• 検索結果がありません。

Sufficient conditions for the existence of regular factors in star-free graphs

N/A
N/A
Protected

Academic year: 2021

シェア "Sufficient conditions for the existence of regular factors in star-free graphs"

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)にし. だ. しゅう. と. 田 修 斗(北海道). 氏名(本籍). 西. 学 位 の 種 類. 博士(理学). 学 位 記 番 号. 甲第 1236 号. 学位授与の日付. 2021 年3月 18 日. 学位授与の要件. 学位規則第4条第1項該当. 学位論文題目. Sufficient conditions for the existence of regular factors in star-free graphs (スターフリーグラフにおける正則因子が存 在するための十分条件). 論 文 審 査 委 員 (主査)教授 小谷 佳子. 教授 佐藤 洋祐. 教授 関川 浩. 教授 柳田 昌宏 嘱託教授 秋山 仁. 論文内容の要旨. ( 1 ).

(2) ( 2 ).

(3) ( 3 ).

(4) ( 4 ).

(5) 論文審査の結果の要旨. ( 5 ).

(6) ( 6 ).

(7) ( 7 ).

(8)

参照

関連したドキュメント

We argue inductively for a tree node that the graph constructed by processing each of the child nodes of that node contains two root vertices and that these roots are available for

In this work, we present an asymptotic analysis of a coupled sys- tem of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the

In this article, we prove the almost global existence of solutions for quasilinear wave equations in the complement of star-shaped domains in three dimensions, with a Neumann

Our objective in this paper is to extend the more precise result of Saias [26] for Ψ(x, y) to an algebraic number field in order to compare the formulae obtained, and we apply

There are many exciting results concerned with the exis- tence of positive solutions of boundary-value problems of second or higher order differential equations with or

We present sufficient conditions for the existence of solutions to Neu- mann and periodic boundary-value problems for some class of quasilinear ordinary differential equations.. We

Key words and phrases: higher order difference equation, periodic solution, global attractivity, Riccati difference equation, population model.. Received October 6, 2017,

Straube; Sobolev estimates for the ∂-Neumann operator on domains in C n admitting a defining function that is plurisubharmonic on the boundary, Math.. Charpentier; Boundary values