• 検索結果がありません。

E = p2 2m i ψ t = 2 2m ψ (4.1) E i t, p i pµ i µ = i( 0, ) (4.2) E 2 = p 2 + m 2 [ µ µ m 2 ]φ = 0 (4.3) - (Klein-Gordon) φ = Ne i(p r Et) Ne i

N/A
N/A
Protected

Academic year: 2021

シェア "E = p2 2m i ψ t = 2 2m ψ (4.1) E i t, p i pµ i µ = i( 0, ) (4.2) E 2 = p 2 + m 2 [ µ µ m 2 ]φ = 0 (4.3) - (Klein-Gordon) φ = Ne i(p r Et) Ne i"

Copied!
16
0
0

読み込み中.... (全文を見る)

全文

(1)

4

章 ディラック方程式

4.1

シュレーディンガー方程式の相対論化

自由粒子のシュレーディンガー方程式は i∂ψ ∂t = ∇2 2mψ (4.1) と言う形をしているが、これは古典的なエネルギー運動量の関係式 E =2mp2 から E → i∂ ∂t, p → −i まとめて  p µ → iµ= i(∂0, ∇) (4.2) の置き換えで得られる。従って相対論的な波動方程式は相対論的なエネルギー運動量関係に上記の置き換えをして E2= p2+ m2 [∂µµ− m2]φ= 0 (4.3) が出発点となろう。これをクライン-ゴードン (Klein-Gordon) 方程式という。この方程式は

φ= Nei(p·r−Et) Ne−ipx px = Et− p · r (4.4)

と言う形の平面波解を持つ。N は規格化定数である。しかし、このφをシュレーディンガー波動方程式の波動関 数と同じように一粒子の確率振幅と解釈したのでは、負エネルギーと負の確率という二つの矛盾を引き起こす。 確率振幅と解釈できるためには、連続の方程式 ∂ρ ∂t +∇· j = 0 あるいは共変形式でµj µ= 0 (4.5) を充たす確率密度ρとその流れ j、まとめて jµ= (ρ, j)が存在しなければならない。 = i 2mµφ φ∂µφ) (4.6) は連続の式を充たすからその候補である。このカレントを時間成分と空間成分とに分けると ρ= i 2m tφφ∂tφ) (4.7a) j = i 2m∇φφ∇φ) (4.7b) 空間成分はシュレーディンガー方程式の確率密度の流れと同じ形をしているので、上式で定義されるρを確率密 度と解釈したくなるが、幾つかの難点がある。 負のエネルギー: E2= p2+ m2を解くと E =±pp2+ m2となり、負のエネルギー解を持つ。負のエネルギー 状態を許すと、一粒子状態はエネルギーを放出していくらでも低い低いエネルギー状態へ移れるから不安定であ る。そのような解は物理的意味がないとして捨てることもできない。数学的に完全系を作るために、また因果律 を充たすためには負エネルギー解が必要である。

(2)

負の確率: クライン-ゴードン方程式は2階の微分方程式であるので、二つの初期条件を設定しないと解は一義 的に決まらない。逆に言うとφと ∂φt は任意に選べて、ρが常に正とは限らない。実際、式 (??) の平面波解に対し を作ってみると、 = p µ m|N| 2= (E m, p m)|N| 2 (4.8) となり、負エネルギー解は負の確率を与えることが判る。以上の理由でクライン-ゴードン方程式はシュレーディ ンガー方程式の相対論的拡張とは見なせないことが判る。

4.1.1

ディラック方程式の導入

歴史的には場の量子化を導入する前に、シュレーディンガー方程式の相対論的拡張と見なせる一体粒子波動関 数に対する相対論的波動方程式がディラックにより導かれた。ディラックは次の要請を置いた。  1)負の確率は場の方程式が2階微分方程式だからである。したがって正しい式は時間に関して一回の微分方 程式でなければならない。ローレンツ共変であるためには空間微分も一回となる。  2)空間微分の階数を減らした分、φは多成分のψr, r = 1, 2··· となるであろう∗注。 *********************************************************** 注: 例えば、2 解の微分方程式 ¨q =ω2q を考えてみよう。ψ= " ψ1 ψ2 # = " q ˙ q # を定義すれば、 ∂ψ ∂t = " ˙ q ¨ q # = " ψ2 ω2ψ 1 # = Aψ, A = " 0 1 ω2 0 # となる。 ***********************************************************  3)相対論的なエネルギー運動量関係式、従ってクライン-ゴードン方程式は充たさなければならない。 ψ=     ψ1 ψ2 .. .     (4.9) として、1)2)の要請を入れると方程式は i∂ψ ∂t = Hψ= (ααα· p +βm)ψ (4.10) という形となる。ααα, βは行列である。p は微分演算子であるがψが平面波の場合は粒子の運動量となる。以下特 に混乱を生じる場合を除いて pµ↔ iµを自由に使い分けるものとする。そうすると式 (4.10) は Eψ= (ααα· p +βm)ψ (4.11) 3)の要請により E2= p2+ m2=¡

αipim¢¡

αjpjm¢ (4.12) 従って α2 i =β2= 1, αiαjjαiiβ+βαi= 0 (4.13) (4.13)を充たす行列をディラック行列と言い最低 4× 4 でなければならない。 証明: (a) αi,βの固有値は±1 である。 ∵ αiψ=λψα2iψ=ψ=λ2ψ ∴ λ=±1 (4.14)

(3)

(b) αi,βは無軌跡 (traceless) である。 ∵ Tr[αi] = Tr[αiβ2] = Tr[βαiβ] =−Tr[αiβ2] =−Tr[αi] (4.15) (a)(b)両条件よりαi,βは偶数次元を持たねばならない。2次元ではディラック行列の条件を充たすものとしてパ ウリの行列があるが、3個でつきており4つの行列を作るには最低 4× 4 が必要である。m = 0 であれば、βが不 要なので 2× 2 行列で良い(後述:ワイル粒子)。  ααα,βを使って j0(x) =ρ=ψ†(x)ψ(x), j(x) =ψ†(x)αααψ(x) (4.16) を定義すると ∂ρ ∂t = ∂ψ† ∂t ψ+ψ †∂ψ ∂t = i ³ (Hψ)ψ ψ†Hψ´ = i[{(−iααα·∇+βm)ψ}†ψψ†(−iααα·∇+βm)ψ] =∇(ψ†αααψ) =· j (4.17) となって連続の方程式を満たすカレントを作ることができた。しかもこのρは常に正定値をとるから確率密度と しての条件は充たす。 ディラック方程式の性質は、(4.13) の関係よりたいてい導けるが、具体的な計算には表示を明示しておく方が判 りやすい。T を逆行列を持つ行列とすれば α= TαT−1, β= TβT−1 (4.18) により変換した行列もまた (4.13) を充たすからいろいろな表示があるが、標準的に使われるのが、 αi= " 0 σi σi 0 # β= " 1 0 0 −1 # (4.19) である。これをディラック・パウリの行列という。この表示は p→ 0 で対角的になるため非相対論的粒子との対 応が付けやすい。* 1) 演習問題 4.1 ハイゼンベルグの運動方程式 dO dt = i[H, O] (4.20) で、O = x と置くと、dxdt =αααとなる。つまりαααは速度に対応する演算子と見なせることを示せ。 αの固有値は±1 であるから、ディラック粒子は常に光速で飛び回っている。実際には質量を持ち速度は 1 より小 さいはずであるから、粒子はジグザグ運動をしていると解釈できる。これを Zitterwewegung と言う。 ψが4成分あることの意味を探るため、ψが平面波の場合を考慮する。

ψ(x) = u(p)eip·r−iEt≡ u(p)e−ipx (4.21)

このときハミルトニアンの中の pµは演算子でなくただの数となる。p = 0 の極限を考えると、式 (4.11) は Eψ=       m 0 0 0 0 m 0 0 0 0 −m 0 0 0 0 −m      ψ (4.22) * 1) 相対論的な粒子を議論するには、E, p≫ m のときに対角的になるカイラル表示(後述)が便利である。

(4)

となり、負エネルギーはやはり避けられない。正負エネルギー状態がそれぞれ二つずつあるが、これは電子のス ピン自由度に対応する。(4.22) の固有関数は w1=       1 0 0 0       , w2=       0 1 0 0       , w3=       0 0 1 0       , w4=       0 0 0 1       (4.23) であり、2次元のスピン関数を4次元に拡張した s =1 2ΣΣΣ, ΣΣΣ= " σσσ 0 0 σσσ # (4.24) のΣ3/2は (4.23) を固有関数として持ち、固有値は±1/2 である。 水素エネルギー準位 図 4.1: 水素原子のエネルギー構造。主量子数nでの縮退が、スピン軌道 結合力とスピン-スピン結合力で分離する。ラムシフトは真空偏極効果など QEDの高次効果である。 シュレーディンガー方程式では、µ を実効 質量としてエネルギー順位は En= al pha2 2 µ n2, n = 1, 2,··· (4.25) で与えられ、(2S,2P)、(3S,3P,3D)、··· が縮 退しているが、クーロンポテンシャルを入 れたディラック方程式は、スピン-軌道角運 動量結合力 (微細構造)、スピン-スピン結合 力 (超微細構造) を取り入れ、水素のエネル ギー準位をきれいに再現する (図 4.1)。こ れはディラック方程式が基本的に正しいこ との第一の証である。 負エネルギー解の解釈 前にも述べたように負エネルギー解はいろ いろな理由から必要であるが、負エネルギーを持つ粒子の存在は矛盾を来す。ディラックは、真空は負エネルギー 状態を含むが、全て詰まっているとした。電子はパウリ排他原理に従うから負のエネルギー状態に落ち込むこと はできず、安定な状態を作れる。これをディラックの負電子の海と言う。この場合負エネルギー状態の粒子が励 起されて正のエネルギー状態に移ると空いた負のエネルギー状態 (空孔) はどのように振る舞うであろうか?電場 に対して負エネルギー粒子が引かれると、空孔は逆方向に移動するから、空孔は正の電荷、負の運動量を持つよ うに振る舞う。スピン成分は負のエネルギー状態を詰めれば量子数ゼロの真空に戻るわけであるからスピン成分 も逆となる。また正エネルギーを持つ電子がエネルギーを放出して空孔に落ち込めば真空となるので電子、空孔 とも消滅する。この空孔を反粒子と呼ぶことにすれば、真空にエネルギーを与えて対生成、粒子と反粒子が遭遇 すれば対消滅して純粋なエネルギーになる。こうしてディラックは反粒子の存在を予言した。ディラックの予言 から2年後の 1932 年にはアンダーソンが、宇宙線の中から質量が電子と同じで正の電荷を持つ陽電子を発見して ディラックの予言が裏付けられた。すなわち

(5)

負の運動量−p、スピン成分が逆 (−sz)の負エネルギー粒子 (E =−|E|) は、電荷が逆で正のエネルギー E = |E|、 正の運動量 p、スピン成分 (sz)を持つ粒子として振る舞う。  負エネルギー状態の詰まった真空という解釈は、排他原理無しには成立しない。排他原理の適用されないボソ ンにも反粒子があることを考えると両者に通用する解釈が必要である。ファイマン-シュトッケルベルグは時間を 逆行する粒子という考えで反粒子を説明できることを示したが、いずれにしろ量子力学の範囲では無矛盾な解釈 はできなくはないが、相当な無理がある。場の量子論が出て初めて整合性のある解釈が成立した。 場の量子論では全ての粒子を場のエネルギー量子と見なす。正負のエネルギーは、量子の生成消滅に伴うエネル ギーの増減を意味し、粒子もしくは反粒子そのものは常に正エネルギーを持つ状態として定義できる。 平面波解 ディラック方程式の平面波解 (4.21) の u(p) を求める。uA, uBを2行 1 列の行列として u = " uA uB # (4.26) の様に分解し、(4.11) に入れると E " uA uB # = " m σσσ· p σσσ· p −m #" uA uB # (4.27a) ∴ (E− m)uA=σσσ· puB (4.27b) (E + m)uB=σσσ· puA (4.27c) 非相対論の場合を考えると T =|E| − m, |p| ≪ |E|, m であるから、エネルギーの正負に対して uB= σσσ· p E + muA≪ uA E > 0 (4.28a) uA= σσσ· p |E| + muB≪ uA E < 0 (4.28b) p→ 0 で固有関数が (4.23) になることを考慮すると、 χ1= " 1 0 # , χ2= " 0 1 # として (4.29a) uB= σσσ· p E + mχr ur(p) = N " χr σσσ·p E+mχr # , E > 0 (4.29b) uA= σσσ· p |E| + mχr ur(p) = N " |E|+mσσσ·p χr χr # , E < 0 (4.29c) Nは、平面波解を Z ρdV = Z ψψdV = Vu(p)rur(p) =|N|2V 2E E + m= 2E (4.30) で 規 格 化 す れ ば 、N = qE+mV と 決 め ら れ る 。以 下 、1 V を 外 に 出 し て 、ディラック 方 程 式 の 平 面 波 解 を Nur(p)e−ipx, N = E + mと書くことにする。ここで v1(p) = u4(−p), v2=−u3(−p) (4.31) を定義する* 2) と正負のエネルギー平面波解として

ψr(x) = ur(p)e−ipx 正エネルギー平面波解 (4.32a)

ψr(x) = vr(p)eipx 負エネルギー平面波解 (4.32b)

(6)

が得られる。ur(p), vr(p)[u1(p), u2(p), −v2(p), v1(p)] = N " 1 E+mσσσ·p σσσ·p E+m 1 # wr= N       1 0 pz E+m px−ipy E+m 0 1 pE+mx+ipy −pz E+m pz E+m px−ipy E+m 1 0 px+ipy E+m −p z E+m 0 1      wr (4.33) の様に表せる。 演習問題 4.2 u = u¯ †β, ¯v = v†βを定義するとき、次式を証明せよ。

ur(p)us(p) = vr(p)vs(p) = 2Eδrs (4.34a)

¯ ur(p)us(p) =− ¯vr(p)vs(p) = 2mδrs (4.34b) ¯ ur(p)vs(p) = ¯vr(p)us(p) = 0 (4.34c) 演習問題 4.3 ディラック平面波解 (4.33) は静止した関数 wrより、次の変換により得られることを示せ。 u(p), v(p) =√2m³coshη 2+ sinh η 2ααα· n ´ wr= 2m exphααα 2·ηηη i wr η=1 2log 1β 1 +β, coshη=γ= E m, n sinhη=βββγ= p m (4.35) ηはラピディティと呼ばれる量で、ローレンツ変換で加算的な量である。そして上の式は静止状態の wrをローレ ンツ変換した式となっている (付録 E)。

4.1.2

電子の磁気能率

電磁ポテンシャルを Aµ= (φ, A)と書くと、電磁相互作用はゲージ原理により次の置き換えにより得られる。 E→ E − qφ, p→ p − qA  まとめて  pµ→ pµ− qAµ (4.36) 電子の場合 q =−e を (4.27b)(4.27c) に入れると

[(E + eφ)− m]uA=σσσ· (p + eA)uB (4.37a)

[(E + eφ) + m]uB=σσσ· (p + eA)uA (4.37b)

非相対論近似 (E = T + m≫ eφ,|p + eA|) を使うと E + eφ− m = T + eφ, E + eφ+ m≅ 2m (4.38) ∴ uB = σσσ· (p + eA) 2m uA (4.39) これを (4.37a) に代入すると (T + eφ)uA= σσσ· (p + eA)σσσ· (p + eA) 2m uA (4.40) ここで (σσσ· C)(σσσ· D) = C · D + iσσσ· (C × D) (4.41) および運動量 p は運動方程式では微分演算子であることを考慮すると

(7)

Bは磁場である。従って (4.40) は TuA= · (p + eA)2 2m − eφ+ e 2mσσσ· B ¸ uA (4.43) これは電子が磁気能率 µe= e 2mσσσ= ge ³ e 2m ´ S· B ge= 2 (4.44) を持つことを示す。軌道角運動量の作る磁気能率は g = 1 を持つ。g = 2 がディラック方程式の結果として導けた ことは、固有スピンが自転という古典的解釈とは相容れないことを示す。

4.2

ディラック方程式の共変性

ディラック方程式 Eψ= [ααα· p +βm]ψ i∂ψ(x) ∂t = · ααα·im ¸ ψ(x) (4.45) を相対論的な議論をするのに便利なように書き換える。全てを左辺に移し左からβを掛けると · βit−βααα· ∇ 1 − m ¸ ψ(x) = 0 (4.46) ここで、γµ= (γ0,γγγ) = (β,βααα)を導入するとµi µ− m)ψ(x) = 0 (4.47) となる。̸p は p-スラッシュと呼ばれる量である。ここでγµは γµγν+γνγµ= gµν gµν=       1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1       (4.48) を満たす 4× 4 の行列である。また後に使うので γ5= iγ0γ1γ2γ3= −iα1α2α3= i 4!εµνρσγ µγνγργσ (4.49) をも定義しておく。ディラック・パウリ表示では γ0= " 1 0 0 −1 # , γγγ= " 0 σσσ σσσ 0 # , γ5= " 0 1 1 0 # (4.50) これらのγは次のような性質を持つ。 γ5γµ+γµγ5= 0, γ0†=γ0, γi†= γi, γ5†=γ5 (4.51) (4.47)に共役なディラック方程式を求めておく。(4.47) のエルミート共役をとり ψ†( −i←µγµ †− m) = 0 (4.52) ただし微分演算は左にかかるものとする。γ0†=γ0,γk†=γ0γkγ0を使い右からγ0を掛けると iµψγµ+ mψ=ψ(iγµ ←µ+m) = 0 (4.53)

(8)

ψはψの共役 (adjoint) と呼ばれる。

平面波解の方程式: ディラック方程式の平面波解ψ(x) = ur(p)e−ipx, vs(p)e−ipxに対しては、i∂µ→ pµと置

いて (̸p − m)ur(p) = 0, (̸p + m)vs(p) = 0 ̸p ≡γµpµ u(r(p)(̸p − m) = 0, vs(p)(̸p + m) = 0 (4.54) が成り立つ。 演習問題 4.4 Λ+ 1 2m(m+̸p), Λ−≡ 1 2m(m− ̸p) (4.55) はそれぞれ正負のエネルギー解に対する射影演算子であることを示せ。 射影演算子であることの性質はΛ++Λ−= 1, Λ2±± 演習問題 4.5 射影演算子はスピン状態和としても表せる。

r=1,2 ur(p)ur(p) ≠p + m,

r=1,2 vr(p)vr(p) ≠p − m (4.56) と書けることを、(1) 式 (4.55) を使って示せ。また (2) 式 (4.33) から直接に導け。 ローレンツ変換: 今ローレンツ変換を施して、L 系から L′系に移り、xµ→ x′µ= Lµνxν,ψ(x)ψ′(x′)になっ たものとする。このψ′(x′)は (γµi µ− m)ψ′(x′) = 0 (4.57) を充たすが、ロ−レンツ共変性が言えるためには、線形変換 ψ(x) = Sψ(x) (4.58) が存在しなければならない。(4.58) を (4.57) に代入し左から S−1を掛けた式 (S−1γµSiµ− m)ψ= 0 (4.59) が (4.47) に等しいことを要求すると γµ µ= S−1γµS′µ (4.60) すなわちγµが反変ベクトルと同じ変換性 S−1γµS = Lµνγν (4.61) を持てばよい。そのような S は存在する (付録 E1、式 E(??))。 S = exp · iΣΣΣ 2·θθθ ααα 2 ·ηηη ¸ (4.62) とすればよい。 σµν= i 2[γ µ,γν], σ0i= iα i, σi ji jkσk, σµν= gµρgνσσρσ (4.63a) (ω23,ω31,ω12) = (θ 1,θ2,θ3), (ω01,ω02,ω03) = (η1,η2,η3), ωµν=ωνµ (4.63b) を定義すれば    S = exp · 4iωµνσ µν ¸ (4.63c) とまとめられる。

(9)

演習問題 4.6 上記の J =ΣΣΣ/2, K =ααα/2がローレンツ変換演算子の交換関係式 (付録E、式 (E5))を満たすことを 確かめよ。 演習問題 4.7 上記 S が実際 (4.61) を満たすことを、x 方向のブーストを行って示せ。 ヒント:x方向のブースト演算子 S = exp£αxη 2 ¤を使い、(ψγ0ψ ,ψγ1ψ)が (t, x) の様に変換されることを示す。 γ0αααγ0=αααを使えば、ψは、 ψ ψ={ψ(x)}γ0=ψSγ0=ψγ0γ0Sγ0 =ψγ0e−ααα2·ηηηγ0=ψeααα2·ηηη=ψS−1 (4.64) の様に変換することが判る。これからψγµψがローレンツベクトルであることが言える。 パリティ変換 ディラック方程式 (γµi µ− m)ψ(x) = (γ0i∂0+γγγ· i− m)ψ= 0 (4.65) にパリティ変換 x0→ x0, x→ −x を施したとき、 ψ(t,−x) = Sψ(x), S−1γ0S =γ0, S−1γiS = γi (4.66) ならばディラック方程式ローレンツ共変である。上式を満たす S としてηPγ0がある。ηPは絶対値が 1 の任意の 位相因子である。特に差し支えない限り位相因子を1にとる。パリティ変換を平面波解に適用し p→ 0 とすれば Sur= " 1 0 0 −1 # ur= ur, Svr=−vr (4.67) であるので、粒子と反粒子は相対的に負のパリティを持つ。 演習問題 4.8 ψγ5ψは、ローレンツスカラーであるが、パリティ変換に関しては符号を変えることを示せ。擬スカ ラー (pseudo-scaler) と言う。 任意の数のγを挟んだψΓψには独立な量が 16 個あり変換性により次のようにまとめられる。ディラックの波 動関数ψのローレンツ変換は、ベクトルのローレンツ変換と異なることに留意しよう。ψγµψの様にガンマ行列を 間に挟んだ双2次形式がスカラー、ベクトル、テンソルなどのように変換されるのである。このような量をスピ ノールと呼ぶ。 名称 記号 双一次形式 成分の数 パリティ変換後 パリティ スカラー S ψψ 1 ψψ + 擬スカラー P iψγ5ψ 1 −iψγ5ψ -ベクトル V ψγµψ 4 ψγµψ -軸性ベクトル A ψγ5γµψ 4 ψγ5γµψ + テンソル T ψσµνψ 6 ψσµνψ + iをつけるのはエルミート量にするためである。

(10)

4.2.1

C(

荷電共役) 変換

荷電共役変換とは粒子と反粒子を入れ替える演算のことである。エネルギー運動量 (−pµ)の反粒子は pµ を持 つ粒子と同じように振る舞うこと、クライン-ゴードン方程式方程式の平面波解ではその差は複素共役に等しいこ とを考えると荷電共役と複素共役 (演算子ではエルミート共役) は密接に結びついていることが推察される。粒子 と反粒子の違いはその電荷にあり、粒子の電場との相互作用はゲージ原理 pµ→ pµ− qAµにより得られるから、 − qAµを含む方程式を pµ+ qAµ に変わるように書き換える演算が荷電共役変換となる。電荷を持つクライン-ゴードン場が電磁場の中にあるときの方程式は [(∂µ+ iqAµ)(∂µ+ iqAµ) + m2]φ(x) = 0 (4.68) となるからここでエルミート共役をとると [(∂µ− iqAµ)(∂µ− iqAµ) + m2]φ†(x) = 0 (4.69) 上の二つの式を比較すれば、φが粒子を記述するならば、φ†は反粒子を記述することが判る。 実場は電気的に中性粒子を表す。ただし、電気的に中性であっても電荷以外の量子数例えばストレンジネスを 持てば、粒子と反粒子を区別できるから複素場で表されることになる。ディラック粒子は多成分の場 (スピンを持 つ) で表されるから成分間の混合を考慮しなければならない。電場中におけるディラック方程式 [γµ(i∂ µ− qAµ)− m]ψ(x) = 0 (4.70) に対し、ψcが存在しµ(i∂ µ+ qAµ)− m]ψc(x) = 0 (4.71) を満たすならば、ψcψの荷電共役である。(4.70) のエルミート共役を取ると ψ†[γµ †( −i←µ−qAµ)− m] = 0 (4.72) 右からγ0を掛け、γ0†=γ0,γk†=γ0γkγ0を使うと ψ[γµ(i←µ+qAµ)− m] = 0 (4.73) ここで転置をとり左から C を掛けると [−Cγµ TC−1(i∂µ+ qAµ)− m]CψT = 0 (4.74) であるから Cγµ TC−1=γµ (4.75) を満たす C が存在するならば荷電共役変換ψc= CψT が定義できる。 γµ T =γµ µ = 0, 2 γµ T = γµ µ = 1, 3 (4.76) を考慮すると C = iγ2γ0= " 0 −iσ2 −iσ2 0 # =       0 0 0 −1 0 0 1 0 0 −1 0 0 1 0 0 0       (4.77)

(11)

は (4.75) を満たす。この C は次のような性質を持つ。

C = C∗=−C−1=−CT=−C† (4.78)

従ってディラック波動関数の荷電共役変換は

ψc= CψT= iγ2γ0γ0Tψ= iγ2ψ (4.79a)

ψc=ψc†γ0= (iγ2ψ)γ0= −iψTγ2†γ0= ψTiγ0γ2= ψTC−1 (4.79b) 荷電共役変換より電流は符号を変える。量子力学では定義みたいなもので手で入れるしかないが、場の理論では 自動的に導ける。 jc µcγµψc=ψTC−1γµCψTTγT µψT=−(ψγµψ)T=ψγµψ=− jµ (4.80) 最後から3番目の負号はフェルミオン場の反可換性から出る。最後から2番目で転置がはずせるのは、括弧の中 が 1× 1 行列だからである。 演習問題 4.9 CuT1 = v1, CuT2= v2, CvT1= u1, CvT2 = u2を示せ。

4.3

カイラル表示とワイル粒子

ディラック行列のディラック/パウリ表示は非相対論的な議論のときに便利である。スピンパリティや磁気能率 などの靜的性質はこの表示を使うと理解しやすい。しかし、相対論的粒子 (E, p≫ m) 現象を議論するには m = 0 を出発点とするカイラル表示が便利である。ワイル表示ではディラック行列は次のように表される。 ααα= " σσσ 0 0 σσσ # β=γ0= " 0 1 1 0 # γγγ=βααα= " 0 σσσ σσσ 0 # (4.81a) γ5= " 1 0 0 −1 # C = " −iσ2 0 0 iσ2 # (4.81b) ワイル表示をψW, γW···、ディラック表示をψD, γD··· で表すと ψD= TψW γD= TγWT−1 (4.82a) T = 1 2 " 1 1 1 −1 # (4.82b) で結ばれている。以下、この節ではψW をψと書く。 次に ψR= 1 2(1 +γ 5 ψ L= 1 2(1γ 5 (4.83) を定義すると γ5ψ RR γ5ψL=ψL (4.84) はγ5の固有状態となる。γ5をカイラリティ(Chirality) 演算子と言う。ディラック方程式 (γµiµ− m)ψ= 0 (4.85) に左からγ5を掛けて、γγγとの交換関係 (4.51) を使うとµi µ+ m)γ5ψ= 0 (4.86)

(12)

上記二つの式を差と和を作ると γµi µψR= mψL γµiµψL= mψR (4.87) この二つの式は m = 0 であれば独立であるが、m, 0 のときは運動により、ψRとψLが混じることを示している。 別の言い方をすれば、m, 0 のときγ5はハミルトニアンと交換しないので運動によりカイラリティが変わる。これ をしばしば質量による相互作用でカイラリティが変わるという言い方をする。γ5はローレンツ変換演算子 (4.63c) とは交換するので、カイラリティはローレンツ変換で不変である。弱い相互作用はψRとψLで相互作用の仕方が 異なるので、カイラリティは重要な概念である。フェルミオンの質量がゼロであれば、カイラリティの異なるフェ ルミオンは運動で混合せず、カイラリティは保存される量である。すなわち、カイラリティの異なるフェルミオン はそれぞれ独立なゲージ変換で不変である。これをカイラル対称性という。実際、標準理論では、出発点では全て のフェルミオンは本来カイラル対称性を充たし、質量ゼロを持つと仮定する。質量は環境変化 (ヒッグス機構) に より後天的に付加された性質と見なすのである。 γ5の物理的な意味を知るために次のように分解して、γ0γ5γγγ=ΣΣΣを使うと γ5= γ 0γ5γγγ· p E γ0γ5 E (Eγ 0 γγγ· p) =ΣΣΣE· pγ 0γ5 E ̸p (4.88) 自由粒子に対しては̸p = ±m であるので γ5= ±ΣΣΣ· p |E| + O( m E) (4.89) すなわち、γ5は粒子と反粒子の違いをも考慮したヘリシティ演算子の相対論的拡張概念と見なせる。 ψ= " φR φL # (4.90) と置けばワイル表示では ψR= " φR 0 # ψL= " 0 φL # (4.91) であるので、(4.83) に入れてφR,φLの式に書き直すと    i(∂0+σσσ·∇)φR = mφL i(∂0σσσ·∇)φL = mφR 平面波解に対しては     (Eσσσ· p)φR = mφL (E +σσσ· p)φL = mφR (4.92) m = 0であればφRとφLは分離する。|p| = |E| を使うと σσσ· p |p| φR=±φR σσσ· p |p| φL=φL 復号はエネルギーの正負に対応 (4.93a) すなわち、φR (L)は、粒子ならばヘリシティ+ (-)、反粒子ならばヘリシティ- (+) の状態を表す。これをワイル解と 呼び、それぞれ独立な解である。パリティ変換でσσσ· p ↔ −σσσ· p であるのでφR↔φLとなるので、パリティが保存し ている世界ではワイル解は成立しない。ワイル解は早くから知られていたが、物理的な解とは見なされなかった。 しかし、1957 年にパリティ非保存が発見されると同時に復活しニュートリノがワイル解である可能性が試された (2成分ニュートリノ)。どちらのワイル解が成立しているかの判別は実験で試される。左巻きニュートリノと右巻 きの反ニュートリノのみが存在することが実証されニュートリノはφLで表されることが判った。現在はニュート リノがわずかながら質量を持つことが判っているので、ワイル解は成立しないが右巻きニュートリノが発見され ていないことから、2成分ニュートリノを説明するため次に述べるマヨラナニュートリノ説が浮上している。

(13)

演習問題 4.10 m, 0 のとき、ヘリシティ固有状態をχ+,χとするとき、式 (4.92) を使えば φR(L)= N(aχ±+ bχ∓) (4.94a) a = r E + p 2E b = r E− p 2E    a≅ 1 b ≅2|E|m E > 0 |E| ≫ m b≅ 1 a ≅2|E|m E < 0 |E| ≫ m (4.94b) と書けることを示せ。ただし、N は規格因子である。 演習問題 ((4.10)) はφRはほぼ右巻きの粒子、あるいはほぼ左巻きの反粒子を表し、φLはほぼ左巻きの粒子、あ るいはほぼ右巻きの反粒子を表すことが判る。

4.4

マヨラナ粒子

ニュートリノは電子とペアを組んで、アイソスピン 1/2 の粒子として弱い相互作用をする。従って粒子と反粒子 の区別があるものとして考えられていたが、ニュートリノは電気的に中性であるので実験的には粒子反粒子を判 別する手段がない。そこで理論的にも粒子反粒子の区別の付かないマヨラナ粒子である可能性を考える。波動関 数 N が、ディラックの方程式を満たし、かつ粒子 N と反粒子 Ncを同一にする条件は N =ψ+ψcと置くことによ り満たされる。ψRから、マヨラナ粒子 N1を作ってみよう。 ψR= " ξ 0 # ψc R= iγ∗R= " 0 −iσ2ξ # (4.95a) ∴ N1=ψRcR= " ξ −iσ2ξ # (4.95b) 同様に  N2=ψLcL= " iσ2η η # (4.95c) マヨラナ粒子はディラックの方程式を充たすので、(4.85) に入れて分解すると、ξとηはそれぞれ    (∂0+σσσ·∇)ξ− mσ2ξ = 0 (∂0σσσ·∇)η+ mσ = 0  平面波解に対しては    (Eσσσ· p)ξ− imσ2ξ = 0 (E +σσσ· p)ξ+ imσ = 0 (4.96) を満たす* 3) −iσ∗, iσ2ηは、(4.96) の複素共役を取り、左から iσ2を掛けて iσ2σσσ∗iσ2=σσσを使えば、それぞれ η,ξと同じ方程式を満たすことが判る。上の二つの式は独立であるから、ξ,ηは独立な粒子であり質量も同じで ある必要はない。ξを右巻きのマヨラナ粒子、ηを左巻きのマヨラナ粒子と呼ぶ。荷電共役変換でマヨラナ粒子の L成分と R 成分は入れ替わるが、これはパリティ演算 P によっても引き起こされる。 (NR)c= (Nc)L= NL= P(NR) (4.97a) (NL)c= (Nc)R= NR= P(NL) (4.97b) 通常のディラック方程式 (4.92) と比べて見れば、質量ゼロの極限でワイル解とマヨラナ解は一致することが判る。 * 3) ξの成分を通常の数と見なしてこの方程式を解くと矛盾が生じる。マヨラナ粒子は量子的な概念である。

(14)

演習問題解答 4.1: H =α· p +βm, [pi, xj] =−iδi jを代入せよ。 4.2:  urus= N2[χ†r,χ†r σ· p E + m] " χs σ·p E+mχs # = N2χ†r · 1 + p 2 (E + m)2 ¸ χs=χ†r[E + m + E− m]χs= 2Eδrs (4.29)(4.31)を参照すれば、 vr(p) = " σ·p E+mχr′ χr′ # r′= 3− r であるから vrvs= N2[χ†r σ· p E + m,χ † r′] " σ·p E+mχs′ χs′ # = N2χ†r · 1 + p 2 (E + m)2 ¸ χs′= 2Eδrs urus= N2[χ†r,χ†r σ· p E + m] " 1 0 0 −1 #" χs σ·p E+mχs # = N2χ†r · 1 p 2 (E + m)2 ¸ χs =χ†r[E + m− (E − m)]χs= 2mδrs vrvs= N2[χ†r σ· p E + m,χr′] " 1 0 0 −1 #" σ·p E+mχs′ χs′ # = N2χ†r · −1 + p 2 (E + m)2 ¸ χs′=−2mδrs urvs= N2[χ†r,χ†r σ· p E + m] " 1 0 0 −1 #" σ·p E+mχs′ χs′ # = N2χ†r · p2 (E + m)2 p2 (E + m)2 ¸ χs′ = 0 4.3:  級数展開して (n·ααα)2n= 1, (n ·ααα)2n+1= n ·αααを使うと exp(iααα·ηηη222) ={1 + (η 2) 2+ ···} + {η2+ (η 2) 3+ ···}n ·nn··ααα= coshη 2+ sinh η 2n·ααα coshη 2 = r E + m 2m , sinh η 2 = r E− m 2m = r E + m 2m p E + m を使えば、 2m³coshη 2 + sinh η 2n·ααα ´ =√E + m µ 1 + p E + mn·ααα ¶ =√E + m µ 1 + ααα· p E + m ¶ = (4.33) 4.4: 省略 4.5: (2)   E > 0 の解に対して (3.23a) より u1=       1 0 p3 E+m p1+ip2 E+M       u2=       0 1 p1−ip2 E+m −p3 E+M       これから ( ˆp±, ˆp3) = (pE+m1±ip2,E+mp3 )として

[u1iu1 j] =N2       1 0 − ˆp3 − ˆp− 0 0 0 0 ˆ p3 0 −( ˆp3)2 − ˆp3pˆ ˆ p+ 0 − ˆp+pˆ3 −( ˆp21+ ˆp22)       i j

(15)

u2u2についても同じ計算をして、N2= E + mを入れると

r=1,2 urur=       m + E 0 − ˆp3 − ˆp− 0 m + E − ˆp+ p3ˆ ˆ p3 pˆ m− E 0 ˆ p+ − ˆp3 0 m− E      = " m + E σ· p σ· p m− E # = m1 + Eββα· p = m − pµγµ 4.6:  σi j(i, j = 1 ∼ 3) =2ii,γj] = i 2[βαiβαj− {i ↔ j}] = i 2[−2iΣk] =Σk σ0i= i 2[γ 0, γk] = i 2[ββαk−βαkβ] = iαk Lk≡σi j= 1iρ1jσσρσ=σi jk Nk≡σ0k= 10ρ1kσσρσ=σ0k=−iαk は、(E.5) の関係式を充たす。 4.7:  S = exp³α1 η 2 ´ = coshη 2− sinh η 2α1 γ0 S S−1γ0S =³coshη 2+ sinh η 2α1 ´ γ0³coshη 2− sinh η 2α1 ´ =³cosh2η 2+ sinh 2η 2 ´ γ0 − 2sinhη2coshη 2γ 1 = coshηγ0− sinhηγ1 =γ(γ0βγ1) (4.98) 同様に γ1 S S−1γ1S =γ(βγ0+γ1) (4.99) すなわち、ψγ0ψ,ψγ1ψは、x0, x1と同じローレンツ変換をする。 4.8: パリティ変換の演算子は S =γ0である。 γ5 S γ0γ5γ0= γ5 4.9:   u1T =γ0u1∗= N " χ1 −E+mσ·pχ1 # = N       1 0 − ˆp3 − ˆp−∗       Cu1T =       0 0 0 −1 0 0 1 0 0 −1 0 0 1 0 0 0       N       1 0 − ˆp3 − ˆp−∗      = N       ˆ p+ − ˆp3 0 1      = u4 (−p) = v1(p) ただし、 ˆp±= p1± ip2 E + m , pˆ3= p3 E + mである。

(16)

4.10:  φ= aχ++ bχ−, χ= cχ++ dχ− と置いて (4.92) に入れ、χ±が互いに直交することを使うと c a= b d = E− p m = m E + m= r E− m E + m, p =|p| ヘリシティを逆転させると、a↔ b であるが、φχでもある。∴ c = b, d = aとすれば、a√E + p, b√E− m なので φ= N³ pE + pχ++ p E− pχ´= r E + p 2E χ++ r E− p 2E χ 分母に 2E を入れることにより上式は E < 0 でも成立する。

参照

関連したドキュメント

Since we are interested in bounds that incorporate only the phase individual properties and their volume fractions, there are mainly four different approaches: the variational method

のようにすべきだと考えていますか。 やっと開通します。長野、太田地区方面  

The construction of homogeneous statistical solutions in [VF1], [VF2] is based on Galerkin approximations of measures that are supported by divergence free periodic vector fields

iv Relation 2.13 shows that to lowest order in the perturbation, the group of energy basis matrix elements of any observable A corresponding to a fixed energy difference E m − E n

The orthogonality test using S t−1 (Table 14), M ER t−2 (Table 15), P P I t−1 (Table 16), IP I t−2 (Table 17) and all the variables (Table 18) shows that we cannot reject the

[r]

創業当時、日本では機械のオイル漏れを 防ぐために革製パッキンが使われていま

The PCA9535E and PCA9535EC provide an open−drain interrupt output which is activated when any input state differs from its corresponding input port register state.. The interrupt