• 検索結果がありません。

Offline Traffic Engineering Design and Optimization in Communication Networks with Risk Analysis

N/A
N/A
Protected

Academic year: 2021

シェア "Offline Traffic Engineering Design and Optimization in Communication Networks with Risk Analysis"

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

日本オペレーションズ。リサーチ学会 2005年春季研究発表会

2−『一柑

0軋meⅦra侃cⅡmg五mee『五mgⅡ)es五gmamdOp七五m五za七五①mim

O CommⅧm五ca七五omNe七wo抽sw温仙風五地Åma皿y凱S

中科院数学院

*呉 軍 WUJun

OllO7734 甲南大学

岳 五一 YUEWuyi

中科院数学院

江 寿陽 WANGShouyang

where∧representstochoose thesmalleronebe−

tweentwocomponents,and+representstochoose thepositivepart・

Let rI(b,D)denote the mean profitfunction

withthelincarpcnaltycostasfo1lows:

n(岬=γ上b榊)血川上+∞′(埴

1Int.roduction

In[1】a.nd[2】,thestochastic trafBcengineer− ingproblemshavcbcenstudicd・In[3],WCprC−

Sented an analysisfor theloss rate constraintin

SuChproblemsandshowedtheimpactoftheloss

rateconstraintonthenetworkperformancebynu−

mericalresults.Inthi$paper,WepreSentananaト

ysisforthcmodclprcscntcdin[3]toderivethc

Optimalbandwidthcapacitywithalinearpenalty

COSt.We alsoanalyze theriskofnetwork pro飢 Shortfa11byuslngmean−Varianceapproach・

2 SystemModel

A Communication Network(CN)should de−

riveitsrevenuebyserv1ngtra氏cdemandincluding

VOice,PaCkct data,imagc andfu11−mOtion vidco・

FbrunitbandwidthcapacityallocatedtotheCN,

anunitcostwillbecharged・Fbrunsatisfied11nit

t.ra庁icdemandwiththelimitationofnetworkband−

Width,alinearpenalty cost wi11beaddedinthe Objectivefunction.Theobjectiveofthissystemis

tomaximizetheCNmeanprofit.

Uncertain totaltra侃c demandin t,he CN de−

noted by D > Ois characterized by a random

distributionwiththeprobabilitydensityfunction

f(x)andthecumulativedistributionfunctionF(x).

Let b>Odenote theamount ofbandwidthca−

pacity provisionedin the CN,r denote the unit

revenueoftheCNbyservlngthetrafRcdemand,

Cdenote theunit costfor unitbandwidthcapac−

ity allocatedin the CN,and q denote thelinear

penaltycostfortheunsatis丘edunitdemand.Let P(b≧6D)≧1−∈denotethelossrateconstraint,

andlet Ch。X >O denote the maximalcapacity

t.hat can bca1locatcdin thc CN.Tb avoid unrcal− isticcases,WemakethefollowlngaSSumptions: (1)Systemparametersare:r>q>0,r>c>0. (2)Lossrateconstraintpa,rameteris:0≦6≦1. (3)Confidencelevelis:0≦1−e≦1.

3 0p七imal1Bandwid七hAlloca七五onw五th

Pema丑tyCost Let7r(b,D)denotetherandomprofitfunction byservlngtrafRcdemandinthenetworkwiththe linea.rpenaltycost,namely, 打棒,刀)=γ・(わ∧β)−q岬一切+−Cゐ (1) +00 上 (ェーわ)J(霊)血−Cむ・(2)  ̄q Theobjectivefunctionofthesystemis 口*=ロ(ぁげ)), (3) SubjecttoP(b≧6D)≧1−∈andb≦Cha,:・Ⅰ㌣is theoptimalpro丘tfunction・

Next,We analy21e the property of tlle mean

profitfunctionⅢ(b,D).Thefirstorderderivative OfⅢ(b,D)withrespecttobisgivenasfollows: dⅢ(む,β) =(r+q−C)−(γ+q)ダ(町 (4) dむ ThesecondorderderivativeofrI(b,D)withre− SPCCttObisglVCnaSfo1lows: d2Il(♭,か) =−(γ+ヴ)J(わ)≦0. (5) dわ2 Therefore,WeCanSaythatⅢ(b,D)isaconcave functionofb.So,thcoptimalbandwidthcapacity ︵︵ 一1 ダ ∫ Or

守 ),Whereダ ̄1(・)

without constraints is is theinversefunction Wedefinethelossrateastheprobabilitythat

thetra氏cdemandcannOt beserved by the CN. Thercforc,thclossratcconstraintisequlValcntto

b∈【6F−1(1−e),+∞).Ifweconsiderthemax−

imalcapacity constraint,the optimalbandwidth

CapaCityfortheCNcanbeglVenby

C

γ+q−

∨紺 ̄1(1−∈) ∧q乃α。(6) γ+q

Where v represents to choose thelarger orle be− tweentwocomponents.

Weconsiderafu11ydistributednetwork,Where

the tra且c demandis a5Sumed tofo1low auniform

distributionas aspccialcxampIc.Wcgivcsomc

nllmericalresults to show theimpact ofpenalty

−272−

(2)

ヰ去(q+γ)2れ(2γ2+2q2+血汀−3γC −39C+c2)か(去q2+言qr)わ2+吉和(10)

WiththesamesystemparametersforFig・1,

We glVe SOme numericalresults to show theim− PaCtOfriskaNerSeneSS

thcincrca5C Of risk avcrscncss.Ordinate axis of

Fig・2correspondstothepercentagedi鮎renceof

theobjectivefunctionftomtheobjectivefunction

without risk. OStOnthcbandwidthcapacity(sccFig・1)・Hor−

1ZOntalaxisq/r ofFig.1corresponds to thein− CreaSe Ofpenalty cost.Ordinate axis ofFig.1

COrreSpOndstothepercentagedi鮎renceoftheop−

timalbandwidthcapacityfromtheoptimalband−

width capacity without penalty. For comparing

withthemodelof[1],示echoosesystemparame− tersfortwocasesasfo1lows:(1)r=7.5,C=1.5, and(2)r=7・5,C=0・5,intheinterval[0,1]・ 亜 凡∵仇 乱〓机 正二n仇 盲8£彗とd∞ =:;…£… 皿 孤 皿岬 仙 狐 几 u点︸リ5﹂電せ艮一〇

十l亡75c=1.5 ↓戸尋.5c=α5

nO 81 02 0.3 0.4 0.5 8¢ 0.7+0月 0,9 1.0 如I∼Co雨 Figurel:Impactonbandwidthcapacity. ThenumericalresultsshowninFig.1,includ一 ngtheresultspresentedin[1],reVealadistinct

lmpaCtOfpenaltycost on the CN bandwidthca−

pacity.Withthcsamcpenaltycost,thclargerthe unitcostcis,thegreaterth

Widthcapacityis.

4 RiskAnalysiswithPenalty Cost DuetotheuncertaintrafRcdemand,theprofit

isalsouncertain,Wedefinetheriskasthedeviation

fromtheoptimalprofitinthispaper.

Weanalyzctheriskofprofitshorthllbyuslng themean−Varianceapproach.Theobjectivefunc− tion,Whichisdenotedby◎*,isglVenaSfo1lows: ◎*=叩げ)−αⅤ叫咄β)]) (7) Whereα(0≦α≦1)isariskaverseness . (1),andVar[7T(b,D)]isthcvarianccof7T(b,D). Whenthetrafncdemanddist.ributedint,hewhole networkis assumedtofo1lowtheuniformdistribu_

tion,WeCanObtainthemeanfunctionby

Ⅲ(岬)=一宇紬伸一C)わー芸・(8)

ThevarianCefunctionisobtainedby

叫棉卯=−(q+γ)2れ(2γ2+2q2+c2

埼r−3γC−3qc)か(ヴ2+蝉2+れ9)

Moreover,theobjectivefunction◎■presented inEq・(7)isgivenby 竺

◎*=(ト距(叫−C)む−]

0.0 0.10.2 0.3 0.4 0.5 0.8(‖ 0.も 0.9l.O Ris一触lちeneSSP8ralllOter Figurc2:Impactonobjcctivcfunction. ThenumericalresultsshowninFig・2,includ一 ngtheresultspresentedin[1],reVealadistinct

lmpaCtOfriskonthcCNobjcctivcfunction・With

thesameriskaverseness,thelargertheunitcostc is,thelesstheimpactontheobjectivefunctionis.

5 Conclusion

Inthispaper,WepreSentedastochasticmodel

foroptimizingbandwidtha1locationinCommuni−

Cation Networks(CNs)and derived the optimal

bandwidth capacity with thc penalty cost・We

alsoanaly2:edtheriskaversenessinCNsunderthe

mean−Variance framework.N11mericalresult,S・re−

Vealedtheimpactsofthepenaltycostandtherisk

aversenessonthenetworkperformance・

Acknowledgments

ThisworkwassupportedinpartbyGRANT−

IN−AID FORSCI.RES.(No.16560350) d l ▼▲ a VJ V﹀ b b

MEXT.ORC(2004−2008),Japan andin part

NSFCandMADIS,China. Refbrences 【1]D・MitraandQ.Wang,“StochastictrafRcengineer− 1ng,With applicationstonetworkrevenueman− agement,”Proc.L?fIEEE〃膵OCOM,2003・ 【2]D・MitraandQ・Wang,“Risk−aWarCnCtWOrkprofit managementinatwo−tiermarket,”Proc.qf18th

Jrq2003.

【3]J・Wu,W・YueandS・・Wang,“TrafB(ニengineering Optimi2iationincommunicationnetworkswithloss rateconstraint,”Proc.qfluCE GenerulCon一 木re几Ce,2005. −273− © 日本オペレーションズ・リサーチ学会. 無断複写・複製・転載を禁ず.

参照

関連したドキュメント

Considering the optimal tactical decisions regarding service level, transfer price, and marketing expenditure, manufacturer of the new SC has to decide how to configure his

Karzanov: Minimum 0-extensions of graph metrics, Europ.. Metric relaxation (Karzanov

Papers dis- cussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration,

4 because evolutionary algorithms work with a population of solutions, various optimal solutions can be obtained, or many solutions can be obtained with values close to the

In this paper we have investigated the stochastic stability analysis problem for a class of neural networks with both Markovian jump parameters and continuously distributed delays..

And then we present a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost coefficients by using Werner’s μ and operator.. Our approach

Zaslavski, Generic existence of solutions of minimization problems with an increas- ing cost function, to appear in Nonlinear

In [10, 12], it was established the generic existence of solutions of problem (1.2) for certain classes of increasing lower semicontinuous functions f.. Note that the