• 検索結果がありません。

Motivically Functorial Coniveau Spectral Sequences;

N/A
N/A
Protected

Academic year: 2022

シェア "Motivically Functorial Coniveau Spectral Sequences;"

Copied!
86
0
0

読み込み中.... (全文を見る)

全文

(1)

Motivically Functorial Coniveau Spectral Sequences;

Direct Summands of Cohomology of Function Fields

Mikhail V. Bondarko

Received: September 4, 2009 Revised: June 7, 2010

Abstract.

Thegoalofthispaperistoprovethatoniveauspetral

sequenesare motivially funtorialforall ohomologytheoriesthat

ouldbefatorizedthroughmotives.Tothisendthemotifofasmooth

varietyoveraountable eld

k

is deomposed (in thesense of Post-

nikovtowers)intotwisted(o)motivesofitspoints;thisisgeneralized

to arbitrary Voevodsky's motives. In order to study the funtorial-

ity of this onstrution, we use the formalism of weight strutures

(introdued in the previouspaper). Wealso developthis formalism

(forgeneraltriangulatedategories)further, andrelateitwithanew

notionofanieduality (pairing)of (twodistint) triangulatedate-

gories;thispieeofhomologialalgebraouldbeinterestingforitself.

We onstrut a ertain Gersten weight struture for a triangulated

ategoryofomotivesthat ontains

DM gm ef f

aswellas(o)motivesof

funtioneldsover

k

. Itturnsoutthattheorrespondingweightspe- tralsequenesgeneralizethelassialoniveauones(toohomologyof

arbitrarymotives). Whenaohomologialfuntorisrepresentedbya

Y ∈ Obj DM ef f

, theorrespondingoniveauspetralsequenesan beexpressedin termsofthe(homotopy)

t

-trunations of

Y

; thisex-

tendstomotivestheseminaloniveauspetralsequeneomputations

ofBlohandOgus.

We also obtain that the omotif of a smooth onneted semi-loal

sheme is a diret summand of the omotif of its generi point; o-

motivesof funtion elds ontain twisted omotives of their residue

elds(forallgeometrivaluations). Henesimilarresultsholdforany

ohomologyof(semi-loal)shemesmentioned.

2010 Mathematis Subjet Classiation: 14F42, 14C35, 18G40,

19E15,14F20,14C25,14C35.

Keywords and Phrases: Motives, oniveau, weight struture, t-

struture,triangulatedategory,semi-loalsheme,ohomology.

(2)

Contents

1 Some preliminaries on triangulated categories and motives 43

1.1

t

-strutures, Postnikovtowers,idempotentompletions,and an

embeddingtheorem ofMithell . . . 43

1.2 Extendingohomologialfuntorsfrom atriangulatedsubate- gory . . . 46

1.3 SomedenitionsofVoevodsky: reminder. . . 47

1.4 SomepropertiesofTatetwists . . . 49

1.5 Pro-motivesvs. omotives;thedesriptionofourstrategy . . . 50

2 Weight structures: reminder, truncations, weight spectral sequences, and duality with t-structures 53

2.1 Weightstrutures: basidenitions . . . 54

2.2 Basipropertiesofweightstrutures . . . 56

2.3 Virtual

t

-trunationsof(ohomologial)funtors . . . 62

2.4 Weight spetral sequenes and ltrations; relation with virtual

t

-trunations . . . 68

2.5 Dualities of triangulated ategories; orthogonal weight and

t

- strutures . . . 71

2.6 Comparisonofweightspetralsequeneswiththoseomingfrom (orthogonal)

t

-trunations . . . 74

2.7 'Changeofweightstrutures';omparingweightspetralsequenes 76

3 Categories of comotives (main properties) 79

3.1 Comotives: an'axiomatidesription' . . . 80

3.2 Pro-shemesandtheiromotives . . . 82

3.3 Primitiveshemes: reminder. . . 84

3.4 Basimotivipropertiesof primitiveshemes . . . 84

3.5 Onmorphismsbetweenomotivesofprimitiveshemes. . . 86

3.6 The Gysin distinguished triangle for pro-shemes; 'Gersten' Postnikovtowersforomotivesofpro-shemes. . . 86

4 Main motivic results 88

4.1 TheGerstenweightstruturefor

D s ⊃ DM gm ef f

. . . . . . . . . 89

4.2 Diretsummand resultsforomotives . . . 91

4.3 Onohomologyofpro-shemes,and itsdiret summands. . . . 92

4.4 Coniveau spetralsequenesforohomologyof(o)motives . . 93

4.5 An extensionofresultsofBlohandOgus . . . 94

4.6 Baseeld hange foroniveauspetralsequenes; funtoriality foranunountable

k

. . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 TheChowweightstruturefor

D

. . . 98

4.8 ComparingChow-weightand oniveauspetralsequenes . . . 100

4.9 Birationalmotives;onstrutingtheGerstenweightstrutureby gluing;otherpossibleweightstrutures. . . 101

(3)

5 The construction of D and D ; base change and Tate twists104

5.1 DG-ategoriesandmodulesoverthem . . . 104

5.2 Thederivedategoryofadierentialgraded ategory . . . 106

5.3 Theonstrutionof

D

and

D

; theproofofProposition3.1.1 . 106 5.4 BasehangeandTatetwistsforomotives. . . 108

5.4.1 Indutionandrestritionfordierentialgradedmodules:

reminder . . . 108

5.4.2 Extensionandrestritionofsalarsforomotives . . . 108

5.4.3 Tensor produts and 'o-internal Hom' for omotives;

Tatetwists . . . 109

6 Supplements 110

6.1 Theweightomplexfuntor;relationwithgenerimotives . . . 111

6.2 Therelationoftheheartof

w

with

HI

('Brownrepresentability')112 6.3 Motivesandomotiveswithrationalandtorsionoeients . . 113

6.4 Anotherpossibilityfor

D

;motiveswithompatsupportofpro- shemes . . . 114

6.5 Whathappensif

k

isunountable. . . . . . . . . . . . . . . . . 114

Introduction

Let

k

beourperfetbaseeld.

We reall two very important statements onerning oniveau spetral se-

quenes. The rst one is the alulation of

E 2

of the oniveau spetral se-

quene for ohomologialtheories that satisfy ertain onditions; see [5℄ and

[8℄. ItwasprovedbyVoevodskythat theseonditionsarefullled byanythe-

ory

H

representedbyamotiviomplex

C

(i.e. anobjetof

DM − ef f

;see[25℄);

thenthe

E 2

-termsofthespetralsequeneouldbealulatedintermsofthe

(homotopy

t

-struture)ohomologyof

C

. This resultimpliestheseond one:

H

-ohomologyof asmooth onnetedsemi-loal sheme (in thesense of Ÿ4.4

of [26℄) injets into the ohomology of its generipoint; thelatter statement

wasextendedto all(smoothonneted)primitiveshemesbyM.Walker.

The main goal of the present paper is to onstrut (motivially) funtorial

oniveau spetral sequenes onverging to ohomology of arbitrary motives;

there shouldexistadesriptionof thesespetralsequenes(startingfrom

E 2

)

thatissimilartothedesriptionfortheaseofohomologyofsmoothvarieties

(mentionedabove).

A relatedobjetiveisto larifythenatureoftheinjetivityresultmentioned;

it turnedourthat (in theaseofaountable

k

)theohomologyof asmooth

onneted semi-loal (more generally, primitive) sheme is atually a diret

summand oftheohomology ofitsgeneri point. Moreover,the(twisted) o-

homologyofaresidueeldofafuntioneld

K/k

(foranygeometrivaluation

of

K

)is adiretsummand of theohomology of

K

. We atuallyprovemore

in Ÿ4.3.

(4)

Ourmainhomologialalgebratoolisthetheoryofweightstrutures(intrian-

gulated ategories; weusually denote aweightstruture by

w

)introdued in

the previous paper [6℄. Inthis artilewe develop it further; this part of the

paperould be interesting also to readers notaquainted with motives (and

ould be read independently from the rest of the paper). In partiular, we

studyniedualities(ertainpairings)of(twodistint)triangulatedategories;

itseemsthatthissubjetwasnotpreviouslyonsideredintheliteratureatall.

Thisallowsustogeneralizetheoneptofadjaentweightand

t

-strutures(

t

)

in atriangulatedategory(developed in Ÿ4.4of [6℄): weintrodue thenotion

oforthogonal struturesin(twopossiblydistint)triangulatedategories. If

Φ

is anieduality oftriangulated

C, D

,

X ∈ ObjC, Y ∈ ObjD

,

t

is orthogonal

to

w

, then the spetral sequene

S

onverging to

Φ(X, Y )

that omes from

the

t

-trunationsof

Y

isnaturallyisomorphi(startingfrom

E 2

)totheweight

spetralsequene

T

forthefuntor

Φ(−, Y )

.

T

omesfromweighttrunationsof

X

(notethatthosegeneralizestupidtrunationsforomplexes). Ourapproah

yieldsan abstratalternativeto themethodof omparingsimilarspetralse-

quenes using ltered omplexes (developed by Deligne and Paranjape, and

used in [22℄, [11℄, and [6℄). Note also that werelate

t

-trunations in

D

with

virtual

t

-trunationsofohomologialfuntorson

C

. Virtual

t

-trunationsfor ohomologialfuntors aredened for any

(C, w)

(wedonot needany trian-

gulated 'ategoriesoffuntors' or

t

-struturesforthem here);this notionwas

introduedinŸ2.5of[6℄andisstudiedfurther intheurrentpaper.

Now,weexplainwhywereallyneedaertainnewategoryofomotives(on-

taining Voevodsky's

DM gm ef f

), and so the theory of adjaent strutures (i.e.

orthogonalstruturesinthease

C = D

,

Φ = C(−, −)

)isnotsuientforour

purposes. Itwasalreadyprovedin[6℄thatweightstruturesprovideapower-

fultoolforonstrutingspetralsequenes;theyalsorelatetheohomologyof

objetsoftriangulatedategorieswith

t

-struturesadjaenttothem. Unfortu-

nately,aweightstrutureorrespondingtooniveauspetralsequenesannot

existon

DM ef f ⊃ DM gm ef f

sinetheseategoriesdonotontain(any)motives

forfuntioneldsover

k

(aswellasmotivesofothershemesnotofnitetype

over

k

;stillf. Remark 4.5.4(5)). Yetthese motivesshouldgeneratetheheart

ofthis weightstruture(sinethe objetsofthisheart should orepresento-

variant exatfuntors from the ategoryof homotopy invariant sheaveswith

transfersto

Ab

).

So,weneedaategorythatwouldontainertainhomotopylimitsofobjetsof

DM gm ef f

. Wesueedin onstrutingatriangulatedategory

D

(ofomotives) thatallowsustoreahtheobjetiveslisted. Unfortunately,inordertoontrol

morphisms between homotopy limits mentioned we have to assume

k

to be

ountable. Inthis asethere exists a largeenough triangulatedategory

D s

(

DM gm ef f ⊂ D s ⊂ D

)endowed with aertain Gersten weight struture

w

; its

heartis'generated'byomotivesoffuntionelds.

w

is(left)orthogonaltothe

homotopy

t

-struture on

DM ef f

and (so) is loselyonneted with oniveau

spetralsequenesand Gerstenresolutions for sheaves. Note still: we need

k

to be ountable only in order to onstrut the Gersten weightstruture. So

(5)

thosereaderswhowouldjustwanttohaveaategorythatontainsreasonable

homotopy limits of geometri motives(inluding omotivesof funtion elds

and ofsmoothsemi-loal shemes),andonsider ohomologytheoriesforthis

ategory,mayfreely ignore thisrestrition. Moreover,foran arbitrary

k

one

anstillpasstoaountablehomotopylimitintheGysindistinguishedtriangle

(asin Proposition3.6.1). Yetforanunountable

k

ountablehomotopylimits

don't seem to be interesting; in partiular, they denitely do not allow to

onstrutaGerstenweightstruture (inthisase).

So, we onsider aertain triangulated ategory

D ⊃ DM gm ef f

that (roughly!)

'onsists of' (ovariant) homologial funtors

DM gm ef f → Ab

. In partiular,

objets of

D

dene ovariant funtors

SmV ar → Ab

(whereas another 'big'

motivi ategory

DM ef f

dened by Voevodsky is onstruted from ertain

sheaves i.e. ontravariant funtors

SmV ar → Ab

; this is also true for all

motivihomotopyategoriesofVoevodskyandMorel). Besides,

DM gm ef f

yields

afamilyof(weak)oompatogeneratorsfor

D

. Thisiswhyweallobjetsof

D

omotives.Yetnotethattheembedding

DM gm ef f → D

isovariant(atually, we invert the arrows in the orresponding 'ategory of funtors' in order to

make the Yoneda embedding funtor ovariant), as well as the funtor that

sendsasmoothsheme

U

(not neessarilyofnitetypeover

k

)to itsomotif

(whih oinideswithitsmotifif

U

isasmoothvariety).

Wealsoreallthe Chowweightstruture

w Chow

introduedin [6℄; theorre-

sponding Chow-weight spetral sequenes are isomorphito the lassial(i.e.

Deligne's)weightspetralsequeneswhenthelatteraredened.

w Chow

ould

be naturally extended to a weight struture

w Chow

for

D

. We always have a naturalomparison morphism from the Chow-weightspetralsequene for

(H, X)

to the orrespondingoniveauone; itis anisomorphismfor any bira- tional ohomology theory. We onsider the ategory of birational omotives

D bir

i.e. theloalizationof

D

by

D (1)

(thatontainstheategoryofbirational

geometrimotivesintroduedin[15℄;thoughsomeoftheresultsofthisunpub-

lished preprintare erroneous,thismakesnodierene fortheurrentpaper).

Itturnsourthat

w

and

w Chow

induethesameweightstruture

w bir

on

D bir

. Conversely,startingfrom

w bir

onean'glue'(fromslies)theweightstrutures

induedby

w

and

w Chow

on

D / D (n)

forall

n > 0

. Moreover,thesestrutures

belongtoaninterestingfamilyofweightstruturesindexedbyasingleintegral

parameter! Itouldbeinterestingtoonsiderothermembersofthisfamily. We

relatebrieythese observationswiththoseofA. Beilinson(in[3℄ heproposed

a'geometri'haraterizationoftheonjeturalmotivi

t

-struture).

NowwedesribetheonnetionofourresultswithrelatedresultsofF.Deglise

(see[9℄,[10℄,and[11℄; notethatthetwolatterpapersarenotpublishedatthe

moment yet). He onsiders a ertain ategoryof pro-motives whose objets

arenaiveinverselimitsofobjetsof

DM gm ef f

(thisategoryisnottriangulated, thoughit is pro-triangulated in aertain sense). This approah allowsto ob-

tain(in auniversalway)lassialoniveauspetralsequenesforohomology

ofmotivesofsmoothvarieties;Deglisealsoprovestheirrelationwiththehomo-

topy

t

-trunationsforohomologyrepresentedbyanobjetof

DM ef f

. Yetfor

(6)

ohomologytheoriesnotomingfrommotiviomplexes,thismethoddoesnot

seem to extendto (spetral sequenes for ohomology of) arbitrarymotives;

motivifuntorialityis notobviousalso. Moreover,Deglise didn'tprovethat

thepro-motifofa(smoothonneted)semi-loalshemeisadiretsummand

ofthepro-motifofitsgeneripoint(though thisistrue,atleastintheaseof

aountable

k

). Wewilltellmuhmoreaboutourstrategyandontherelation

ofourresultswiththoseofDeglisein Ÿ1.5below. Notealsothat ourmethods

are muhmore onvenientfor studying funtoriality(of oniveauspetralse-

quenes)thanthemethods appliedbyM.Rostin therelatedontextofyle

modules(see[24℄andŸ4of[10℄).

The author would like to indiate the interdependeniesof the parts of this

text (in order to simplify reading for those who are not interested in all of

it). Those readers whoarenot (verymuh) interestedin (oniveau) spetral

sequenes,mayavoidmostofsetion2andreadonlyŸŸ2.12.2(Remark2.2.2

ouldalsobeignored). Moreover,inordertoproveourdiretsummandsresults

(i.e. Theorem 4.2.1, Corollary4.2.2,and Proposition4.3.1) oneneedsonly a

small portion of the theory of weight strutures; so a reader very relutant

to study this theory may tryto derivethem from theresults ofŸ3 'by hand'

without reading Ÿ2at all. Still,for motivifuntorialityof oniveauspetral

sequenes and ltrations (see Proposition 4.4.1 and Remark 4.4.2)one needs

more of weight strutures. On the other hand, those readers who are more

interestedin the(general)theory oftriangulatedategoriesmayrestrittheir

attentiontoŸŸ1.11.2andŸ2;yetnotethat therest ofthepaperdesribesin

detailanimportant(andquitenon-trivial)exampleofaweightstruturewhih

is orthogonal to a

t

-struture with respet to a nie duality (of triangulated ategories). Moreover,muh ofsetionŸ4ouldalsobeextended toageneral

setting of atriangulated ategorysatisfyingpropertiessimilar to those listed

in Proposition 3.1.1;yettheauthor hose notto dothis inorder tomakethe

papersomewhatlessabstrat.

Now we list the ontents of the paper. More details ould be found at the

beginningsofsetions.

WestartŸ1withthereolletionof

t

-strutures,idempotentompletions,and Postnikovtowersfortriangulatedategories. Wedesribeamethodforextend-

ing ohomologialfuntors from afull triangulated subategoryto thewhole

C

(afterH. Krause). Nextwereall someresultsand denitions forVoevod-

sky's motives (thisinludes ertain properties of Tate twists for motivesand

ohomologialfuntors). Lastly,wedenepro-motives(followingDeglise)and

omparethem with ourtriangulatedategory

D

of omotives. Thisallowsto explainourstrategystepbystep.

Ÿ2is dediatedtoweightstrutures. Firstweremindthebasisofthis theory

(developed in Ÿ[6℄). Next we reall that aohomologial funtor

H

from an

(arbitrarytriangulatedategory)

C

endowedwithaweightstruture

w

ould

be'trunated'asifitbelongedtosometriangulatedategoryoffuntors(from

C

)thatisendowedwitha

t

-struture;wealltheorrespondingpieesof

H

its

virtual

t

-trunations. Wereallthenotionofaweightspetralsequene(intro-

(7)

dues in ibid.). Weprovethat thederivedexatouple foraweightspetral

sequene ouldbedesribed in termsof virtual

t

-trunations. Nextweintro- duethedenitiona(nie)duality

Φ : C op × D → A

(here

D

istriangulated,

A

isabelian),andoforthogonalweightand

t

-strutures(withrespetto

Φ

). If

w

isorthogonalto

t

,thenthevirtual

t

-trunations(orrespondingto

w

)offun-

torsofthetype

Φ(−, Y ), Y ∈ ObjD

,areexatlythefuntors'representedvia

Φ

'bytheatual

t

-trunationsof

Y

(orrespondingto

t

). Heneif

w

and

t

are

orthogonalwithrespettoanieduality,theweightspetralsequeneonverg-

ing to

Φ(X, Y )

(for

X ∈ ObjC, Y ∈ ObjD

)is naturallyisomorphi(starting

from

E 2

) to the oneomingfrom

t

-trunations of

Y

. We alsomention some

alternativesandpredeessorsofourresults. Lastlyweompareweightdeom-

positions, virtual

t

-trunations, and weight spetral sequenes orresponding to distintweightstrutures(inpossiblydistinttriangulatedategories).

InŸ3wedesribethemainpropertiesof

D ⊃ DM gm ef f

. Theexathoieof

D

is notimportantformostofthispaper;sowejustlist themainpropertiesof

D

(anditsertainenhanement

D

)inŸ3.1. Weonstrut

D

usingtheformalism ofdierentialgradedmodulesinŸ5later. Nextwedeneomotivesfor(ertain)

shemesandind-shemesofinnitetypeover

k

(weallthempro-shemes). We reall the notionof aprimitivesheme. All (smooth) semi-loal pro-shemes

areprimitive;primitiveshemeshaveallnie'motivi'propertiesofsemi-loal

pro-shemes. We prove that there are no

D

-morphisms of positive degrees betweenomotivesofprimitiveshemes(andalsobetweenertainTate twists

of those). In Ÿ3.6weprovethat the Gysin distinguishedtriangle for motives

of smooth varieties (in

DM gm ef f

) ould benaturally extended to omotivesof

pro-shemes. This allowsto onstrutertain Postnikovtowersforomotives

ofpro-shemes;thesetowersareloselyrelatedwithlassialoniveauspetral

sequenesforohomology.

Ÿ4 is entral in this paper. We introdue a ertain Gersten weight struture

for a ertain triangulated ategory

D s

(

DM gm ef f ⊂ D s ⊂ D

). We provethat PostnikovtowersonstrutedinŸ3.6areatuallyweightPostnikovtowerswith

respetto

w

. Wededueour(interesting)resultsondiretsummandsofomo- tivesoffuntionelds. Wetranslatetheseresultstoohomologyintheobvious

way.

Nextweprovethatweightspetralsequenesfortheohomologyof

X

(orre-

sponding to the Gerstenweightstruture) are naturallyisomorphi (starting

from

E 2

) to the lassial oniveau spetral sequenes if

X

is the motif of a

smoothvariety;soweallthesespetralsequeneoniveauonesinthegeneral

ase also. Wealso prove that the Gerstenweight struture

w

(on

D s

) is or- thogonalto the homotopy

t

-struture

t

on

DM − ef f

(with respetto a ertain

Φ

). It followsthat for anarbitrary

X ∈ ObjDM s

, for a ohomology theory

representedby

Y ∈ ObjDM ef f

(anyhoieof)theoniveauspetralsequene

that onvergesto

Φ(X, Y )

ouldbedesribedin termsof the

t

-trunationsof

Y

(startingfrom

E 2

).

We also dene oniveau spetral sequenes for ohomology of motives over

unountable base elds as the limits of the orresponding oniveau spetral

(8)

sequenesoverountableperfetsubeldsofdenition. Thisdenitionisom-

patiblewiththelassialone;soweestablishmotivifuntorialityofoniveau

spetralsequenesin thisasealso.

Wealsoprovethat theChowweight struturefor

DM gm ef f

(introduedinŸ6of

[6℄)ouldbeextendedtoaweightstruture

w Chow

on

D

. Theorresponding Chow-weightspetralsequenesare isomorphito thelassial(i.e. Deligne's)

ones whenthelatteraredened(thiswasprovedin [6℄and[7℄). Weompare

oniveauspetralsequeneswithChow-weightones: wealwayshaveaompar-

ison morphism; it is anisomorphism fora birational ohomology theory. We

onsidertheategoryofbirationalomotives

D bir

i.e. theloalizationof

D

by

D (1)

.

w

and

w Chow

induethesameweightstruture

w bir

on

D bir

;onealmost an glue

w

and

w Chow

from opies of

w bir

(one may say that these weight

struturesouldalmostbegluedfrom thesameslieswithdistintshifts).

Ÿ5 is dediated to the onstrutionof

D

and theproof of its properties. We applytheformalismofdierentialgradedategories,modulesoverthem,andof

theorrespondingderivedategories. A readernotinterestedin these details

may skip (most of) this setion. In fat, the author is not sure that there

existsonlyone

D

suitableforourpurposes;yetthehoieof

D

doesnotaet ohomologyof(omotivesof)pro-shemesandofVoevodsky'smotives.

Wealsoexplainhowthedierentialgradedmodulesformalismanbeusedto

dene base hange (extensionand restritionof salars) for omotives. This

allowstoextendourresultsondiretsummandsofomotives(andohomology)

offuntioneldstopro-shemesobtainedfromthemviabasehange. Wealso

dene tensoringof omotivesby motives(in partiular, this yieldsTatetwist

for

D

),as wellasaertainointernalHom(i.e. theorrespondingleftadjoint funtor).

Ÿ6 isdediated to propertiesof omotivesthat arenot (diretly)relatedwith

themain resultsof thepaper;wealsomakeseveralomments. Wereall the

denitionoftheadditiveategory

D gen

ofgenerimotives(studiedin [9℄). We provethat theexatonservativeweight omplex funtororrespondingto

w

(that exists by the generaltheory of weightstrutures) ould bemodiedto

an exatonservative

W C : D s → K b ( D gen )

. Next weprove that a ofun-

tor

Hw → Ab

is representable by a homotopy invariant sheaf with transfers wheneverisonvertsallprodutsinto diretsums.

Wealsonotethatourtheoryouldbeeasilyextended to(o)motiveswitho-

eientsin an arbitraryring. Next wenote (after B. Kahn)that reasonable

motivesofpro-shemeswith ompatsupport doexist in

DM ef f

; thisobser-

vationouldbeusedfortheonstrutionofanalternativemodelfor

D

. Lastly wedesribewhihparts ofourargumentdonotwork (andwhih dowork)in

theaseofanunountable

k

.

A aution: the notion of a weight struture is quite a general formalismfor

triangulated ategories. In partiular, onetriangulated ategoryansupport

several distint weight strutures (note that there is a similar situation with

t

-strutures). In fat, we onstrut an example for suh a situation in this paper(ertainly, muh simplerexamplesexist): wedene theGerstenweight

(9)

struture

w

for

D s

and aChowweightstruture

w Chow

for

D

. Moreover,we showin Ÿ4.9 that these weight struturesare ompatible withertain weight

struturesdenedontheloalizations

D / D (n)

(forall

n > 0

). Thesetwoseries

ofweightstruturesaredenitelydistint: notethat

w

yieldsoniveauspetral

sequenes,whereas

w Chow

yieldsChow-weightspetralsequenes,thatgeneral- izeDeligne'sweightspetralsequenesforétaleandmixedHodgeohomology

(see [6℄ and [7℄). Also,the weightomplex funtoronstruted in [7℄ and [6℄

isquitedistintfromtheoneonsideredinŸ6.1below(eventhetargetsofthe

funtorsmentionedareompletelydistint).

The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M.

Rovinsky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for their

interesting remarks. The author gratefully aknowledges the support from

Deligne 2004 Balzan prize in mathematis. The work is also supported by

RFBR (grantsno. 08-01-00777aand10-01-00287a).

Notation.

Foraategory

C, A, B ∈ ObjC

, wedenoteby

C(A, B)

thesetof

A

-morphismsfrom

A

into

B

.

Forategories

C, D

wewrite

C ⊂ D

if

C

is afullsubategoryof

D

.

Foradditive

C, D

wedenoteby

AddFun(C, D)

theategoryofadditivefuntors

from

C

to

D

(wewillignoreset-theoretidiultiesheresinetheydonotaet ourargumentsseriously).

Ab

istheategoryofabeliangroups. Foranadditive

B

wewilldenote by

B

theategory

AddFun(B, Ab)

andby

B ∗

theategory

AddFun(B op , Ab)

. Note

thatbothoftheseareabelian. Besides,Yoneda'slemmagivesfullembeddings

of

B

into

B ∗

andof

B op

into

B

(thesesend

X ∈ ObjB

to

X ∗ = B(−, X)

and

to

X = B(X, −)

,respetively).

Foraategory

C, X, Y ∈ ObjC

, we saythat

X

is aretrat of

Y

if

id X

ould

be fatorized through

Y

. Note that when

C

is triangulated orabelian then

X

is aretrat of

Y

if and onlyif

X

is itsdiret summand. For any

D ⊂ C

the subategory

D

is alled Karoubi-losed in

C

if it ontains all retrats of

its objets in

C

. We will all the smallest Karoubi-losed subategoryof

C

ontaining

D

the Karoubization of

D

in

C

; sometimes we will use the same

term for the lass of objetsof the Karoubization of afull subategory of

C

(orrespondingtosomesublassof

ObjC

).

Foraategory

C

wedenoteby

C op

itsoppositeategory.

Foranadditive

C

anobjet

X ∈ ObjC

isalledoompatif

C( Q

i∈I Y i , X) = L

i∈I C(Y i , X)

for anyset

I

and any

Y i ∈ ObjC

suh that theprodutexists

(herewedon'tneedtodemandallprodutstoexist,thoughtheyatuallywill

exist below).

For

X, Y ∈ ObjC

wewillwrite

X ⊥ Y

if

C(X, Y ) = {0}

. For

D, E ⊂ ObjC

we

will write

D ⊥ E

if

X ⊥ Y

forall

X ∈ D, Y ∈ E

. For

D ⊂ C

wewilldenote

by

D

thelass

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Sometimes we will denote by

D

the orresponding full subategory of

C

.

Dually,

⊥ D

is the lass

{Y ∈ ObjC : Y ⊥ X ∀X ∈ D}

. This onventionis

(10)

oppositetotheoneofŸ9.1of[21℄.

Inthispaperallomplexeswillbeohomologiali.e. thedegreeofalldieren-

tialsis

+1

;respetively,wewilluseohomologialnotationfortheirterms.

For anadditiveategory

B

wedenote by

C(B)

the ategoryof (unbounded) omplexes overit.

K(B)

will denotethehomotopy ategoryof omplexes. If

B

is alsoabelian,wewilldenote by

D(B)

thederivedategoryof

B

. Wewill

also need ertain bounded analoguesof these ategories (i.e.

C b (B)

,

K b (B)

,

D (B)

).

C

and

D

will usually denote some triangulated ategories. We will use the term 'exat funtor' for afuntor of triangulated ategories (i.e. for a for a

funtorthatpreservesthestruturesoftriangulatedategories).

A

willusuallydenote someabelianategory. Wewill allaovariantadditive

funtor

C → A

for an abelian

A

homologial if it onverts distinguished tri- anglesinto longexatsequenes;homologialfuntors

C op → A

will bealled

ohomologial whenonsideredasontravariantfuntors

C → A

.

H : C op → A

willalwaysbeadditive;itwillusuallybeohomologial.

For

f ∈ C(X, Y )

,

X, Y ∈ ObjC

, wewill allthe third vertex of(any)distin-

guishedtriangle

X → f Y → Z

aoneof

f

. Notethatdierenthoiesof ones

areonnetedbynon-uniqueisomorphisms,f. IV.1.7of[13℄. Besides,in

C(B )

wehaveanonialonesofmorphisms(seesetionŸIII.3ofibid.).

Wewilloftenspeifyadistinguishedtrianglebytwoofitsmorphisms.

When dealing with triangulated ategories we (mostly) use onventions and

auxiliary statements of [13℄. For a set of objets

C i ∈ ObjC

,

i ∈ I

, we will

denoteby

hC i i

thesmalleststritlyfulltriangulatedsubategoryontainingall

C i

;for

D ⊂ C

wewill write

hDi

insteadof

hObjDi

.

We will saythat

C i

generate

C

if

C

equals

hC i i

. We will saythat

C i

weakly

ogenerate

C

iffor

X ∈ ObjC

wehave

C(X, C i [j]) = {0} ∀i ∈ I, j ∈ Z = ⇒ X = 0

(i.e. if

{C i [j]}

ontainsonlyzeroobjets).

We will all a partially ordered set

L

a(ltered) projetive system iffor any

x, y ∈ L

thereexistssomemaximumi.e. a

z ∈ L

suhthat

z ≥ x

and

z ≥ y

. By

abuseofnotation,wewillidentify

L

withthefollowingategory

D

:

ObjD = L

;

D(l , l)

isemptywhenever

l < l

,and onsistsofasinglemorphismotherwise;

the omposition of morphisms is the only one possible. If

L

is a projetive

system,

C

is someategory,

X : L → C

isaovariantfuntor,wewilldenote

X (l)

for

l ∈ L

by

X l

. We will write

Y = lim ←− l∈L X l

for the limit of this

funtor; we will all it the inverse limit of

X l

. We will denote the olimitof

a ontravariant funtor

Y : L → C

by

lim −→ l∈L Y l

and all it the diret limit.

Besides,wewillsometimesalltheategorialimageof

L

withrespettosuh

an

Y

anindutivesystem.

Below

I, L

will often be projetive systems; we will usually require

I

to be

ountable.

A subsystem

L

of

L

is apartially ordered subset in whih maximums exist

(wewillalsoonsidertheorrespondingfullsubategoryof

L

). Wewillall

L

unboundedin

L

ifforany

l ∈ L

thereexistsan

l ∈ L

suhthat

l ≥ l

.

(11)

k

willbeourperfetbaseeld. Belowwewillusuallydemand

k

tobeountable.

Note: thisyieldsthatforanyvarietythesetofitslosed(oropen)subshemes

isountable.

Wealsolistentraldenitions andmainnotationofthispaper.

Firstwelistthemain(general)homologialalgebradenitions.

t

-strutures,

t

-

trunations,andPostnikovtowersintriangulatedategoriesaredenedinŸ1.1;

weightstrutures,weightdeompositions,weighttrunations,weightPostnikov

towers,andweightomplexesareonsideredin Ÿ2.1;virtual

t

-trunationsand nieexatomplexesoffuntorsaredenedinŸ2.3;weightspetralsequenes

arestudiedinŸ2.4;(nie)dualitiesandorthogonalweightand

t

-struturesare

dened in Denition 2.5.1;rightand left weight-exat funtorsare dened in

Denition 2.7.1.

Nowwelist notation (andsome denitions) formotives.

DM gm ef f ⊂ DM − ef f

,

HI

andthehomotopy

t

-struturefor

DM gm ef f

aredenedinŸ1.3;Tatetwistsare

onsideredinŸ1.4;

D naive

isdenedin Ÿ1.5;omotives(

D

and

D

)aredened inŸ3.1;inŸ3.2wedisusspro-shemesandtheiromotives;inŸ3.3wereallthe

denitionofaprimitivesheme;inŸ4.1wedenetheGerstenweightstruture

w

onaertaintriangulated

D s

; weonsider

w Chow

in Ÿ4.7;

D bir

and

w bir

are

dened in Ÿ4.9; several dierential graded onstrutions (inludingextension

and restritionof salarsfor omotives) areonsidered in Ÿ5; wedene

D gen

and

W C : D s → K b ( D gen )

inŸ6.1.

1 Some preliminaries on triangulated categories and motives

Ÿ1.1wereallthenotionofa

t

-struture(andintroduesomenotationforit),

reallthenotionofanidempotentompletion ofanadditiveategory;wealso

reallthatanysmallabelianategoryouldbefaithfullyembeddedinto

Ab

(a

well-knownresultbyMithell).

InŸ1.2 wedesribe(followingH.Krause)anaturalmethod forextendingo-

homologialfuntorsfromafulltriangulated

C ⊂ C

to

C

.

InŸ1.3wereallsomedenitionsandresultsofVoevodsky.

In Ÿ1.4 we reall thenotion of aTate twist; we study the properties of Tate

twistsformotivesandhomotopyinvariantsheaves.

InŸ1.5wedene pro-motives(following[9℄and[10℄). Thesearenotneessary

for ourmain result; yet theyallow to explainour methods stepby step. We

alsodesribeindetailtherelationofouronstrutionsandresultswiththose

ofDeglise.

1.1 t-structures, Postnikov towers, idempotent completions, and an embedding theorem of Mitchell

Toxthenotationwereallthedenitionofa

t

-struture.

Definition

1.1.1

.

Apairofsublasses

C t≥0 , C t≤0 ⊂ ObjC

foratriangulated ategory

C

will be said to dene a

t

-struture

t

if

(C t≥0 , C t≤0 )

satisfy the

followingonditions:

(12)

(i)

C t≥0 , C t≤0

are strit i.e. ontain allobjetsof

C

isomorphito their ele-

ments.

(ii)

C t≥0 ⊂ C t≥0 [1]

,

C t≤0 [1] ⊂ C t≤0

.

(iii)Orthogonality.

C t≤0 [1] ⊥ C t≥0

.

(iv)

t

-deomposition. Forany

X ∈ ObjC

thereexistsadistinguishedtriangle

A → X → B[−1]→A[1]

(1)

suhthat

A ∈ C t≤0 , B ∈ C t≥0

.

Wewillneedsomemorenotationfor

t

-strutures.

Definition

1.1.2

.

1. A ategory

Ht

whoseobjetsare

C t=0 = C t≥0 ∩ C t≤0

,

Ht(X, Y ) = C(X, Y )

for

X, Y ∈ C t=0

,will bealledtheheartof

t

. Reall(f.

Theorem 1.3.6 of [2℄) that

Ht

is abelian (short exat sequenes in

Ht

ome

fromdistinguishedtrianglesin

C

).

2.

C t≥l

(resp.

C t≤l

)willdenote

C t≥0 [−l]

(resp.

C t≤0 [−l]

).

Remark 1.1.3. 1. The axiomatisof

t

-strutures is self-dual: if

D = C op

(so

ObjC = ObjD

)thenoneandenethe(opposite)weightstruture

t

on

D

by

taking

D t ≤0 = C t≥0

and

D t ≥0 = C t≤0

;seepart(iii)ofExamples1.3.2in[2℄.

2. Reall (f. Lemma IV.4.5 in [13℄) that (1) denes additive funtors

C → C t≤0 : X → A

and

C → C t≥0 : X → B

. Wewill denote

A, B

by

X t≤0

and

X t≥1

,respetively.

3. (1)willbealledthet-deompositionof

X

. If

X = Y [i]

forsome

Y ∈ ObjC

,

i ∈ Z

, then we will denote

A

by

Y t≤i

(itbelongsto

C t≤0

)and

B

by

Y t≥i+1

(itbelongsto

C t≥0

),respetively. Sometimeswewilldenote

Y t i [−i]

by

t ≤i Y

;

t ≥i+1 Y = Y t i+1 [−i − 1]

. Objetsofthetype

Y t i [j]

and

Y t i [j]

(for

i, j ∈ Z

)

willbealled

t

-trunationsof

Y

.

4. Wedenoteby

X t=i

the

i

-thohomologyof

X

withrespetto

t

i.e.

(Y t≤i ) t≥0

(f. part10ofŸIV.4of[13℄).

5. The following statements are obvious (and well-known):

C t≤0 = C t≥1

;

C t≥0 = C t≤−1⊥

.

Nowwereallthenotionofidempotentompletion.

Definition

1.1.4

.

An additiveategory

B

is said tobeidempotent omplete

iffor any

X ∈ ObjB

and anyidempotent

p ∈ B(X, X)

there exists adeom-

position

X = Y L

Z

suhthat

p = i ◦ j

, where

i

istheinlusion

Y → Y L Z

,

j

istheprojetion

Y L

Z → Y

.

Reallthatanyadditive

B

anbeanoniallyidempotentompleted. Itsidem-

potentompletion is (by denition) theategory

B

whose objetsare

(X, p)

for

X ∈ ObjB

and

p ∈ B(X, X) : p 2 = p

;wedene

A ((X, p), (X , p )) = {f ∈ B(X, X ) : p f = f p = f }.

(13)

Itanbeeasilyhekedthatthisategoryisadditiveandidempotentomplete,

and for any idempotent omplete

C ⊃ B

we have anatural full embedding

B → C

.

The main result of [1℄ (Theorem 1.5) states that an idempotent ompletion

of atriangulated ategory

C

has anatural triangulation (with distinguished trianglesbeingallretratsofdistinguishedtrianglesof

C

).

Belowwewill needthenotionofaPostnikovtowerinatriangulatedategory

severaltimes(f. ŸIV2of[13℄)).

Definition

1.1.5

.

Let

C

beatriangulatedategory. 1. Let

l ≤ m ∈ Z

.

We will all a bounded Postnikov tower for

X ∈ ObjC

the following data:

a sequene of

C

-morphisms

(0 =)Y l → Y l+1 → · · · → Y m = X

along with

distinguishedtriangles

Y i → Y i+1 → X i

(2)

forsome

X i ∈ ObjC

;here

l ≤ i < m

.

2. An unbounded Postnikovtowerfor

X

is a olletionof

Y i

for

i ∈ Z

that

is equipped (for all

i ∈ Z

) with: onneting arrows

Y i → Y i+1

(for

i ∈ Z

),

morphisms

Y i → X

suh that all the orresponding triangles ommute, and distinguishedtriangles(2).

Inbothases,wewilldenote

X −p [p]

by

X p

;wewillall

X p

thefatorsofout

Postnikovtower.

Remark 1.1.6. 1. Composing (andshifting) arrowsfrom triangles(2) fortwo

subsequent

i

oneanonstrutaomplexwhosetermsare

X p

(itiseasilyseen

that this is aomplexindeed, f. Proposition 2.2.2 of [6℄). This observation

will beimportant forus belowwhen we willonsider ertain weightomplex

funtors.

2. Certainly,abounded Postnikovtowerould beeasily ompleted to anun-

boundedone. Forexample,oneouldtake

Y i = 0

for

i < l

,

Y i = X

for

i > m

;

then

X i = 0

if

i < l

or

i ≥ m

.

Lastly,wereallthefollowing(well-known)result.

Proposition

1.1.7

.

For any small abelian ategory

A

there exists an exat

faithfulfuntor

A → Ab

.

Proof. BytheFreyd-Mithell'sembeddingtheorem,anysmall

A

ouldbefully

faithfully embedded into

R − mod

for some (assoiative unital) ring

R

. It

remainstoapplytheforgetfulfuntor

R − mod → Ab

.

Remark 1.1.8. 1. Wewill needthis statementbelowin order to assumethat

objets of

A

'have elements'; this will onsiderably simplify diagram hase.

Note thatweanassumetheexisteneof elementsforanotneessarilysmall

A

intheasewhenareasoningdealsonlywithanitenumberofobjetsof

A

at atime.

2. In the proof it sues to have afaithful embedding

A → R − mod

; this

weakerassertionwasalsoprovedbyMithell.

(14)

1.2 Extending cohomological functors from a triangulated sub- category

Wedesribeamethod forextendingohomologialfuntorsfrom afull trian-

gulated

C ⊂ C

to

C

(afterH.Krause). Notethatbelowwewillapplysomeof

theresultsof [17℄in thedual form. Theonstrutionrequires

C

to beskele-

tallysmalli.e. thereshould exista(proper) subset

D ⊂ ObjC

suh thatany

objetof

C

isisomorphitosomeelementof

D

. Forsimpliity,wewillsome-

times(whenwritingsumsover

ObjC

)assumethat

ObjC

isasetitself. Sine

thedistintionbetweensmallandskeletallysmallategorieswillnotaetour

argumentsandresults,wewillignoreitintherestofthepaper.

If

A

isanabelianategory,then

AddFun(C ′op , A)

isabelianalso;omplexesin

itareexatwhenevertheyareexatomponentwisely.

Supposethat

A

satisesAB5i.e. itislosedwithrespettoallsmalloprod-

uts,andltereddiretlimitsofexatsequenesin

A

are exat.

Let

H ∈ AddFun(C ′op , A)

beanadditivefuntor(it willusually beohomo-

logial).

Proposition

1.2.1

.

ILet

A, H

bexed.

1. There existsan extension of

H

to an additive funtor

H : C → A

. It is

ohomologial whenever

H

is. Theorrespondene

H → H

denesanadditive

funtor

AddFun(C ′op , A) → AddFun(C op , A)

.

2. Moreover,supposethatin

C

wehaveaprojetivesystem

X l , l ∈ L

,equipped

with a ompatible system of morphisms

X → X l

, suh that the latter system

for any

Y ∈ ObjC

indues an isomorphism

C(X, Y ) ∼ = lim −→ C(X l , Y )

. Then

wehave

H(X ) ∼ = lim −→ H(X l )

.

IILet

X ∈ ObjC

bexed.

1. One an hoose a family of

X l ∈ ObjC

and

f l ∈ C(X, X l )

suh that

(f l )

indue a surjetion

⊕H (X l ) → H(X )

for any

H , A

, and

H

as in assertion

I1.

2. Let

F f

→ G g

→ H

be a (three-term) omplex in

AddFun(C ′op , A)

that

is exat in the middle; suppose that

H

is ohomologial. Then the omplex

F → f G → g H

(here

F, G, H, f, g

are the orresponding extensions) isexat in the middlealso.

Proof. I1. FollowingŸ1.2of[17℄(anddualizingit),weonsidertheabelianat-

egory

C = C ′∗ = AddFun(C , Ab)

(thisis

Mod C op

inthenotationofKrause).

Thedenitioneasilyimpliesthatdiretlimitsin

C

areexatlyomponentwise diretlimitsoffuntors. WehavetheYoneda'sfuntor

i : C op → C

thatsends

X ∈ ObjC

to thefuntor

X = (Y 7→ C(X, Y ), Y ∈ ObjC )

; it isobviously

ohomologial. Wedenoteby

i

therestritionof

i

to

C

(

i

isoppositetoafull

embedding).

ByLemma2.2of[17℄(appliedtotheategory

C ′op

)weobtainthatthereexists

an exatfuntor

G : C → A

that preservesallsmall oproduts andsatises

G ◦ i = H

. Itisonstrutedinthefollowingway: iffor

X ∈ ObjC

wehavean

(15)

exatsequene(in

C

)

⊕ j∈J X j → ⊕ l∈L X l → X → 0

(3)

for

X j , X l ∈ C

,thenweset

G(X ) = Coker ⊕ j∈J H (X j ) → ⊕ l∈L H (X l ).

(4)

We dene

H = G ◦ i

; itwasprovedin lo.it. that weobtaina well-dened

funtor thisway. As was also provedin lo.it.,the orrespondene

H 7→ H

yieldsafuntor;

H

isohomologialif

H

is.

2. The proofoflo.it. shows(andmentions) that

G

respets(small)ltered

inverselimits. Nownotethat ourassertionsimply:

X = lim −→ X l

in

C

.

II1. Thisisimmediatefrom(4).

2. Note that the assertion is obviously valid if

X ∈ ObjC

. We redue the

generalstatementtothisase.

Applying Yoneda's lemma to (3) is weobtain (anonially) some morphisms

f l : X → X l

forall

l ∈ L

and

g lj : X l → X j

forall

l ∈ L

,

j ∈ J

,suhthat: for

any

l ∈ L

almostall

g lj

are

0

; forany

j ∈ J

almost all

g lj

is

0

;for any

j ∈ J

wehave

P

l∈L g lj ◦ f l = 0

.

Now,by Proposition 1.1.7, wemayassumethat

A = Ab

(see Remark 1.1.8).

Weshould hek: iffor

a ∈ G(X)

wehave

g ∗ (a) = 0

, then

a = f ∗ (b)

forsome

b ∈ F (X )

.

Usingadditivityof

C

and

C

,weangathernitesetsof

X l

and

X j

intosingle

objets. Hene we an assume that

a = G(f l 0 )(c)

for some

c ∈ G(X l ) (=

G (X l )), l 0 ∈ L

and that

g ∗ (c) ∈ H (g l 0 j 0 )(H (X j 0 ))

forsome

j 0 ∈ J

, whereas

g l 0 j 0 ◦ f l 0 = 0

. We omplete

X l 0 → X j 0

to a distinguished triangle

Y → α X l 0

g l 0 j 0

→ X j 0

; we an assume that

B ∈ ObjC

. Weobtain that

f l 0

ould be

presentedas

α ◦ β

forsome

β ∈ C(X, Y )

. Sine

H

isohomologial,weobtain that

H (α)(g ∗ (c)) = 0

. Sine

Y ∈ ObjC

, theomplex

F (Y ) → G(Y ) → H (Y )

is exat in the middle; hene

G(α)(c) = f ∗ (d)

for some

d ∈ F (Y )

. Then we

antake

b = F (β)(d)

.

1.3 Some definitions of Voevodsky: reminder

Weusemuhnotationfrom[25℄. Wereall(someof)itherefortheonveniene

ofthereader,andintroduesomenotationof ourown.

V ar ⊃ SmV ar ⊃ SmP rV ar

willdenote thelassof allvarietiesover

k

, resp.

ofsmoothvarieties,resp. ofsmoothprojetivevarieties.

Wereallthatforategoriesofgeometriorigin(inpartiular,for

SmCor

de-

nedbelow)theadditionofobjetsisdenedviathedisjointunionofvarieties

operation.

We dene the ategory

SmCor

of smooth orrespondenes.

ObjSmCor = SmV ar

,

SmCor(X, Y ) = L

U Z

for all integrallosed

U ⊂ X × Y

that are

niteover

X

anddominantoveraonnetedomponentof

X

;theomposition

(16)

oforrespondenesisdenedintheusualwayviaintersetions(yet,wedonot

needtoonsider orrespondenesupto anequivalenerelation).

We will write

· · · → X i−1 → X i → X i+1 → . . .

, for

X l ∈ SmV ar

, for the

orrespondingomplexover

SmCor

.

P reShv(SmCor)

will denote the (abelian) ategory of additive ofuntors

SmCor → Ab

; itsobjetsareusually alledpresheaves withtransfers.

Shv(SmCor) = Shv(SmCor) N is ⊂ P reShv(SmCor)

is theabelianategory

ofadditiveofuntors

SmCor → Ab

thataresheavesintheNisnevihtopology

(whenrestritedtotheategoryofsmoothvarieties);thesesheavesareusually

alledsheaves with transfers.

D (Shv(SmCor))

will be the bounded above derived ategory of

Shv(SmCor)

.

For

Y ∈ SmV ar

(more generally,for

Y ∈ V ar

, see Ÿ4.1of [25℄) weonsider

L(Y ) = SmCor(−, Y ) ∈ Shv(SmCor)

. For a bounded omplex

X = (X i )

(as above) wewill denote by

L(X )

the omplex

· · · → L(X i−1 ) → L(X i ) → L(X i+1 ) → · · · ∈ C b (Shv(SmCor))

.

S ∈ Shv(SmCor)

is alled homotopy invariant if for any

X ∈ SmV ar

the

projetion

A 1 × X → X

givesanisomorphism

S (X ) → S(A 1 × X )

. Wewill

denote theategoryofhomotopy invariantsheaves(withtransfers) by

HI

;it

isanexatabeliansubategoryof

SmCor

byProposition3.1.13of[25℄.

DM − ef f ⊂ D (Shv(SmCor))

isthefullsubategoryofomplexeswhoseoho-

mology sheavesare homotopyinvariant;it is triangulatedbylo.it. Wewill

need the homotopy

t

-struture on

DM − ef f

: it is the restritionof the anon-

ial

t

-struture on

D (Shv(SmCor))

to

DM − ef f

. Below (when dealingwith

DM ef f

)wewill denoteitbyjust by

t

. Wehave

Ht = HI

.

Wereallthefollowingresultsof[25℄.

Proposition

1.3.1

.

1. There exists an exat funtor

RC : D (Shv(SmCor)) → DM ef f

right adjoint to the embedding

DM ef f → D (Shv(SmCor))

.

2.

DM ef f (M gm (Y )[−i], F ) = H i (F)(Y )

(the

i

-th Nisnevih hyperohomology of

F

omputedin

Y

)for any

Y ∈ SmV ar

.

3. Denote

RC ◦ L

by

M gm

. Then the orresponding funtor

K b (SmCor) → DM ef f

ouldbedesribedasaertain loalization of

K b (SmCor)

.

Proof. SeeŸ3of[25℄.

Remark 1.3.2. 1. In[25℄ (Denition 2.1.1)the triangulatedategory

DM gm ef f

(ofeetivegeometri motives)wasdened astheidempotentompletionofa

ertainloalizationof

K b (SmCor)

. Thisdenitionisompatiblewithadier-

entialgradedenhanementfor

DM gm ef f

;f. Ÿ5.3below. YetinTheorem3.2.6of

[25℄ itwasshownthat

DM gm ef f

is isomorphitothe idempotentompletionof

(the ategorialimage)

M gm (C b (SmCor))

;this desriptionof

DM gm ef f

willbe

suientforustillŸ5.

参照

関連したドキュメント

Under suitable assumptions on the weight of the damping and the weight of the delay, we prove the existence and the uniqueness of the solution using the semigroup theory.. Also we

In this section we look at spectral sequences for calculating the homology of the bar and cobar constructions on operads and cooperads in based spaces or spectra.. It turns out that

In this section, we establish a purity theorem for Zariski and etale weight-two motivic cohomology, generalizing results of [23]... In the general case, we dene the

Next, we extend the two-weight estimate to higher order commutators through an abstract two-weight bootstrapping technique, which applies to arbitrary multilinear operators,

In [12], as a generalization of highest weight vectors, the notion of extremal weight vectors is introduced, and it is shown that the uni- versal module generated by an extremal

2 To introduce the natural and adapted bases in tangent and cotangent spaces of the subspaces H 1 and H 2 of H it is convenient to use the matrix representation of

“Breuil-M´ezard conjecture and modularity lifting for potentially semistable deformations after

[Mag3] , Painlev´ e-type differential equations for the recurrence coefficients of semi- classical orthogonal polynomials, J. Zaslavsky , Asymptotic expansions of ratios of