• 検索結果がありません。

On positivity and universality of templates induced from diffeomorphisms of the disk (On Heegaard Splittings and Dehn surgeries of 3-manifolds, and topics related to them)

N/A
N/A
Protected

Academic year: 2021

シェア "On positivity and universality of templates induced from diffeomorphisms of the disk (On Heegaard Splittings and Dehn surgeries of 3-manifolds, and topics related to them)"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

On positivity

and

universality

of templates

induced from diffeomorphisms of

the

disk

Mikami

Hirasawa・Gakushuin

Univ.

(

平澤 美可三 ・ 学習院大学

)

$)$

Eiko Kin

1 ・

Kyoto

Univ.

(

金 英子 ・

京都大学

)‘

1. INTRODUCTION

In thisnote, weconsider Inks induced ffom periodic orbits of orientation preserving

automorphisms $\varphi$of

$D^{2}$

.

We ffist present

some

basicterminologies. Wedenote the i-th

iteration of$\varphi$ by

$\varphi^{:}$

.

We say that $x\in D^{2}$ is aperiod $k\in \mathrm{N}$ periodic pointif$\varphi^{k}(x)=x$

and $\varphi^{:}(x)\neq x$for $1\leq i<k$

.

Inparticular, wesay that $x$is a

fixed

pointif$x$is aperiod 1periodic point. For $x\in D^{2}$, $\{\varphi^{:}(x)|i\in \mathrm{N}\}$ is called the orbit

of

$x$ and denoted by

$O_{\varphi}(x)$

.

If$x$ is aperiodic point, then $O_{\varphi}(x)$ is called the periodic orbit

of

$x$

.

Let $\Phi$ $=\{\varphi_{t}\}_{0\leq t\leq 1}$ be

an

isotopy of$D^{2}$ such that $\varphi_{0}=id_{D^{2}}$, $\varphi_{1}=\varphi$

.

For afinite

union of periodic orbits $P$ of$\varphi$,

we

define asubset of$\tilde{V}=D^{2}\mathrm{x}S^{1}(\cong D^{2}\mathrm{x} I/(x, 0)\sim$

$(x, 1))$, denoted by $S_{\Phi}P$,

as

follows.

$S_{\Phi}P= \bigcup_{0\leq t\leq 1}(\varphi_{t}(P)\mathrm{x}\{t\})/(x,0)\sim(x, 1)$

.

$S_{\Phi}P$is called a suspension

of

$P$ by $\Phi$

.

Let $V$ be astandardly embeddedsolid torus in

the $3\underline{- \mathrm{s}}\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}S^{3}$

.

Then$h:Varrow V$ denotes ahomeomorphism such that for alongitude

$\tilde{\ell}$

on

$V$, $h(\tilde{\ell})$ is aknot with the lnking number of$h(\tilde{\ell})$ and the

core

circle of$V$ being 1

(see Figure 1). For each $i\in \mathrm{Z}$, $h^{:}(S_{\Phi}P)$ is alink in $S^{3}$, where the orientation of $S_{\Phi}P$

is induced from parametrization by $t$

.

$\tilde{V}$

$V$

Figure 1

Partiallysupported by JSPS ResearchFellowshipsfor YoungScientist$\mathrm{s}$

数理解析研究所講究録 1229 巻 2001 年 146-150

(2)

On positivityand universalityoftmplatae inducedffomdiffeomorphismsof the disk

Definition 1.1. Let $\varphi$ :

$D^{2}arrow D^{2}$ be

an

orientation preserving automorphism, and

$\Phi$ $=\{\varphi_{t}\}_{0\leq t\leq 1}$

an

isotopy of $D^{2}$ such that $\varphi_{0}=id_{D^{2}}$, $\varphi_{1}=\varphi$

.

We say that $\varphi$ induces

all link types if there exists

an

integer $i\in \mathrm{Z}$ satisfyingthe followingconditions.

$(*)$ For each link $L$ in $S^{3}$, there exists afinite union of periodic orbits $P_{L}$ of

$\varphi$ such that $L=h^{:}(S_{\Phi}P_{L})$

.

We note that the definitiondoes not depend

on

$\Phi$

.

Moreover the number of integers

$i$ suchthat $h^{i}$satisfies

$(*)$ does not depend

on

$\Phi$ (see [8]). Hencewedenote the number

by $\overline{N}(\varphi)$, that is,

$\overline{N}(\varphi)=\#$

{

$i\in \mathrm{Z}|i$ satisfies $(*)$ for $\Phi$

}.

The topological entropy $h_{t\varphi}(\varphi)$ for $\varphi$ is

ameasure

ofits dynamicalcomplexity (see

[14] for adefinition of the entropy). Aresult of GambaudO-van

Strien-Tresser

([3, Theorem $\mathrm{A}$

]) tells us that if $h_{t\varphi}(\varphi)=0$, then $\varphi$ does not induce all link types, i.e.,

$\overline{N}(\varphi)=0$

.

Itis natural to ask the following problem:

Problem 1.2. Which automorphism induces all link types ?

In [11], the second author researched the Smale horseshoe map [13] on Problem 1.2.

The Smale horseshoe map is afundamental example to study complicated dynamics

since the invariant set is hyperbolic and is conjugate to the 2-shift, and such invariant

sets are often observed in many dynamical systems [9] (see [12] for basicdefinitions of

dynamical systems).

Theorem 1.3. [11] Let $H$ be the Smale horseshoe map. Then $\overline{N}(H)=\overline{N}(H^{2})=0$

and$\overline{N}(H^{3})=1$.

Since $h_{top}(H)$ and $h_{\hslash\varphi}(H^{2})$

are

positive, Theorem 1.3 shows the existence of

diffe0-morphisms not inducing all link types.

We will consider Problem 1.2 forgeneralizedhorseshoe maps$G$ using twist signature

$t(G)$ (see Definitions 2.1, 2.2). In Theorem 3.1, we completely determine the number

$\overline{N}(G)$ by $t(G)$

.

2. GENERALIZED HORSESHOE MAP AND TWIST SIGNATURE

For definitions ofgeneralzed horseshoe map and twist signature,

we

first introduce

some

terminologies. Let $R=[- \frac{1}{2}, \frac{1}{2}]\mathrm{x}[-\frac{1}{2}, \frac{1}{2}]\subset D^{2}$, and let 50, $S_{1}$ be half disks

as

in Figure $2(\mathrm{a})$

.

For $c,d$ $\in[-\frac{1}{2}, \frac{1}{2}]$, we $\mathrm{c}\mathrm{a}\mathrm{U}$ $\ell_{v}=\{c\}\mathrm{x}[-\frac{1}{2}, \frac{1}{2}]$ (resp.

$\ell_{h}=[-\frac{1}{2},$ $\frac{1}{2}]\mathrm{x}\{c’\}$) $a$

vertical (resp. a horizontal) line. For $[c, d]$, $[d, d’] \subset[-\frac{1}{2}, \frac{1}{2}]$,

we

call $B=[c,d] \mathrm{x}[-\frac{1}{2}, \frac{1}{2}]$

(resp. $B’=[- \frac{1}{2}\}\frac{1}{2}]\mathrm{x}[c’,$$d’]$) a vertical (resp. a horizontal) rectangle.

Let $B_{1}$, $B_{2}$ (resp. $B_{1}’$, $B_{2}’$) be disjoint vertical (resp. disjoint horizontal) rectangles.

The notation $B_{1}<_{1}B_{2}$ (resp. $B_{1}’<_{2}B_{2}’$)

means

the first (resp. second) coordinate of

apoint in $B_{2}$ (resp. $B_{2}’$) is greater than that of $B_{1}$ (resp. $B_{1}’$). We denote the open

rectangle which lies between $B_{1}$ and $B_{2}$ by $(B_{1}, B_{2})$

.

Definition 2.1. Let $n\geq$

.

2 be

an

integer. A generalized horseshoe map $G$

of

length$n$

is

an

orientation preservingdiffeomorphism of$D^{2}$ satisfying the following: There exist

vertical rectangles $B_{1}<_{1}B_{2}<_{1}\cdots<_{1}B_{n}$ and horizontal rectangles $B_{1}’<_{2}B_{2}’<_{2}$

$\ldots<_{2}B_{n}’$ such that

(3)

M. Hirasawa&E. Kin

(1) for each $1\leq i\leq n$, $G(B_{\dot{1}})=B_{j}’$ for

some

$1\leq j\leq n$,

(2) for each $1\leq i\leq n-1$, $G((B\dot{.}, B_{i+1}))\subset S_{k}$ for

some

$k\in\{0,1\}$,

(3) $G$expandsthe part of horizontal lines which intersects each$B_{i}$ uniformly,

and contract the vertical lines in each $B_{i}$ uniformly, (4) $G|_{S\mathrm{o}}$ : $S_{0}arrow S_{0}$ is contractive,

(5) if$n$ is even (resp. odd), then $G(S_{1})\subset Int$ $S_{0}$ (resp. $G|s_{1}$ : $S_{1}arrow S_{1}$ is

contractive) and

(6) $G$ has

no

periodic points in $D^{2}\backslash R$

.

Definition 2.2. Let $G$ be ageneralized horseshoe map of length $n$

.

Twist signature

$t(G)$

of

$G$ is the arrayof$n$ integers $(a_{1}, \cdots, a_{n})$ satisfying the following:

(1) $a_{1}=0$

.

(2) For $2\leq i\leq n$, $a:=a_{\dot{|}-1}+1$ if $G(B:-1)<_{2}G(B_{\dot{1}})$ and $G((B:-1, Bi))\subset$

$S_{1}$, or if $G(B_{\dot{l}}-1)>_{2}G(B_{\dot{1}})$ and $G((B_{\dot{|}-1}, B:))\subset S_{0}$

.

Otherwise

$a_{i}=\alpha_{-1}.-1$

.

By the condition of generalzed horseshoe maps $G$,

$\mathrm{A}=\cap G^{m}(B_{1}m\in \mathrm{Z}\cup\cdots\cup B_{n})$ is

hyperbolic which is conjugate to the n-shift.

Notice that the Smale horseshoe map is ageneralized horseshoe map of length 2

with twist signature $(0, 1)$

.

(a)

$\mathrm{t}^{\epsilon})$ (d)

Figure 2

Example 2.3. (1) Let $K_{1}$ be ageneralized horseshoe map of length 3as in Figure

$2(\mathrm{b})$

.

Then $t(K_{1})=(0,1,2)$

.

(2) Let $K_{2}$ be ageneralized horseshoemapof length 4as in Figure$2(\mathrm{c})$

.

Then$t(K_{2})=$

(4)

Onpositivityanduniversalityoftemplat einducedkomdiffeomorphismsof the$\mathrm{d}_{\dot{\mathrm{B}}}\mathrm{k}$

$(0, 1, 0,$$-1)$

.

(3) Let $K_{3}$ be ageneralizedhorseshoe mapof length4as in Figure$2(\mathrm{d})$

.

Then$t(K_{3})=$

$(0, -1, -2, -3)$

.

3. STATEMENT OF RESULTS

Let $G$ be ageneralized horseshoe map with twist signature $(a_{1}, \cdots,a_{n})$

.

We say

that $G$ is positive (resp. negative) if forany $i\in\{1, \cdots,n\}$, $a_{t}\geq 0$ (resp. $a:\leq 0$). We

say that $G$ is mixedif$G$ is neither positive

nor

negative. For example, $K_{1}$,$K_{2},K_{3}$ in

Example 2.3

are

positive, mixed, negative respectively.

The following is Main theorem ofthis note:

Theorem 3.1. For$x\in \mathrm{R}$, let$[]$ be thegreatestintegerwhich does not exceed$x$

.

Let$G$

be ageneralizedhorseshoe map withtwist signa

rure

$(a_{1}, \cdots,a_{n})$

.

Let$M_{+}= \max\{a:|1\leq$

$i \leq n\}andM_{-}=\dot{\mathrm{m}}\mathrm{n}\{a_{i}i\leq n\}.IfGnegative_{f}then\overline{N}(G)=[\frac{-M_{-}-1|1\leq}{2}].IfGism$$\dot{a}ed,ihen^{\frac{ve}{N’}}(G)=[\frac{\overline{N}(G)M+-1}{2}]+]+1ispositithen=[\frac{M_{+}-1}{[\frac{-M_{-}-12]}{2}}.IfG$

.

is

The next corollary is adirect consequence of the above theorem:

Corollary 3.2. Let $G$ be a generalized horseshoe map, and $M_{+}$ and $M_{-}$ be as in

Theorem 3.1. Then $G$ induces all link types, $i.e.$, $\overline{N}(G)\geq 1$

if

and only

if

$G$ is one

of

thefollowing types.

$\bullet$ $G$ is positive and $M_{+}\geq 3$

.

$\bullet$ $G$ is negative and$M_{-}\leq-3$

.

$\bullet$ $G$ is mixed.

Recall that $K_{1}$,$K_{2}$,$K_{3}$

are

generalized horseshoemapsin Example

2.3.

ByTheorem

3.1, $\overline{N}(K_{1})=0$, $\overline{N}(K_{2})--\sim 1$ and $\overline{N}(K_{3})=1$

.

The proof ofTheorem 3.1 is done byusing the template theory ([2], [4], [5]).

REFERENCES

[1] J. Birman, Braids, Links, and Mapping Class Groups, Ann. Math. Studies 82, PrincetonUniv.

Press, Princeton (1974).

[2] J. Birman and R. Williams, Knottedperiodic orbits in dynamical systems-H: Knot holdersfor

fiberedknots, Cont. Math. 20 (1) (1983) 1-60.

[3] J. Gambaudo,S.vanStrienandC.$?$}$\varpi \mathrm{e}\mathrm{r}$, The$per\cdot M^{\cdot}c$orbitsstructure oforientationpreserving

diffeomo\prime phf.sms on $D^{2}$

with $topolo\dot{\varphi}cal$ entropy zero, Ann. Inst. H. Poincar \’e

Phys. Theor. 50

(1989) 335-356.

[4] R. Ghrist, Branched twO-manifolds supportingall links, Topology 36 (2) (1997) 423-448.

[5] R. Ghrist, P. Holmes,andM. Sullivan, Knots and LinksinThreeDimensionalFlows, Lect. Notes

inMath. 1654, Springer-Verlag.

[6] R. Ghrist and T. Young, From Morse-Smale to allknots andlinks, Nonlinearity 11 (1998)

1111-1125.

[7] V. Hansen, Braidsandcoverings: selected topics, London Math. Soc. Stud. Texts 18,Cambridge

University Press (1989).

[8] M. Hirasawaand E. Kin, Onpositivity and universality oftemplates associated with generalized

horseshoe maps ofthe disk, inpreparation.

[9] A. Katok, Lyapunov exponents, entropy and periodic orbitsfor diffeomorphisms, Publ. Math.

IHES 51 (1980) 137-174

(5)

M.Ih.raeawa&E. Kin

[10] E. Kin, A suspension ofan orientation preserving diffeomorphism of$D^{2}$ wih a hyper

point and universal template, J. Knot Thy. andRam. 9(6) (2000) 771-795.

[11] E. Kin, The thirdpowerofthe Smale horseshoe induces all link types, J. Knot Thy. al (7) (2000) 939-953.

[12] C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos (seconc

CRC Press, Ann Arbor, M (1995).

[13] S. Smale,

Differentiable

dynamical sytttevna, Bull, Am. Math. Soc., 73 (1967) 747-817.

[14] P. Walters, Anintroduction to ergodic theory, Springer(1982).

Department of Mathematics, Faculty of Science, Gakushuin University,

1-5-1

Mejiro Toshima-ku, Tokyo 171-8588Japan

$E$-mail address $\mathrm{h}\mathrm{i}\mathrm{r}\mathrm{a}\epsilon \mathrm{a}\mathrm{w}\mathrm{a}\mathrm{b}\mathrm{a}\mathrm{t}\mathrm{h}$.gakushuin.ac.jp

Department ofMathematics, Kyoto University,

Oiwakecho Kitashirakawa SakyO-ku KyotO-shi, Kyoto $\infty$-8502Japan

$E$-mail address kinOkusm.$\mathrm{k}\mathrm{y}\mathrm{o}\mathrm{t}\mathrm{o}-\mathrm{u}.\mathrm{a}\mathrm{c}$.jp

参照

関連したドキュメント

Keywords: Convex order ; Fréchet distribution ; Median ; Mittag-Leffler distribution ; Mittag- Leffler function ; Stable distribution ; Stochastic order.. AMS MSC 2010: Primary 60E05

These constructions are also used to obtain extension results for maps with subexponentially integrable dilatation as well as BM O-quasiconformal maps of the

Inside this class, we identify a new subclass of Liouvillian integrable systems, under suitable conditions such Liouvillian integrable systems can have at most one limit cycle, and

The fact that the intensity of the stochastic perturbation is zero if and only if the solution is at the steady-state solution of 3.1 means that this stochastic perturbation

&amp;BSCT. Let C, S and K be the classes of convex, starlike and close-to-convex functions respectively. Its basic properties, its relationship with other subclasses of S,

Classical definitions of locally complete intersection (l.c.i.) homomor- phisms of commutative rings are limited to maps that are essentially of finite type, or flat.. The

Yin, “Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,” Journal of Differential Equations, vol.. Yin, “Global weak

[Mag3] , Painlev´ e-type differential equations for the recurrence coefficients of semi- classical orthogonal polynomials, J. Zaslavsky , Asymptotic expansions of ratios of