• 検索結果がありません。

YoshiakiFukuma Onthesecondsectionalgeometricgenusofquasi-polarizedmanifolds

N/A
N/A
Protected

Academic year: 2022

シェア "YoshiakiFukuma Onthesecondsectionalgeometricgenusofquasi-polarizedmanifolds"

Copied!
25
0
0

読み込み中.... (全文を見る)

全文

(1)

(de Gruyter 2004

On the second sectional geometric genus of quasi-polarized manifolds

Yoshiaki Fukuma

(Communicated by A. Sommese)

Abstract.LetðX;LÞbe a quasi-polarized manifold of dimX¼n. In a previous paper we gave a new invariant (thei-th sectional geometric genus) ofðX;LÞ, which is a generalization of the degree and the sectional genus ofðX;LÞ. In this paper we study some properties of the second sectional geometric genus.

Key words.Polarized manifolds, sectional genus, sectional geometric genus, Chern class.

2000 Mathematics Subject Classification. 14C20, 14C17, 14J60

0 Introduction

LetX be a projective variety of dimX ¼nover the complex number fieldC, and let Lbe a nef and big (resp. an ample) line bundle onX. Then we call the pairðX;LÞa quasi-polarized(resp.polarized)variety, andðX;LÞis called a quasi-polarized (resp.

polarized)manifoldifXis smooth. In [6], we gave a new invariant ofðX;LÞwhich is called thei-th sectional geometric genus giðX;LÞofðX;LÞfor 0cicn. We note that giðX;LÞis a generalization of the degree Ln and the sectional genusgðLÞ. (Namely g0ðX;LÞ ¼Ln andg1ðX;LÞ ¼gðLÞ.) Here we recall the reason why we call this in- variant the sectional geometric genus. Let ðX;LÞbe a quasi-polarized manifold of dimension nd2 with BsjLj ¼q, where BsjLj is the base locus of jLj. Let i be an integer with 1cicn, and let Y be the transversal intersection of generalniele- ments ofjLj. In this case Y is a smooth projective variety of dimensioni. Then we can prove thatgiðX;LÞ ¼hiðOYÞ, that is,giðX;LÞis the geometric genus ofY.

In [6] we study some fundamental properties of thei-th sectional geometric genus.

We find that we can generalize some problems about the sectional genus to the case of the sectional geometric genus. For example, in [6] we proposed the following conjecture:

Conjecture 0.1.LetðX;LÞbe a quasi-polarized manifold ofdimX¼n and let i be an integer with0cicn.Then giðX;LÞdhiðOXÞ.

(2)

Here we note that if i¼0, then this is true becauseg0ðX;LÞ ¼Lnd1¼h0ðOXÞ. If i¼1, then this is Fujita’s conjecture. (See [3, (13.7)] or [1, Question 7.2.11].) Namely we can find that an inequality gðLÞdh1ðOXÞ is a generalization of an inequality Lnd1. In [6] we proved that this conjecture is true if BsjLj ¼q. Moreover we clas- sified polarized manifoldsðX;LÞwhich satisfy the following properties:

(A) dimXd3, BsjLj ¼q, andg2ðX;LÞ ¼h2ðOXÞ,

(B) dimXd3,Lis very ample, andg2ðX;LÞ ¼h2ðOXÞ þ1.

In a future paper, we will classify polarized manifolds ðX;LÞ such that L is very ample andg2ðX;LÞ h2ðOXÞc5. In [7] we study the conjecture for the case where 0cdim BsjLjcn1.

Furthermore in [6] we proved the following which is analogous to a theorem of Sommese ([11, Theorem 4.1]):

Theorem 0.2([6, Corollary 3.5]).LetðX;LÞbe a polarized manifold ofdimX¼nd3.

Assume that L is spanned.Then the following are equivalent:

(1) g2ðX;LÞ ¼h2ðOXÞ, (2) h0ðKXþ ðn2ÞLÞ ¼0, (3) kðKXþ ðn2ÞLÞ ¼ y,

(4) ðX;LÞis one of the types from(1)to(7-4)in Theorem1.13below.

In this way, it is interesting and very important to study the sectional geometric genus, and we hope that by using this invariant we can study polarized manifolds more deeply.

In this paper, we mainly study the second sectional geometric genus of (quasi-) polarized manifolds. The contents of this paper are the following: In Section 1, we prepare for some results which are used later. In Section 2, we give an explicit for- mula of the second sectional geometric genus of quasi-polarized manifolds. In Sec- tion 3, we study the second sectional geometric genus of polarized manifolds and we obtain the following:

(1) We give a lower bound ofg2ðX;LÞfor dimXd4 and kðXÞd0. (Theorem 3.5 (1).) In particular we get thatg2ðX;LÞdh1ðOXÞ. (Corollary 3.5.2 (1).)

(2) We give some numerical conditions ofðX;LÞwithg2ðX;LÞ ¼0 if dimXd4 and kðXÞd0. (Corollary 3.5.4.)

(3) We prove thatg2ðX;2LÞd0 for dimX ¼3. (Theorem 3.7 and Corollary 3.7.1.) (4) We give a classification of ðX;LÞ with dimX ¼3 and g2ðX;2LÞ ¼0. (Proposi-

tion 3.10 and Proposition 3.11.)

(5) We study the case where dimXd3,KX is nef andkðXÞd0. (Theorem 3.5 (2), Corollary 3.5.2 (2), and Proposition 3.9.)

(3)

The author would like to thank the referee for giving very valuable comments on the first version of this paper. In particular, the assertion of Theorem 3.5 was im- proved by the referee’s comment.

Notation and Conventions.In this paper, we shall study mainly a smooth projective varietyX over the complex number fieldC. The words ‘‘line bundles’’ and ‘‘Cartier divisors’’ are used interchangeably.

OðDÞ: invertible sheaf associated with a Cartier divisorDonX. OX: the structure sheaf ofX.

wðFÞ: the Euler–Poincare´ characteristic of a coherent sheafF.

hiðFÞ ¼dimHiðX;FÞfor a coherent sheafFonX. hiðDÞ ¼hiðOðDÞÞfor a divisorD.

jDj: the complete linear system associated with a divisorD.

KX: the canonical divisor ofX.

kðDÞ: Iitaka dimension of a Cartier divisorDonX. kðXÞ: Kodaira dimension ofX.

Pn: projective space of dimensionn.

Qn: hyperquadric surface inPnþ1.

@(or¼): linear equivalence.

1: numerical equivalence.

1 Preliminaries

Definition 1.1. Let X be a normal projective variety of dimX¼n, and let E be a vector bundle onX. LetU¼ ðh1;. . .;hn1Þbe anðn1Þ-tuple of numerically e¤ec- tiveQ-divisors onX. ThenEis said to beU-semistableif

dUðFÞcdUðEÞ for every nonzero subsheafFofE, where

dUðGÞ:¼c1ðGÞh1. . .hn1

rankG for any torsion free sheafGonX.

Theorem 1.2(Harder–Narashimhan filtration).Let X be a normal projective variety of dimX ¼n and letEbe a torsion free sheaf on X.LetU¼ ðh1;. . .;hn1Þbe anðn1Þ- tuple of numerically e¤ectiveQ-divisors on X.Then there exists a unique filtration

(4)

SU:0¼E0YE1Y YEs¼E that has the following properties:for any integer i with1cics (1) GriðSUÞ:¼Ei=Ei1is a torsion freeU-semistable sheaf, (2) dUðGriðSUÞÞis a strictly decreasing function on i.

Proof.See [10, Theorem 2.1]. r

Remark 1.2.1.We say that the above filtrationSU ofEis theHarder–Narashimhan filtration ofEwith respect toU.

Definition 1.3.(1) The coherent subsheafE1in Theorem 1.2 is said to be themaximal U-destabilizing subsheaf ofE.

(2) LetX be a normal projective variety of dimX ¼n and let U¼ ðh1;. . .;hn2Þ be aðn2Þ-tuple of numerically e¤ectiveQ-divisors onX. A torsion free sheafEon X is said to begenericallyU-semipositiveif for every numerically e¤ectiveQ-divisor DonX,dðU;DÞððEÞ1Þc0, whereEdenotes the dual ofE, andðEÞ1is the maximal ðU;DÞ-destabilizing subsheaf ofE. (See [10, Section 6].)

Theorem 1.4.Let X be a normal projective variety ofdimX ¼n such that X is smooth in codimension two.Let NAðXÞHfPicðXÞ=numerical equivalencegnRbe the ample cone.LetEbe a torsion free sheaf on X,with its first Chern class being a numerically e¤ective Q-divisor.Assume that E is generically B-semipositive,where B¼ ðh1;. . .; hn2Þand hiANAðXÞQfor each i.Then

c2ðEÞh1. . .hn2d0:

Proof.See [10, Theorem 6.1]. r

Theorem 1.5.Let X be a smooth projective variety ofdimX¼n.Let H1;. . .;Hn2be ample Cartier divisors on X.ThenWX1 is genericallyðH1;. . .;Hn2Þ-semipositive unless X is uniruled. (For the definition that X is uniruled,see Definition1.15below.)

Proof.See [10, Corollary 6.4]. r

Theorem 1.6(Hirzebruch–Riemann–Roch). Let X be a smooth complete variety and letEbe a locally free sheaf on X.Then

wðEÞ ¼ ð

X

chðEÞtdðTXÞ;

whereTX is the tangent bundle of X, chðEÞ(resp.tdðTXÞ)is the Chern character ofE (resp. the Todd class ofTX),and Ð

X denotes the degree of the zero-dimensional com- ponent ofðchðEÞtdðTXÞÞV½X.

(5)

Proof.See [9, Chapter Four]. r Notation 1.7. Let ðX;LÞ be a quasi-polarized manifold of dimX ¼nd3 and BsjLj ¼q. (Here BsjLjdenotes the base locus ofjLj.) We putX0:¼X andL0:¼L.

LetXiAjLi1jbe a smooth member ofjLi1jandLi¼Li1jXi for 1cicn1.

Definition 1.8.LetðX;LÞbe a quasi-polarized variety of dimX ¼n, and letwðtLÞbe the Euler–Poincare´ characteristic oftL. Here we put

wðtLÞ ¼Xn

j¼0

wjðX;LÞt½j j! ;

where t½j¼tðtþ1Þ. . .ðtþ j1Þ for jd1 and t½0¼1. Then the sectional genus gðLÞofðX;LÞis defined by the following:

gðLÞ ¼1wn1ðX;LÞ:

Remark 1.8.1.IfX is smooth, then the sectional genus ofðX;LÞcan be expressed by the following formula:

gðLÞ ¼1þ1

2ðKXþ ðn1ÞLÞLn1; whereKX is the canonical divisor ofX.

Definition 1.9 (See [6, Definition 2.1]). Let ðX;LÞ be a quasi-polarized variety of dimX ¼n. Then for an integer 0cicn thei-th sectional geometric genus giðX;LÞ ofðX;LÞis defined by the following formula:

giðX;LÞ ¼ ð1ÞiðwniðX;LÞ wðOXÞÞ þXni

j¼0

ð1ÞnijhnjðOXÞ:

(Here we use notation in Definition 1.8.)

Remark 1.9.1.(1) SincewniðX;LÞAZ,giðX;LÞis an integer by definition.

(2) Ifi¼0 (resp.i¼1), thengiðX;LÞis equal to the degree (resp. the sectional genus) ofðX;LÞ.

(3) Ifi¼n, thengnðX;LÞ ¼hnðOXÞ, andgnðX;LÞis independent ofL.

Theorem 1.10.LetðX;LÞbe a quasi-polarized manifold ofdimX ¼n.Let i be an inte- ger such that0cicn1.Then

giðX;LÞ ¼ ni1X

j¼0

ð1Þj ni j

h0ðKXþ ðnijÞLÞ þXni

k¼0

ð1ÞnikhnkðOXÞ:

(6)

Proof.See [6, Theorem 2.3]. r Theorem 1.11. Let X be a variety of dimX ¼n and let L1;L2;A1;. . .;An2 be nef Q-bundles on X.Then

ðL1L2A1. . .An2Þ2dðL1L1A1. . .An2ÞðL2L2A1. . .An2Þ:

Proof.See [3, (0.4.6)], or [1, Proposition 2.5.1]. r Definition 1.12. (1) LetX (resp.Y) be an n-dimensional projective manifold, andL (resp.A) an ample line bundle onX(resp.Y). ThenðX;LÞis called asimple blowing up ofðY;AÞif there exists a birational morphismp:X !Y such thatpis a blowing up at a point ofY andL¼pðAÞ E, whereEis thep-exceptional reduced divisor.

(2) Let X (resp.Y) be ann-dimensional projective manifold, andL (resp.A) an ample line bundle on X (resp. Y). Here we put ðX0;L0Þ:¼ ðX;LÞ. Then we say that ðY;AÞis the first reduction ofðX;LÞif there exist polarized manifoldsðXj;LjÞ for 1cjctþ1 and birational morphisms mj:Xj!Xjþ1 for 0cjct such that ðXtþ1;Ltþ1Þ ¼ ðY;AÞ,ðXj;LjÞ is a simple blowing up ofðXjþ1;Ljþ1Þ for any j with 0cjct, andðY;AÞis not obtained by a simple blowing up of any polarized mani- fold. The birational morphismm:¼mt m0:X !Y is called thefirst reduction map.

Remark 1.12.1. If ðX;LÞ is not obtained by a simple blowing up of any polarized manifold, thenðX;LÞis the first reduction of itself.

Theorem 1.13. Let ðX;LÞ be a polarized manifold of n¼dimXd3.ThenðX;LÞis one of the following types:

(1) ðPn;Oð1ÞÞ, (2) ðQn;Oð1ÞÞ,

(3) a scroll over a smooth curve,

(4) KX@ðn1ÞL,that is,ðX;LÞis a Del Pezzo manifold, (5) a hyperquadric fibration over a smooth curve,

(6) a scroll over a smooth surface,

(7) letðX0;L0Þbe the first reduction ofðX;LÞ, (7-1) n¼4,ðX0;L0Þ ¼ ðP4;Oð2ÞÞ, (7-2) n¼3,ðX0;L0Þ ¼ ðQ3;Oð2ÞÞ, (7-3) n¼3,ðX0;L0Þ ¼ ðP3;Oð3ÞÞ,

(7-4) n¼3,X0is aP2-bundle over a smooth curve C withðF0;L0jF0Þ ¼ ðP2;Oð2ÞÞ for any fiber F0of it,

(8) KX0þ ðn2ÞL0is nef.

(7)

Proof.See [1, Proposition 7.2.2, Theorem 7.2.4, Theorem 7.3.2, and Theorem 7.3.4].

See also [4]. r

Remark 1.13.1.ðX;LÞis the type (1) (resp. the type (1), (2), or (3)) in Theorem 1.13 if and only ifKXþnL(resp.KXþ ðn1ÞL) is not nef.

Proposition 1.14. Let ðX;LÞ be a polarized manifold of dimX ¼n, and let i be an integer with 1cicn.Let ðM;AÞbe the first reduction of ðX;LÞ. Then giðX;LÞ ¼ giðM;AÞ.

Proof.See [6, Proposition 2.6]. r

Definition 1.15.A varietyX of dimensionnis said to beuniruledif there exist a vari- etyY of dimensionn1 and a dominant rational mapP1YdX. (Here we note thatPnis uniruled.)

Definition 1.16(See [1, (13.1)]). LetX be a normal and 1-Gorenstein projective vari- ety of dimX ¼n and letLbe a line bundle onX. For an integer jwith 0cjcn, the j-th pluridegree djðLÞof the pairðX;LÞis defined as

djðLÞ:¼ ðKXþ ðn2ÞLÞjLnj;

whereKX is the canonical sheaf ofX.

Remark 1.16.1. Let ðX;LÞ be as in Definition 1.16. Then by easy calculations, we obtain the following:

(1) KXLn1 ¼d1ðLÞ ðn2Þd0ðLÞ,

(2) KX2Ln2 ¼d2ðLÞ 2ðn2Þd1ðLÞ þ ðn2Þ2d0ðLÞ.

Lemma 1.17.Let X be a smooth projective variety of dimX ¼nd3 and let L be an ample line bundle on X. Assume that kðXÞd0.Let ðM;AÞbe the first reduction of ðX;LÞ.Let djðAÞbe the j-th pluridegree ofðM;AÞ.Then for j¼1;. . .;n,

djðAÞdðn2Þdj1ðAÞ:

Furthermore ifkðXÞd1,then the inequalities are strict.

Proof.See [1, Lemma 13.1.3]. r

2 An explicit formula for the second sectional geometric genus

In this section we will give an explicit formula for the second sectional geometric genus of quasi-polarized manifolds.

(8)

Proposition 2.1.LetðX;LÞbe a quasi-polarized manifold ofdimX ¼3.Then g2ðX;LÞ ¼ 1þh1ðOXÞ þ 1

12ððKXþ2LÞðKXþLÞ þc2ÞL;

where c2 is the second Chern class of X.

Proof.By the Hirzebruch–Riemann–Roch theorem (see Theorem 1.6), we get that wðLÞ ¼ 1

6L3þ1

4c1L2 1

12ðc12þc2ÞLþ 1 24c1c2;

where ci¼ciðTXÞ for the tangent bundle TX of X. By the Kawamata–Viehweg vanishing theorem and the Serre duality, we have

h0ðKXþLÞ ¼wðLÞ:

Hence

h0ðKXþLÞ ¼1 6L31

4c1L2þ 1

12ðc12þc2ÞL 1 24c1c2: By the Hirzebruch–Riemann–Roch theorem, we obtain that

wðOXÞ ¼ 1 24c1c2: Therefore sincec1 ¼ KX, we get that

h0ðKXþLÞ ¼1 6L3þ1

4KXL2þ 1

12ðKX2 þc2ÞLwðOXÞ

¼1 6L3þ1

4KXL2þ 1

12ðKX2 þc2ÞL ð1h1ðOXÞ þh2ðOXÞ h3ðOXÞÞ

¼ 1

12ð2L3þ3KXL2þKX2LÞ þ 1

12c2L ð1h1ðOXÞ þh2ðOXÞ h3ðOXÞÞ

¼ 1

12ððKXþ2LÞðKXþLÞ þc2ÞL1þh1ðOXÞ h2ðOXÞ þh3ðOXÞ:

So by Theorem 1.10 we get the assertion. r

Next we consider the case in which dimXd4.

Proposition 2.2. LetðX;LÞbe a quasi-polarized manifold of dimX¼nd4.Assume that L is spanned.Then

(9)

g2ðX;LÞ ¼ 1þh1ðOXÞ þ 1

12ððKXþ ðn1ÞLÞðKXþ ðn2ÞLÞ þc2ÞLn2 þn3

24 ð2KXþ ðn2ÞLÞLn1:

Proof. Here we use Notation 1.7. ThenðXn3;Ln3Þ is a quasi-polarized manifold with dimXn3¼3 and BsjLn3j ¼q. Then we can prove that by the adjunction formula

ðKXþ ðn1ÞLÞðKXþ ðn2ÞLÞLn2 ¼ ðKXn3þ2Ln3ÞðKXn3þLn3ÞLn3: By the exact sequence

0!TXiþ1 !rðTXiÞ !OðLiÞjXiþ1!0;

we get that

cðrðTXiÞÞ ¼cðTXiþ1ÞcðOðLiÞjXiþ1Þ;

wherer:Xiþ1!Xiis the embedding,TXj is the tangent bundle ofXjfor j¼i,iþ1, andcðEÞdenotes the total Chern class of a vector bundleE. So we obtain that

c2ðXiÞjXiþ1¼c1ðXiþ1ÞOðLiÞjXiþ1þc2ðXiþ1Þ

¼ KXiþ1Liþ1þc2ðXiþ1Þ:

Here we note that n3

2 ð2KXþ ðn2ÞLÞLn1¼ ðKXþLÞLn1þ þ ðKXþ ðn3ÞLÞLn1: Therefore

c2ðXÞLn2þn3

2 ð2KXþ ðn2ÞLÞLn1

¼c2ðXÞjX1L1n3þKX1L1n2þ ðKX1þL1ÞL1n2þ þ ðKX1þ ðn4ÞL1ÞL1n2

¼c2ðX1ÞL1n3þ ðKX1þL1ÞL1n2þ þ ðKX1þ ðn4ÞL1ÞL1n2

¼

¼c2ðXn4ÞL2n4þ ðKXn4þLn4ÞL3n4

¼c2ðXn4ÞjXn3Ln3þKXn3L2n3

¼c2ðXn3ÞLn3:

(10)

We also note that h1ðOXÞ ¼h1ðOXn3Þ. By [6, Theorem 2.4] we get that g2ðXn3; Ln3Þ ¼g2ðX;LÞ. Therefore

1þh1ðOXÞ þ 1

12ððKXþ ðn1ÞLÞðKXþ ðn2ÞLÞ þc2ÞLn2 þn3

24 ð2KXþ ðn2ÞLÞLn1

¼ 1þh1ðOXn3Þ þ 1

12ððKXn3þ2Ln3ÞðKXn3þLn3Þ þc2ðXn3ÞÞLn3

¼g2ðXn3;Ln3Þ

¼g2ðX;LÞ:

This completes the proof of Proposition 2.2. r

Corollary 2.3.LetðX;LÞbe a quasi-polarized manifold of n¼dimXd3.Then g2ðX;LÞ ¼ 1þh1ðOXÞ þ 1

12ððKXþ ðn1ÞLÞðKXþ ðn2ÞLÞ þc2ÞLn2 þn3

24 ð2KXþ ðn2ÞLÞLn1: Proof.LetAbe an ample line bundle onX. We put

fðtÞ ¼ 1þh1ðOXÞ þ 1

12ððKXþ ðn1ÞðLþtAÞÞðKXþ ðn2ÞðLþtAÞÞ þc2Þ ðLþtAÞn2þn3

24 ð2KXþ ðn2ÞðLþtAÞÞðLþtAÞn1:

Here we note thatg2ðX;LþtAÞis a polynomial in one indeterminatetby Theorem 1.6 and Definition 1.9, and fðtÞ is also a polynomial in one indeterminate t. If BsjLþtAj ¼q, then g2ðX;LþtAÞ ¼ fðtÞby Proposition 2.2. But since there are infinitely many t with BsjLþtAj ¼q, we have g2ðX;LþtAÞ ¼ fðtÞ for any t. In particularg2ðX;LÞ ¼ fð0Þand we get the assertion. r

3 Properties of the second sectional geometric genus of polarized manifolds In this section, we assume that X is smooth and L is ample. We study the second sectional geometric genus of a polarized manifoldðX;LÞ. First we prove the follow- ing lemma.

Lemma 3.1. Let X be a smooth projective variety of dimX¼nd3, and let L,

H1;. . .;Hn2be ample Cartier divisors on X.We putU¼ ðH1;. . .;Hn2Þ.LetEbe a

vector bundle on X such that E is generically U-semipositive. Then EnL is also genericallyU-semipositive.

(11)

Proof. LetDbe a numerically e¤ectiveQ-divisor onX and let W¼ ðH1;. . .;Hn2; DÞ. Let

SW:0¼ ðEÞ0YðEÞ1Y YðEÞs¼E

be the Harder–Narashimhan filtration of E with respect to W. Then by Theorem 1.2 for any integeriwith 1cicsthe following are satisfied:

ð€Þ GriðSWÞ:¼ ðEÞi=ðEÞi1is a torsion freeW-semistable sheaf,

ð€€Þ dWðGriðSWÞÞ:¼dWððEÞi=ðEÞi1Þis a strictly decreasing function oni.

SinceEis genericallyU-semipositive, we get that c1ððEÞ1ÞH1. . .Hn2D

rankðEÞ1 c0:

Claim 3.1.1.The Harder–Narashimhan filtration ofðEnLÞwith respect toWis the following:

SWnL:0¼ ðEÞ0nLYðEÞ1nLY YðEÞsnL

¼EnL¼ ðEnLÞ:

Proof. (A) First we prove that GriðSWnLÞ is a torsion free W-semistable sheaf.

We find that GriðSWnLÞ ¼ ððEÞinLÞ=ððEÞi1nLÞ ¼ ððEÞi=ðEÞi1ÞnL is torsion free. For any subsheafF ofððEÞinLÞ=ððEÞi1nLÞ we obtain that FnLis a subsheaf ofðEÞi=ðEÞi1and by usingð€Þwe get that

c1ðFnLÞH1. . .Hn2D

rankðFnLÞ cc1ððEÞi=ðEÞi1ÞH1. . .Hn2D rankððEÞi=ðEÞi1Þ : Since

c1ðFnLÞH1. . .Hn2D

rankðFnLÞ ¼c1ðFÞH1. . .Hn2D

rankF þLH1. . .Hn2D;

we get that

c1ðFÞH1. . .Hn2D

rankF ¼c1ðFnLÞH1. . .Hn2D

rankðFnLÞ LH1. . .Hn2D cc1ððEÞi=ðEÞi1ÞH1. . .Hn2D

rankððEÞi=ðEÞi1Þ LH1. . .Hn2D

¼c1ðððEÞi=ðEÞi1ÞnLÞH1. . .Hn2D rankððEÞi=ðEÞi1Þ

¼c1ðððEÞinLÞ=ððEÞi1nLÞÞH1. . .Hn2D rankðððEÞinLÞ=ððEÞi1nLÞÞ : ThereforeððEÞinLÞ=ððEÞi1nLÞisW-semistable.

(12)

(B) Next we prove thatdWðGriðSWnLÞÞis a strictly decreasing function oni. By usingð€€Þ, we get that

dWðGriðSWnLÞÞ dWðGriþ1ðSWnLÞÞ

¼c1ðððEÞi=ðEÞi1ÞnLÞH1. . .Hn2D rankðððEÞi=ðEÞi1ÞnLÞ c1ðððEÞiþ1=ðEÞiÞnLÞH1. . .Hn2D

rankðððEÞiþ1=ðEÞiÞnLÞ

¼c1ððEÞi=ðEÞi1ÞH1. . .Hn2D

rankðððEÞi=ðEÞi1ÞnLÞ c1ððEÞiþ1=ðEÞiÞH1. . .Hn2D rankðððEÞiþ1=ðEÞiÞnLÞ

¼c1ððEÞi=ðEÞi1ÞH1. . .Hn2D

rankððEÞi=ðEÞi1Þ c1ððEÞiþ1=ðEÞiÞH1. . .Hn2D rankððEÞiþ1=ðEÞiÞ >0:

ThereforeSWnLis the Harder–Narashimhan filtration ofEnLwith respect toW. This completes the proof of Claim 3.1.1. r By Claim 3.1.1, the maximal W-destabilizing subsheaf of EnL is ðEÞ1nL. SinceEis genericallyU-semipositive andLis ample, we have

dðU;DÞððEnLÞ1Þ ¼dðH1;...;Hn2;DÞððEÞ1nLÞ

¼c1ððEÞ1nLÞH1. . .Hn2D rankððEÞ1nLÞ

¼c1ððEÞ1ÞH1. . .Hn2D

rankððEÞ1nLÞ LH1. . .Hn2D

¼c1ððEÞ1ÞH1. . .Hn2D

rankðEÞ1 LH1. . .Hn2Dc0:

HenceEnLis genericallyU-semipositive. r

By Theorem 1.5 and Lemma 3.1 we get the following.

Corollary 3.2. Let X be a smooth projective variety of dimX¼nd3, and let L;

H1;. . .;Hn2 be ample Cartier divisors on X. Then W1XnL is generically ðH1;. . .;

Hn2Þ-semipositive unless X is uniruled.

Corollary 3.3.Let X be a smooth projective variety ofdimX¼nd3,and let L be an ample divisor on X.If X is not uniruled,then c2ðWX1 nLÞLn2d0.

Proof. By Corollary 3.2, we get that W1XnL is generically ðL;. . .;LÞ-semipositive.

On the other handc1ðWX1 nLÞ ¼KXþnL is nef unlessX is uniruled. (See Remark 1.13.1.) Hence by Theorem 1.4, we havec2ðWX1 nLÞLn2d0. r

(13)

Proposition 3.4.Let X be a smooth projective variety ofdimX ¼nd3.Let L be an ample Cartier divisor on X.If X is not uniruled,then

c2ðXÞLn2d n

2 Ln ðn1ÞKXLn1: Proof.By [8, Example 3.2.2], we get that

c2ðWX1 nLÞ ¼X2

i¼0

ni 2i

ciðWX1ÞL2i

¼ n

2 L2þ n1 1

c1ðWX1ÞLþc2ðWX1Þ

¼ n

2 L2þ n1 1

KXLþc2ðWX1Þ:

Therefore

c2ðWX1 nLÞLn2¼ n

2 Lnþ n1 1

KXLn1þc2ðWX1ÞLn2: Becausec2ðWX1ÞLn2¼c2ðXÞLn2, by Corollary 3.3 we have

0cc2ðWX1 nLÞLn2¼ n

2 Lnþ n1 1

KXLn1þc2ðXÞLn2: Namely

c2ðXÞLn2d n

2 Ln ðn1ÞKXLn1:

This completes the proof of Proposition 3.4. r

Theorem 3.5.LetðX;LÞbe a polarized manifold ofdimX ¼n.Assume thatkðXÞd0.

LetðM;AÞbe the first reduction ofðX;LÞ,and letgbe the number of points blown up under the first reduction map.

(1) If nd4,then

g2ðX;LÞd1þh1ðOXÞ þLnþg

12 ðn25nþ5Þ:

(2) If nd3and KX is nef,then

g2ðX;LÞd1þh1ðOXÞ þ 1

24ð3n211nþ10ÞLn:

(14)

Proof.(1) First we note that by Proposition 1.14,g2ðX;LÞ ¼g2ðM;AÞ. So we calcu- lateg2ðM;AÞ. Here we note thatM is not uniruled becausekðMÞd0. So by Prop- osition 3.4 we have

c2ðMÞAn2d n

2 An ðn1ÞKMAn1: On the other hand,

ðKMþ ðn1ÞAÞðKM þ ðn2ÞAÞAn2þc2ðMÞAn2 dðKMþ ðn1ÞAÞðKMþ ðn2ÞAÞAn2 n

2 An ðn1ÞKMAn1

¼ ðKM þ ðn1ÞAÞðKMþ ðn2ÞAÞAn2

ðn1ÞðKMþ ðn2ÞAÞAn1þ ðn1Þðn2Þ ðn1Þn 2

An

¼KMðKMþ ðn2ÞAÞAn2þ ðn1Þ n 22

An: ð3:5:aÞ

LetdjðAÞbe the j-th pluridegree ofðM;AÞ, that is,

djðAÞ:¼ ðKMþ ðn2ÞAÞjAnj:

By (1) and (2) in Remark 1.16.1, we get that

KMðKMþ ðn2ÞAÞAn2þ ðn1Þ n 22

An

¼d2ðAÞ ðn2Þd1ðAÞ þðn1Þðn4Þ

2 d0ðAÞ; ð3:5:bÞ ð2KMþ ðn2ÞAÞAn1¼2d1ðAÞ ðn2Þd0ðAÞ: ð3:5:cÞ Therefore by Corollary 2.3 and by (3.5.a), (3.5.b), and (3.5.c), we obtain that

g2ðM;AÞ ¼ 1þh1ðOMÞ þ 1

12ðKMþ ðn1ÞAÞðKMþ ðn2ÞAÞAn2 þ 1

12c2ðMÞAn2þn3

24 ð2KMþ ðn2ÞAÞAn1 d1þh1ðOMÞ þ 1

12KMðKMþ ðn2ÞAÞAn2 þ 1

12ðn1Þ n 22

Anþn3

24 ð2KMþ ðn2ÞAÞAn1

(15)

¼ 1þh1ðOMÞ þ 1

12ðd2ðAÞ ðn2Þd1ðAÞÞ þðn1Þðn4Þ

24 d0ðAÞ þn3

24 ð2d1ðAÞ ðn2Þd0ðAÞÞ

¼ 1þh1ðOMÞ þ 1

12ðd2ðAÞ d1ðAÞ d0ðAÞÞ:

SincekðXÞd0, by Lemma 1.17 we get that for j¼1;. . .;n djðAÞdðn2Þdj1ðAÞ:

Therefore

g2ðM;AÞd1þh1ðOMÞ þ 1

12ðd2ðAÞ d1ðAÞ d0ðAÞÞ d1þh1ðOMÞ þ 1

12ððn2Þd1ðAÞ d1ðAÞ d0ðAÞÞ d1þh1ðOMÞ þ 1

12ððn3Þðn2Þ 1Þd0ðAÞ

¼ 1þh1ðOMÞ þ 1

12ðn25nþ5Þd0ðAÞ:

Sinced0ðAÞ ¼Lnþgandh1ðOMÞ ¼h1ðOXÞ, we get the assertion (1).

(2) Assume that nd3 and KX is nef. In this case ðX;LÞGðM;AÞbecauseKX is nef. We also note thatc2ðXÞLn2d0 by Miyaoka’s theorem ([10, Theorem 6.6]).

Hence by Corollary 2.3

g2ðX;LÞd1þh1ðOXÞ þ 1

12ðKXþ ðn1ÞLÞðKXþ ðn2ÞLÞLn2 þn3

24 ð2KXþ ðn2ÞLÞLn1: By using (1) and (2) in Remark 1.16.1 we obtain that

ðKXþ ðn1ÞLÞðKXþ ðn2ÞLÞLn2¼d2ðLÞ þd1ðLÞ;

and

ð2KXþ ðn2ÞLÞLn1¼2d1ðLÞ ðn2ÞLn: Hence

g2ðX;LÞd1þh1ðOXÞ þd2ðLÞ þd1ðLÞ

12 þn3

24 ð2d1ðLÞ ðn2ÞLnÞ

¼ 1þh1ðOXÞ þd2ðLÞ

12 þn2

12 d1ðLÞ n25nþ6 24 Ln:

(16)

By using Lemma 1.17, we obtain that

g2ðX;LÞd1þh1ðOXÞ þ ðn2Þ2

6 n25nþ6 24

! Ln

¼ 1þh1ðOXÞ þ3n211nþ10 24 Ln:

We get the assertion (2). r

Remark 3.5.1. In both cases of Theorem 3.5, if kðXÞd1, then the inequalities are strict by Lemma 1.17.

Corollary 3.5.2.LetðX;LÞbe a polarized manifold of dimX¼n.

(1) Ifnd4 andkðXÞd0, theng2ðX;LÞdh1ðOXÞ.

(2) Ifn¼3,kðXÞd0, andKX is nef, theng2ðX;LÞdh1ðOXÞ.

Proof.(1) By Theorem 3.5 (1), we obtain that g2ðX;LÞd1þh1ðOXÞ þLnþg

12 ðn25nþ5Þ:

Sincend4,gd0, andLnd1, we get that Lnþg

12 ðn25nþ5Þ>0:

Henceg2ðX;LÞ>h1ðOXÞ 1. Becauseg2ðX;LÞis an integer, we obtain the assertion (1).

(2) Assume that n¼3, kðXÞd0, and KX is nef. Then by Theorem 3.5 (2), we obtain that

g2ðX;LÞd1þh1ðOXÞ þ1 6L3:

SinceL3d1, we get thatg2ðX;LÞ>h1ðOXÞ 1. Becauseg2ðX;LÞis an integer, we

obtain the assertion (2). r

Remark 3.5.3. (1) Let ðX;LÞ be a polarized manifold of dimX¼n such that kðXÞd0.

(1.1) Ifnd7, then by Theorem 3.5 (1) we get thatg2ðX;LÞdh1ðOXÞ þ1.

(1.2) If KX is nef and nd5, then by Theorem 3.5 (2) we get that g2ðX;LÞd h1ðOXÞ þ1.

(17)

(2) The inequality in Corollary 3.5.2 (2) is best possible. Namely, there exists an example ofðX;LÞsuch that dimX ¼3,kðXÞd0,KX is nef, andg2ðX;LÞ ¼h1ðOXÞ.

LetX ¼Cð3Þbe a symmetric product of a smooth projective curveCof genus three.

Letp:CCC!Cð3Þbe the natural map and letp:CCC!Cbe the first projection. We putL¼pðpðxÞÞforxAC. ThenkðXÞd0 andKX is nef. Further- moreg2ðX;LÞ ¼3¼h1ðOXÞ.

By Theorem 3.5 (1), we can give numerical conditions for polarized manifolds ðX;LÞwithg2ðX;LÞ ¼0,kðXÞd0, and dimXd4.

Corollary 3.5.4. Let ðX;LÞ be a polarized manifold of dimX¼nd4. Assume that kðXÞd0. Let g be the number of points blown up under the first reduction map. If g2ðX;LÞ ¼0,then h1ðOXÞ ¼0and

(1) Lnþgc12for n¼4;

(2) Lnþgc2for nd5;

(2.a) If nd5and Lnþg¼2,then n¼5;

(2.b) If nd5and Lnþg¼1,then n¼5;6.

Proof.Assume thatg2ðX;LÞ ¼0. By Corollary 3.5.2 (1), we get thath1ðOXÞ ¼0.

(1) Ifn¼4, then

Lnþg

12 ðn25nþ5Þ ¼L4þg 12 : Because by Theorem 3.5 (1)

0¼g2ðX;LÞd1þL4þg 12 ; we obtain thatL4þgc12 and we get the assertion (1).

(2) Ifnd5, then

Lnþg

12 ðn25nþ5Þd 5

12ðLnþgÞ:

Hence by Theorem 3.5 (1)

0¼g2ðX;LÞd1þ 5

12ðLnþgÞ;

and we obtain thatLnþgc2 becauseLnþgis an integer.

(2.a) IfLnþg¼2, then

0¼g2ðX;LÞd1þ1

6ðn25nþ5Þ: Namelyn25n1c0. Sincend5, we get thatn¼5.

(18)

(2.b) IfLnþg¼1, then

0¼g2ðX;LÞd1þ 1

12ðn25nþ5Þ:

Namelyn25n7c0. Sincend5, we get that 5cnc6.

This completes the proof of Corollary 3.5.4. r

Here we consider the case wherekðXÞ ¼ y.

Proposition 3.6. Let ðX;LÞ be a polarized manifold of dimX ¼n such that kðXÞ ¼ yand X is not uniruled.Then

(1) If KXþ ððn2Þ=2ÞL is nef and nd6,then g2ðX;LÞdh1ðOXÞ.

(2) If KXþL is nef and n¼5,then g2ðX;LÞdh1ðOXÞ.

Proof.(1) By the same argument as in the proof of Theorem 3.5 (1) (see (3.5.a)), we get that

ðKXþ ðn1ÞLÞðKXþ ðn2ÞLÞLn2þc2ðXÞLn2 dKXðKXþ ðn2ÞLÞLn2þ ðn1Þ n

22

Ln becauseX is not uniruled. Furthermore

KXðKXþ ðn2ÞLÞLn2þ ðn1Þ n 22

Ln

¼ KXþn2

2 L

2

Ln2ðn2Þ2

4 Lnþ ðn1Þ n 22

Ln

¼ KXþn2

2 L

2

Ln2þn26nþ4 4 Ln: SinceKXþ ððn2Þ=2ÞLis nef andnd6, we get that

KXþn2

2 L

2

Ln2þn26nþ4 4 Lnd1 and

ð2KXþ ðn2ÞLÞLn1d0:

Hence by Corollary 2.3g2ðX;LÞdh1ðOXÞbecauseg2ðX;LÞAZ.

(19)

(2) Assume that n¼5 andKXþLis nef. Then by the same argument as in the proof of Theorem 3.5 (1) (see (3.5.a)), we get that

ðKXþ4LÞðKXþ3LÞL3þc2ðXÞL3dKXðKXþ3LÞL3þ2L5: Hence

g2ðX;LÞ þ1h1ðOXÞd 1

12KXðKXþ3LÞL3þ1 6L5þ 1

12ð2KXþ3LÞL4

¼ 1

12KXðKXþ3LÞL3þ1 6L5þ 1

12KXL4þ 1

12ðKXþ3LÞL4

¼ 1

12ðKXþLÞðKXþ3LÞL3þ 1

12ðKXþ2LÞL4: SinceKXþLis nef, we obtain that

ðKXþLÞðKXþ3LÞL3d0 and ðKXþ2LÞL4>0:

Thereforeg2ðX;LÞ>h1ðOXÞ 1. Becauseg2ðX;LÞis an integer, we get thatg2ðX;LÞ dh1ðOXÞ. This completes the proof of Proposition 3.6. r

Next we consider a lower bound ofg2ðX;2LÞfor the case where dimX ¼3.

Theorem 3.7.LetðX;LÞbe a polarized manifold ofdimX¼3.

(1) Assume thatkðXÞd0.LetðM;AÞbe the first reduction ofðX;LÞ,and letgbe the number of points blown up under the first reduction map.Then

g2ðX;2LÞd1þh1ðOXÞ þ5

6ðL3þgÞ:

(2) Assume thatkðXÞ ¼ y.Then

g2ðX;2LÞdh2ðOXÞd0:

Proof.(I) The case wherekðXÞd0.

LetðM;AÞbe the first reduction ofðX;LÞ. By Theorem 1.10, we get that g2ðX;2LÞ ¼h0ðKXþ2LÞ h3ðOXÞ þh2ðOXÞ:

On the other hand, since h0ðKXþ2LÞ ¼h0ðKMþ2AÞ, h3ðOXÞ ¼h3ðOMÞ, and h2ðOXÞ ¼h2ðOMÞ, we obtain thatg2ðX;2LÞ ¼g2ðM;2AÞ.

Next we calculateg2ðM;2AÞ. SinceMis not uniruled, we havec2ðMÞAd3A3 2KMA2by Proposition 3.4. Hence

ððKMþ4AÞðKMþ2AÞ þc2ðMÞÞA

¼ ðKMþ4AÞðKMþ2AÞAþc2ðMÞA

dðKMþ4AÞðKMþ2AÞA3A32KMA2: ð3:7:aÞ

(20)

SinceKMþAis nef andkðMÞd0, we get that

ðKMþ4AÞðKMþ2AÞA3A32KMA2 d4ðKM þ2AÞA22ðKMþAÞA2A3

¼4ðKM þAÞA2þ4A32ðKMþAÞA2A3

¼2ðKM þAÞA2þ3A3: ð3:7:bÞ By Lemma 1.17 we get thatðKMþAÞA2dA3. Hence

ðKMþ4AÞðKMþ2AÞA3A32KMA2d5A3: Therefore by Proposition 2.1

g2ðX;2LÞ ¼g2ðM;2AÞ

¼ 1þh1ðOMÞ þ 1

12ððKMþ4AÞðKMþ2AÞ þc2ðMÞÞð2AÞ d1þh1ðOMÞ þ5

6A3 ¼ 1þh1ðOXÞ þ5

6ðL3þgÞ:

Hence we get the assertion (1).

(II) The case wherekðXÞ ¼ y.

By Theorem 1.10 and the Serre duality, we have

g2ðX;2LÞ ¼h0ðKXþ2LÞ k0ðKXÞ þh2ðOXÞ

¼h0ðKXþ2LÞ þh2ðOXÞdh2ðOXÞd0:

This completes the proof of Theorem 3.7. r

Corollary 3.7.1. Let ðX;LÞ be a polarized manifold of dimX¼3. Assume that kðXÞd0. Theng2ðX;2LÞdh1ðOXÞd0.

Proof.By Theorem 3.7 (1), we get that

g2ðX;2LÞd1þh1ðOXÞ þ5

6ðL3þgÞ;

wheregis the number of points blown up under the first reduction map.

SinceL3þg>0, we get thatg2ðX;2LÞ>h1ðOXÞ 1. Hence we get the assertion

becauseg2ðX;2LÞis an integer. r

Here we note that if Lis nef and big, dimX ¼3 and h0ðLÞd1, then we get the following:

Proposition 3.8. Let ðX;LÞ be a quasi-polarized manifold. If dimX ¼3 and h0ðLÞd1,then g2ðX;LÞdh2ðOXÞd0.

(21)

Proof.By Theorem 1.10 and the Serre duality we get that g2ðX;LÞ ¼h0ðKXþLÞ h0ðKXÞ þh2ðOXÞ:

Ifh0ðKXÞ ¼0, then

g2ðX;LÞ ¼h0ðKXþLÞ þh2ðOXÞdh2ðOXÞ:

Ifh0ðKXÞd1, thenh0ðKXþLÞ h0ðKXÞdh0ðLÞ 1d0 and so we get that g2ðX;LÞ ¼h0ðKXþLÞ h0ðKXÞ þh2ðOXÞdh2ðOXÞ:

This completes the proof of Proposition 3.8. r

Remark 3.8.1.By the same method as in the proof of Proposition 3.8, we can prove thatgn1ðX;LÞdhn1ðOXÞifXis a smooth projective variety of dimX¼n, andLis a nef and big line bundle onX withh0ðLÞd1.

Here we assume that dimX¼nd3, KX is nef, and kðXÞd0. In this case, by Theorem 3.5 (2), we get that

g2ðX;LÞd1þh1ðOXÞ þ 1

24ð3n211nþ10ÞLn: By using this inequality, we studyðX;LÞwithg2ðX;LÞ ¼0.

Proposition 3.9.LetðX;LÞbe a polarized manifold ofdimX ¼nd3.Assume that KX is nef andkðXÞd0.If g2ðX;LÞ ¼0,then n¼3,h1ðOXÞ ¼0,and we obtain the fol- lowing:

L3 KXL2 KX2L c2ðXÞL gðLÞ

3 2 0 0 5

2 2 0 2 4

2 2 1 1 4

2 2 2 0 4

1 2 0 4 3

1 2 1 3 3

1 2 2 2 3

1 2 3 1 3

1 2 4 0 3

6 0 0 0 7

5 0 0 2 6

4 0 0 4 5

3 0 0 6 4

2 0 0 8 3

1 0 0 10 2

(22)

Proof. Here we note thatðX;LÞis the first reduction of itself. We also note that by Miyaoka’s theorem ([10, Theorem 6.6])

c2ðXÞLn2d0: ð3:9:1Þ Furthermore sinceKX is nef we get that

KX2Ln2d0 and KXLn1d0: ð3:9:2Þ Assume that g2ðX;LÞ ¼0. By Corollary 3.5.2, we get that h1ðOXÞ ¼0. Hence by Theorem 3.5 (2)

g2ðX;LÞd1þ 1

24ð3n211nþ10ÞLn: Claim.n¼3.

Proof.Ifnd5, then

1

24ð3n211nþ10ÞLnd5 4Ln andg2ðX;LÞd1. Therefore this is impossible.

Assume thatn¼4. Then 1

24ð3n211nþ10ÞLn¼ 7 12L4: Since

0¼g2ðX;LÞd1þ 7 12L4;

we obtain thatL4¼1. In this case by Corollary 2.3 the second sectional geometric genus ofðX;LÞis the following:

g2ðX;LÞ ¼ 1þ 1

12KX2L2þ1

2KXL3þ 7 12þ 1

12c2ðXÞL2:

By (3.9.1) and (3.9.2), we obtain that KXL3¼0 because g2ðX;LÞ ¼0. But then ðKXþ3LÞL3¼3 and this is impossible becauseðKXþ3LÞL3is even. This completes

the proof of this claim. r

Sincen¼3 andh1ðOXÞ ¼0, by Corollary 2.3 we get that

12¼ ððKXþ2LÞðKXþLÞ þc2ðXÞÞL¼KX2Lþ3KXL2þ2L3þc2ðXÞL: ð3:9:3Þ By (3.9.1) and (3.9.2) we haveL3c6. Here we note thatKXL2þ2L3is even. Hence

(23)

KXL2 is even and we obtain thatKXL2¼0 or 2 by (3.9.3), and by (3.9.1), (3.9.2), and (3.9.3) we get the list in Proposition 3.9. (Here we note that by Theorem 1.11

KX2L¼0 ifKXL2 ¼0 becauseKX is nef.) r

Problem 3.9.1.Find an example ofðX;LÞsuch that dimX¼3,KXis nef,kðXÞd0, andg2ðX;LÞ ¼0.

Remark 3.9.2.There exists a Calabi–Yau 3-foldXsuch that there is an ample divisor LonX withg2ðX;LÞ ¼0 andL3¼1 or 2. (See [6, Example 4.3.3].)

In Theorem 3.7 and Corollary 3.7.1, we proved that g2ðX;2LÞd0 ifðX;LÞis a polarized 3-fold. Here we study a polarized 3-foldðX;LÞwithg2ðX;2LÞ ¼0.

Proposition 3.10.Let ðX;LÞbe a polarized manifold ofdimX ¼3.If g2ðX;2LÞ ¼0, thenkðXÞ ¼ y.

Proof. Assume that kðXÞd0. Let ðM;AÞ be the first reduction ofðX;LÞ, and let g be the number of points blown up under the first reduction map. Assume that g2ðX;2LÞ ¼0. By Theorem 3.7 (1), we obtain that L3¼1,g¼0, andh1ðOXÞ ¼0.

HenceðX;LÞGðM;AÞ.

By (3.7.a) and (3.7.b) in the proof of Theorem 3.7, we get that g2ðX;2LÞ ¼ 1þ1

6ðKXþ4LÞðKXþ2LÞLþ1 6c2ðXÞL d1þ1

3ðKXþLÞL2þ1 2L3

¼ 1þ1

3KXL2þ5 6L3: HenceKXL2¼0 becauseg2ðX;2LÞ ¼0.

In this case

gðLÞ ¼1þ1

2ðKXþ2LÞðLÞ2¼2:

By [2, Theorem (1.10) and Remark (2.2)],OðKXÞ ¼OX andDðLÞc3, whereDðLÞ ¼ 3þL3h0ðLÞ. So we obtain that h0ðLÞd1. On the other hand by Theorem 1.10 and the Serre duality,

0¼g2ðX;2LÞ

¼h0ðKXþ2LÞ h0ðKXÞ þh2ðOXÞ dh0ðKXþ2LÞ h0ðKXÞ

¼h0ð2LÞ 1

(24)

since OðKXÞ ¼OX. Hence h0ð2LÞ ¼1 since h0ð2LÞ>0. On the other hand by the Riemann–Roch theorem and the Kodaira vanishing theorem, we get that

h0ð2LÞ ¼h0ðKXþ2LÞ ¼L3þ2h0ðKXþLÞ ¼L3þ2h0ðLÞd3:

So this is impossible. Therefore we get the assertion. r Proposition 3.11. Let ðX;LÞ be a polarized manifold of dimX ¼3. Assume that g2ðX;2LÞ ¼0and h0ð2LÞd2.ThenðX;LÞis one of the following type:

(1) ðX;LÞ ¼ ðP3;OP3ð1ÞÞ, (2) ðX;LÞ ¼ ðQ3;OQ3ð1ÞÞ,

(3) ðX;LÞis a scroll over a smooth curve.

Proof.First we prove the following claim:

Claim 3.11.1.h0ðKXþ2LÞ ¼0.

Proof.By Theorem 1.10 and the Serre duality, we obtain that g2ðX;2LÞ ¼h0ðKXþ2LÞ h0ðKXÞ þh2ðOXÞ

dh0ðKXþ2LÞ h0ðKXÞ:

If h0ðKXÞ>0, then 0¼g2ðX;2LÞdh0ðKXþ2LÞ h0ðKXÞdh0ð2LÞ 1d1 and this is a contradiction. Hence h0ðKXÞ ¼0 and 0¼g2ðX;2LÞdh0ðKXþ2LÞd0.

Thereforeh0ðKXþ2LÞ ¼0. This completes the proof of Claim 3.11.1. r Hence we obtain thatKXþ2Lis not nef by [5, Corollary 2.7]. SoðX;LÞis one of the

above types by Theorem 1.13 and Remark 1.13.1. r

References

[1] M. C. Beltrametti, A. J. Sommese,The adjunction theory of complex projective varieties.

de Gruyter 1995. MR 96f:14004 Zbl 0845.14003

[2] T. Fujita, Classification of polarized manifolds of sectional genus two. In:Algebraic geom- etry and commutative algebra, Vol. I, 73–98, Kinokuniya, Tokyo 1988. MR 90c:14025 Zbl 0695.14019

[3] T. Fujita,Classification theories of polarized varieties. Cambridge Univ. Press 1990.

MR 93e:14009 Zbl 0743.14004

[4] T. Fujita, On Kodaira energy and adjoint reduction of polarized manifolds.Manuscripta Math.76(1992), 59–84. MR 93i:14032 Zbl 0766.14027

[5] Y. Fukuma, On the nonemptiness of the adjoint linear system of polarized manifolds.

Canad. Math. Bull.41(1998), 267–278. MR 99j:14006 Zbl 0955.14040

[6] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, I. To appear in Comm. Algebra.

[7] Y. Fukuma, On the sectional geometric genus of quasi-polarized varieties, II. To appear inManuscripta Math.

(25)

[8] W. Fulton,Intersection theory. Springer 1998. MR 99d:14003 Zbl 0885.14002

[9] F. Hirzebruch,Topological methods in algebraic geometry. Springer 1966. MR 34 #2573 Zbl 0138.42001

[10] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety. In:Alge- braic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., 449–476, North- Holland 1987. MR 89k:14022 Zbl 0648.14006

[11] A. J. Sommese, On the adjunction theoretic structure of projective varieties. In:Complex analysis and algebraic geometry(Go¨ttingen, 1985), volume 1194 ofLecture Notes in Math., 175–213, Springer 1986. MR 87m:14049 Zbl 0601.14029

Received 21 June, 2002; revised 5 September, 2002

Y. Fukuma, Department of Mathematics, Faculty of Science, Kochi University, Akebono- cho, Kochi 780-8520, Japan

Email: fukuma@math.kochi-u.ac.jp

参照

関連したドキュメント

The purpose of this paper is to prove Alexander and Markov theorems for higher genus case where the role of groups is played by a new class of groups called virtual twin groups

In this work, we have applied Feng’s first-integral method to the two-component generalization of the reduced Ostrovsky equation, and found some new traveling wave solutions,

Thus, we use the results both to prove existence and uniqueness of exponentially asymptotically stable periodic orbits and to determine a part of their basin of attraction.. Let

Next, we will examine the notion of generalization of Ramsey type theorems in the sense of a given zero sum theorem in view of the new

“Breuil-M´ezard conjecture and modularity lifting for potentially semistable deformations after

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

In this article we construct compact, real analytic Riemannian manifolds of nonpositive sectional curvature which have geometric rank one, but which contain a rich structure of

Applying the representation theory of the supergroupGL(m | n) and the supergroup analogue of Schur-Weyl Duality it becomes straightforward to calculate the combinatorial effect