm,n(a, b, c:x, y, z)−4Y5,m,n(a, b, c:x, y, z), where Sm,n(a, b, c : x, y, z) denotes an analogue of generalized Dedekind- Rademacher sums and

Y5,m,n(a, b, c:x, y, z) =

kmodc

Bm(ak+z

c −x)Bn((b+c)k+z 2c −y).

(13)

By using (3) and (14), we arrive at the following Theorem:

Theorem 6. Let a, a, b, b, c, c be positive integers and x, x, y, y, z, z be real numbers. Suppose that

az −cx ∈/< a, c >Z and bz −cy ∈/< b, c >Z, where < a, b > is the greatest common divisor of a and b.

S5τ,m,n(−→a ,−→

b ,−→c;−→x ,−→y ,−→z ) = 2 jmodc lmodc

Bm

al+z

c −x,aj+z

c −x;a

×Bn

bl+vz

c −y,bj+z c −y;b

4 jmodc lmodc

Bm

al+z

c −x,aj+z

c −x;a

×Bn

bl+z

c −y,(b+c)j+z 2c −y;b

. Remark 2. If m= 1, n = 1, or if az−cx /∈< a, c >Z and

bz−cy /∈< b, c >Z, then

τlimiS5τ,m,n(−→a ,−→

b ,−→c;−→x ,−→y ,−→z ) =S5,m,n(a, b, c;x, y, z).

Let a, b and c be positive integers, and x, y and z be real numbers. If m = a = 1 and x = y = z = 0, then S5,m,n(a, b, c : x, y, z) reduces to s5(b, c : n). Observe that elliptic analogue of the s1(h, k : n) is similar to that of s5(b, c:n).

(14)

Now, we define generalized Hardy-Berndt sum’s sj(h, k : n), j = 1,3,4 and S(h, k :n) as follows:

(15) S4,0,n(0, b, c; 0, y, z) =4

kmodc

Bn(bk+z 2c −y),

(16) S1,m,n(a, b, c:x, y, z) = 2Sm,n(a, b, c:x, y, z)−4Y1,m,n(a, b, c:x, y, z), where Sm,n(a, b, c : x, y, z) denotes an analogue of generalized Dedekind- Rademacher sums and

Y1,m,n(a, b, c:x, y, z) =

kmodc

Bm(ak+z

c −x)Bn(bk+z 2c −y), and

S3,0,n(0, b, c; 0, y, z) = 4

kmodc

(1)kBn(bk+z c −y), (17)

SH,0,n(0, b, c; 0, y, z) = 4

kmodc

Bn((b+c)k+z 2c −y).

Note that substituting x = y =z = 0 in the above, then Sk,m,n(a, b, c : x, y, z), k = 1,3,4 and SH,0,n(0, b, c; 0, y, z) reduce to sj(h, k :n), j = 1,3,4 and S(h, k :n), respectively.

By using (3) and (15), we construct elliptic analogue of sj(h, k : n), j = 1,3,4 andS(h, k :n) sums by the following theorem:

Theorem 7. Let a, a, b, b, c, c be positive integers and x, x, y, y, z, z be real numbers. Suppose that

az−cx ∈/< a, c >Z and bz −cy ∈/< b, c >Z,

(15)

where < a, b > is the greatest common divisor of a and b.

SH,τ0,n(−→ 0,−→

b ,−→c;−→

0,−→y ,−→z ) = jmodc lmodc

Bn

bl+z

c −y,(b+c)j+z 2c −y;b

,

S1τ,m,n(−→a ,−→

b ,−→c;−→x ,−→y ,−→z) = 2 jmodc lmodc

Bm

al+z

c −x,aj+z c −x;a

×Bn

bl+z

c −y, bj +z

c −y;b

2 jmodc lmodc

Bm

al+z

c −x, aj+z c −x;a

×Bn

bl+z

c −y,bj +z 2c −y;b

,

S3τ,0,n(−→ 0,−→

b ,−→c;−→

0,−→y ,−→z) = jmodc lmodc

(1)j+lBn

bl+z

c −y, bj+z c −y;b

,

S4τ,0,n(−→ 0,−→

b ,−→c;−→

0,−→y ,−→z ) = jmodc lmodc

Bn

bl+z

c −y, bj+z

2c −y;b

.

Remark 3. If m= 1, n = 1, or if az−cx /∈< a, c >Z and

(16)

bz−cy /∈< b, c > Z, then

τlimiSk,τ0,n(−→ 0,−→

b ,−→c;−→

0,−→y ,−→z) = Sk,0,n(0, b, c; 0, y, z), k= 3,4,

τlimiSH,τ 0,n(−→ 0,−→

b ,−→c;−→

0,−→y ,−→z) = SH,0,n(0, b, c; 0, y, z),

τlimiS1τ,m,n(−→a ,−→

b ,−→c;−→x ,−→y ,−→z) = S1,m,n(a, b, c;x, y, z).

Acknowledgement 1 This paper was supported by the Scientific Research Project Administration of Akdeniz University.

References

[1] T. M. Apostol, Modular Functions and Dirichlet series in Number The- ory, Springer-Verlag, 1990.

[2] T. M. Apostol, Generalized Dedekind sums an transformation formulae of certain Lambert series, Duke Math. J., 17 (1950), 147-157.

[3] T. M. Apostol, Theorems on generalized Dedekind sums, Pacific J.

Math., 2 (1952), 1-9.

[4] T. M. Apostol and T. H. Vu,Elementary proofs of Berndt’s reciprocity laws, Pasific J. Math., 98 (1982), 17-23.

[5] A. Bayad, Sommes elliptiques multiples d’Apostol-Dedekind-Zagier (Multiple elliptic Apostol-Dedekind-Zagier sums), C. R. Math. Acad.

Sci. Paris 339(7) (2004), 457–462.

(17)

[6] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978) 332-365.

[7] B. C. Berndt, L. A. Goldberg, Analytic properties of arithmetic sums arasing in the theory of the classical theta-functions, SIAM J. Math.

Anal. 15 (1984) 208-220.

[8] M. Can, M. Cenkci, and V. Kurt, Generalized Hardy-Berndt sums, Proc. Jangjeon Math. Soc. 9(1) (2006), 19-38.

[9] S. Fukuhara and N. Yui, Elliptic Apostol sums and their reciprocity laws, Trans. Amer. Math. Soc. 356(10) (2004), 4237-4254.

[10] U. Dieter, Cotangent sums a further generalization of Dedekind sums, J. Number Theory, 18 (1984), 289-305.

[11] L. A. Goldberg, Transformation of theta-functions and analogues of Dedekind sums, Thesis, University of Illinois Urbana, 1981.

[12] U. Halbritter, Some new reciprocity formulas for generalized Dedekind sums, Results Math. 8 (1985), 21-46.

[13] R. R. Hall, J. C. Wilson and D. Zagier,Reciprocity formulae for general Dedekind-Rademacher sums, Acta Arith. 73 (1995), 389-396.

[14] G. H. Hardy,On certain series of discontinous functions connected with the Modular Functions, Quart. J. Math., 36 (1905), 93-123 = Collected Papers, Vol.IV, 362-392. Clarendon Press, Oxford 1969.

(18)

[15] D. Kim, and J. K. Koo, A remark of Eisenstein series and theta series, Bull. Korean Math. Soc. 39(2) (2002), 299-307.

[16] N. Koblitz, Introduction to elliptic curves and modular forms,Springer- Verlag, New York, 1993.

[17] T. Machide, Elliptic Bernoulli Functions And Their Identities, 2005, http://eprints.math.sci.hokudai.ac.jp/view/subjects/11-xx.html.

[18] T. Machide, An Elliptic Analogue of the General- ized Dedekind-Rademacher Sums, J. Number Theory, In Press, Corrected Proof, Available online 5 June 2007, http://eprints.math.sci.hokudai.ac.jp/view/subjects/11-xx.html.

[19] L. C. Miao,A study of Hecke operators, Soochow J. Math. 22(4) (1996), 573-581.

[20] M. Acikgoz, Y. Simsek and D. Kim, Generalized Dedekind eta func- tion related to theta functions, Dedekind sums, Hardy-Berndt sums and Hecke operators, Preprint.

[21] Y. Onishi, Theory of generalized Bernoulli-Hurwitz numbers for alge- braic functions of cyclotomic type and universal Bernoulli numbers, http://web.cc.iwate-u.ac.jp/˜onishi/index.html.

[22] B. Schoeneberg, Zur Theorie der Verallgemeinerten Dedekindschen Modulfunktionen, Nachr. Akad. Wiss. G¨ottingen Math.-Phys.K., II , MR.42# 7595 (1969) 119-128.

(19)

[23] Y. Simsek, Relations between theta-functions Hardy sums Eisenstein series and Lambert series in the transformation formula of logηg,h(z), J. Number Theory 99 (2003), 338-360.

[24] Y. Simsek,On Weierstrass (z)-function Hardy sums and Eisenstein series, Proc. Jangjeon Math. Soc. 7(2) (2004), 99-108.

[25] Y. Simsek, Generalized Dedekind sums associated with the Abel sum and the Eisenstein and Lambert series, Adv. Stud. Contemp. Math.

9(2) (2004), 125-137.

[26] Y. Simsek, On generalized Hardy Sums S5(h, k), Ukrainian Math. J.

56(10) (2004), 1434-1440.

[27] Y. Simsek, Hardy character sums related to Eisenstein series and theta functions, Adv. Stud. Contemp. Math. 12(1) (2006), 39-53.

[28] Y. Simsek, Remarks on reciprocity laws of the Dedekind and Hardy sums, Adv. Stud. Contemp. Math. 12(2) (2006), 237-246.

[29] Y. Simsek, and M. Acikgoz, Remarks on Dedekind eta function theta functions and Eisenstein series under the Hecke operators, Adv. Stud.

Contemp. Math. 10(1) (2005), 15-24.

[30] Y. Simsek, S. Yang, Transformation of four Titchmarsh-type infinite integrals and generalized Dedekind sums associated with Lambert series, Adv. Stud. Contemp. Math. 9(2) (2004), 195–202.

[31] Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, J. Math. Anal. and Appl. 318 (2006), 333-351.

(20)

[32] Y. Simsek, p-adic q-higher-order Hardy-type sums, J. Korean Math.

Soc., 43(1) (2006), 111-131.

[33] Y. Simsek, D. Kim and J. K. Koo, On Relations Between Eisenstein Series, Dedekind Eta Function Theta Functions and Elliptic Analogue of The Hardy Sums, sunbmitted.

[34] H. M. Srivastava, T. Kim and Y. Simsek,q-Bernoulli numbers and poly- nomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math Phys., 12(2) (2005), 241-268.

[35] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Re- lated Functions, Kluwer Acedemic Publishers, Dordrecht, Boston and London, 2001.

[36] R. Sitaramachandrarao, Dedekind and Hardy Sums, Acta Arith.

XLVIII (1978), 325-340.

[37] C. H. Tzeng and L. C. Miao, On generalized Dedekind functions, Chi- nese J. Math. 7(1) (1979), 15-21.

[38] M. Waldschmidt, P. Moussa, J. M. Luck, C. Itzykson, From Number Theory to Physics, Springer-Verlag, 1995.

[39] E. T. Wittaker and G. N. Watson, A Course of Modern Analysis, 4th.

Edition, Cambridge University Press, Cambridge, 1962.

(21)

Department of Mathematics Faculty of Science

University of Akdeniz 07058 Antalya, Turkey

Email addresses: yilmazsimsek@hotmail.com

参照

関連したドキュメント

In recent years, several methods have been developed to obtain traveling wave solutions for many NLEEs, such as the theta function method 1, the Jacobi elliptic function

In the following, we use the improved Jacobi elliptic function method to seek exact traveling wave solutions of class of nonlinear Schr ¨odinger-type equations which are of interest

In this paper, by using the generalized G /G-expansion method, we have successfully obtained some exact solutions of Jacobi elliptic function form of the Zakharov equations.. When

If all elements of S lie in the same residue class modulo P then Lemma 3.3(c) can be applied to find a P -ordering equivalent set with representa- tives in at least two

to use a version of Poisson summation with fewer hypotheses (for example, see Theorem D.4.1 in [1])... It seems surprisingly difficult to prove directly from the definition of a

Guo, “A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw’s double inequality,” Journal of Computational and Applied Mathematics,

Using generating functions appearing in these integral representations, we give new Vacca and Ramanujan-type series for values of the generalized Euler constant function

Lang, The generalized Hardy operators with kernel and variable integral limits in Banach function spaces, J.. Sinnamon, Mapping properties of integral averaging operators,