• 検索結果がありません。

An algorithm of computing $b$-functions

N/A
N/A
Protected

Academic year: 2021

シェア "An algorithm of computing $b$-functions"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

8.

An

algorithm of computing ‘b-functions

大阿久俊則

(

横浜市大理

)

8.1

Introduction

Let $f(x)\in K[x]=K[x_{1},$$\ldots,$$x_{n}1$ be a polynomial with coefficients inafield

$I\mathrm{t}’$of characteristic

zero. Let us denote by

$\hat{D}_{n}:=K[[x_{1}, \ldots, x_{n}]]\mathrm{t}\partial_{1},$ $\ldots,$$\partial_{n})$

the ring of differential operators with formal power series coefficients with $\partial_{i}=\partial/\partial x_{i}$ and $\partial=$

$(\partial_{1}, \ldots, \partial_{n})$. (If $K$ is a subfield of the field $\mathrm{C}$ of complex numbers, then we can use the ring $D_{\mathfrak{n}}$ of differential operators with convergent power series coefficiets instead of

$\hat{D}_{\eta}$. This makes

no difference in the definition below.) Let $s$ be aparameter. Then the (local) $b$-function (or the

Bernstein-Sato

polynomial) $b_{f}(s)$ associated with $f(x)$is the monic polynomial ofthe least degree $b(s)\in K[s]$ satisfying

$P(s, x, \partial)\mathit{4}^{\cdot}(X)s+1=b(s)f(X).$,

with some $P(s, x, \partial)\in D_{n}[s]$.

We present an algorithm of computing the $b$-function $b_{f}(s)$ for an arbit,rary $f(x)\in I\mathrm{t}’[X]$. A

system $Kan$of N. Takayama [T2] is available for actual execution of ouralgolithm.

An algorithm of$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\iota \mathrm{l}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}b_{f}(s)$was first given by M. Sato et al. $1^{\mathrm{s}\mathrm{K}\mathrm{I}\langle 0}$] $\backslash \mathrm{v}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}f(?\cdot)\in \mathrm{C}[.\iota]$

is a relative invariant ofa prehomogeneous vectorspace. J. Brian$g\mathrm{o}\mathrm{n}$ et al. [BGMM], [M] have

given an algorithm ofcomputing$b_{f}(s)$ for $f(x)\in \mathrm{C}\{x\}$ with isolated singularity. Also note that T. Yano [Y] worked out manyinteresting examples of b–functions $\mathrm{s}\mathrm{y}_{\mathrm{S}\mathrm{t}\mathrm{e}\ln}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$.

(2)

8.2 Algorithm

Notation

$.K$

:

afield of characteristic$0$;

$.A_{n+1}:=K[t, x_{1}, \ldots, xn]\langle\partial_{i}, \partial 1, \ldots, \partial_{n}\rangle$ $(\partial_{t}:=\partial/\partial t, \partial_{*}$. $=\partial/\partial x:)$

$.\prec_{F}$: a(total) orderon$\mathrm{N}^{2n+2}$with$\mathrm{N}:=\{0,1,2, \ldots\}$ thatsatisfies the following conditions:

(A-1) $\alpha\succ_{F}\beta\Rightarrow\alpha+\gamma\succ_{F}\beta+\gamma(\forall\alpha, \beta, \gamma\in \mathrm{N}^{2n+2})$ ;

(A-3) $\nu-\mu>\nu-’\mu$’ $\Rightarrow$ $(\mu, \nu, \alpha, \beta)\succ_{F}(\mu’, \nu\alpha\beta’,’,’)$ $(\forall\mu,$$\nu,$$\mu’,$ $\nu’\in \mathrm{N},$ $\forall\alpha,$$\beta,$$\alpha’,$$\beta’\in$

$\mathrm{N}^{n})$;

(A-4) $(\mu, \mu, \alpha, \beta)\succeq F(0,0,0,0)$ $(\forall\mu\in \mathrm{N}, \forall\alpha, \beta\in \mathrm{N}^{n})$,

where $(\mu, \nu, \alpha, \beta)$ corresponds to the ‘monomial’$t^{\mu}x^{\alpha}\partial_{2}^{\nu}\partial\beta$

.

Note that $\succ_{F}$ does not satisfy

(A-2) $\alpha\succeq_{F}0$ $(\forall\alpha\in \mathrm{N}^{\Phi}\sim n+2)$.

For each integer $m$, definea $K$-subspace of$A_{n+1}$ by

$F_{m}(A_{n+1}):=$

{

$P= \sum_{\mu,\nu,\alpha\beta},a_{\mu},\nu,\alpha,\beta t\mu x\partial_{1}^{\nu}\alpha\partial\beta\in A_{n+1}|a_{\mu,\nu,\alpha,\beta}=0$if

|ノ$-\mu>7?1$

}.

If $P\neq 0$, its $F$-order$\mathrm{o}\mathrm{r}\mathrm{d}_{F(P)}$ is defined as the minimuminteger $m$ such that $P\in F_{m}(A_{?1+1})$.

Then

$\hat{\sigma}(P)=\hat{\sigma}_{m}(P):=\sum_{\nu-\mu=m}\mathit{0}_{\mu,\nu},\alpha,\beta t^{\mu}xa\partial_{t}^{\nu}\partial\beta$

is called the

formal

symbolof$P$. Wedefine $\psi(P)(s)\in A_{n}[s]$ by

$\hat{\sigma}_{\mathrm{O}}(t^{m_{P)}}=\psi(P)(t\partial_{1})$ if $m\geq 0$,

$\hat{\sigma}_{\mathrm{O}}(\partial_{t}-mP)=\psi(P)(t\partial,)$ if $m<0$.

Definition lFor$i,$$j,$$\mu,$ $\nu,$$\mu\nu’,’\in \mathrm{N},$ $\alpha,$$\beta,$$\alpha’,$$\beta’\in \mathrm{N}^{n}$, an order $\prec_{H}$ on $\mathrm{N}^{2n+3}$ is defined by

$(i, \mu, \nu, \alpha, \beta)\succ H(j, \mu\nu\alpha’, \beta’,’,’)$ $\Leftrightarrow$ $(i>j)$

or ($i=j$ and $(\mu+\ell,$$\nu,$$\alpha,$$\beta)\succ_{F}(\mu’+\ell’’,$$i\text{ノ},$$\alpha\beta’,’)$)

or $(i=j, (\nu, \alpha, \beta)=(\nu^{J}, \alpha’, \beta’), \mu>\mu^{J})$

with $\ell,$$\ell’\in \mathrm{N}\mathrm{s}.\mathrm{t}$. $\nu-\mu-\ell=\nu’-\mu’-\ell^{J}$, where $(i, \mu, \nu, \alpha, \beta)$ corresponds to $t^{\mu\alpha}x_{0^{x\partial}}^{i}\beta$. This

definition is independent of the choice of$\ell,$$\ell’$, and $\succ_{H}$ satisfies (A-1) and (A-2).

In thefollowing algorithm,we also use an$\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\prec \mathrm{o}\mathrm{n}\mathrm{N}^{2}n+1$ satisfying(A-1), (A-2) (with $2n+2$

replaced by $2n+1$) and

(3)

where corresponds to .

Algorithm 2

Input: $f(x)\in I\zeta[X]$;

1. Let $\mathrm{G}$ be a Gr\"obner basis of the left ideal of $A_{n+1}[x_{\mathrm{O}}]$ generated by $t-x_{\mathrm{O}}f(x)$ and $\partial_{i}+x_{0}(\partial f/\partial x_{i})\partial_{1}(i=1, \ldots, n)$ with respect to $\prec_{H}$;

2. Compute a Gr\"obnerbasis $\mathrm{H}$ of theleft ideal of$A_{n}[s]$ generatedby $\psi(\mathrm{G}):=\{\psi(P(1))|$

$P(X_{\mathrm{O}})\in \mathrm{G}\}$ w.r.t. an order satisfying (A-1), (A-2), (A-5);

3. Let $J$ be the ideal of$K[x,$$s1$ generated by$\mathrm{H}\cap K[X,$$s1=\{f_{1}(x, s\mathrm{I}, \ldots, f_{k(}x, s)\}$; 4. Compute the monic generator$f_{0}(s)$ofthe idealof$K[s]$ generatedby$f\mathrm{l}(0, s),$. . ,$f_{\mathrm{A}}(0, s)$ by Gr\"obnerbasis orGCD computation; if$f_{0}(\mathit{8})=1$, then put $b(s):=1$ and quit;

5. Compute the factorization $f_{0}(s)=(s-s_{1})^{\mu 1}\ldots(s-S_{m})^{\mu}m$ in $\overline{I\zeta}[s](\overline{IC}$: the algebraic

closureof$K$);

6. Put$\overline{J}$

$:=\overline{\mathrm{A}’}[x, S]J$.

For $i.–1$ to $m$ do

By computing the ideal quotient $\overline{J}$

:

$(s-s_{i})^{p}$ for $\ell=\mu_{1},$$\mu_{i}+1,$$\ldots \mathrm{r}\mathrm{e}_{1^{)\mathrm{e}\mathrm{a}}}\mathrm{t},\mathrm{e}\mathrm{d}\mathrm{l}\mathrm{y},$detcrlnillc

the least $\ell\geq\mu_{i}$ such that $\overline{J}$

: $(s-s_{i})^{p}$ contains an clement which does llot vanish at $(x, s)=(\mathrm{O}, s:)$. Denote this $\ell$by$\ell:$;

7. Put $b(s):=(s-s_{1})^{p_{1}}\ldots(s-S_{\pi\iota})^{l_{m}}$;

Output: $b_{f}(s):=b(-s-1)\in K[S]$;

Remark 3 A theorem of Kashiwara [K] states that the roots of $b_{f}(s)$ are negative rational

numbers. Hence in steps 5 and 6, there is noneed offield extension.

Wehave implemented thesteps 1and 2ofthe abovealgorithm in $\mathrm{K}\mathrm{a}\mathrm{n}/\mathrm{s}\mathrm{m}\mathrm{l}$ [T2], and the steps 3-7 in $\mathrm{R}\mathrm{i}\mathrm{s}\mathrm{a}/\mathrm{A}\mathrm{s}\mathrm{i}\mathrm{r}[\mathrm{N}\mathrm{S}1\cdot$ In the following table, the timing data refer to thc $\mathrm{C}\mathrm{o}\mathrm{m}_{1)\mathrm{u}\iota\iota\iota}\dot{C}\mathrm{i}\mathrm{o}11$ time of

(4)

In the above table, the last four examples havenon-lsola\iota ed singularities. Hence, as far

as

$\mathrm{t}1_{1}\mathrm{e}$

author knows, no algorithmhas been known forcomputingb–functions for t,hesepolynomials. See

[$\mathrm{Y}$, pp. 198-200] for estimatesof the $b$-functions of$x^{3}+y^{2}z^{\sim}?,$ $x^{3}+y^{3}-3xyz,$ $x^{3}+.\iota_{?/Z}.$.

Acknowledgement: The author would like to expresshisgratitude toProfessor N. Takayamaof

(5)

wouldhave been much moredifficult.

参考文献

[Be] Bernstein, I. N.: Modules overaringofdifferential operators. FunctionalAnal. Appl. 5

(1971),

89-101.

[Bj] Bj\"ork, $\mathrm{J}.\mathrm{E}.$: Rings of

Differential Operators. North-Holland, Amsterdam, 1979. $[\mathrm{B}\mathrm{G}\mathrm{M}\mathrm{M}]\mathrm{B}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\sigma \mathrm{o}\mathrm{n}$, J.,

Granger,

M., Maisonobe, Ph., Miniconi, M.: Algorithme de calcul

du

polyn\^omede Bernstein: cas non d\’eg\’en\’er\’e. Ann. Inst. Fourier 39 (1989),

553-610.

[G] Galligo, A.: Some algorithmic questions on ideals ofdifferential$\mathrm{o}_{\mathrm{I}^{)\mathrm{e}\mathrm{r}}}\mathrm{a}\iota \mathrm{o}\mathrm{r}\mathrm{S}.$ Lectu $\mathrm{e}$Notes

in Comput.

Sci.

vol. 204, pp. 413-421,

Springer,

Berlin,

1985.

[K] Kashiwara, M.: $B$-functionsandholonomic systems-Rationality of roots ofb-functions.

Invent. Math. 38 (1976), 33-53.

[M] Maisonobe, P.: $D$-modules: an overview towards effectivity. Computer Algebra and

Differential Equations (ed. E. Tournier), Cambridge University Press, 1994, pp. 21-55.

[NS] Noro, M., Shimoyama, T.: Asir user’s manual, Edition 3.0 for Asir-950831.

($\mathrm{f}\mathrm{t}\mathrm{p}:\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{v}\mathrm{o}\mathrm{r}.\mathrm{f}\mathrm{u}\mathrm{j}\mathrm{i}\mathrm{t}\mathrm{s}\mathrm{u}.\mathrm{c}\mathrm{o}.\mathrm{j}_{\mathrm{P})}$ ISIS, Fujitsu Laboratories

Limited, 1995

[O1] Oaku, T.: Algorithms for finding the structure of solutions ofa system of lincar partial

differential equations. Proceedings of International Symposium on Symbolic and

Alge-braicComputation (edsJ. Gathen, M. Giesbrecht), pp. 216-223, ACM, New York, 1994.

[O2] Oaku, T.: Algorithmic methods for Fuchsian systems oflinearpartial differential

equa-tions. J. Math. Soc. Japan 47 (1995),

297-328.

[O3] Oaku, T.: An algorithm ofcomputing$b$-functions. Preprint.

[SKKO] Sato, M., Kashiwara, M., Kimura, T., Oshima, T.: Micro-local analysis of$\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{h}_{0\ln\langle}$)

$\mathrm{g}\mathrm{e}-$

neous vector spaces. Invent. Math. 62 (1980), 117-179.

[T1] Takayama, N.: An approach to the zero recognition problem by $\mathrm{D}\mathrm{u}\mathrm{c}\mathrm{I}1\uparrow \mathrm{j}\mathrm{c}\mathrm{r}\mathrm{g}\mathrm{c}^{s}\Gamma \mathrm{a}_{\mathrm{o}\mathrm{I}}\mathrm{i}\mathrm{t}1_{1}\mathrm{m}$.

J. Symbolic Comput. 14 (1992),

265-282.

[T2] Takayama, N.: Kan: A system for computation in algebraic analysis. http:

//www.math.s.kobe-u.ac.jp, 1991–.

参照

関連したドキュメント

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,

In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diff h,σ

Applications of msets in Logic Programming languages is found to over- come “computational inefficiency” inherent in otherwise situation, especially in solving a sweep of

In order to be able to apply the Cartan–K¨ ahler theorem to prove existence of solutions in the real-analytic category, one needs a stronger result than Proposition 2.3; one needs

In this paper we focus on the relation existing between a (singular) projective hypersurface and the 0-th local cohomology of its jacobian ring.. Most of the results we will present

Shi, “The essential norm of a composition operator on the Bloch space in polydiscs,” Chinese Journal of Contemporary Mathematics, vol. Chen, “Weighted composition operators from Fp,

We provide an efficient formula for the colored Jones function of the simplest hyperbolic non-2-bridge knot, and using this formula, we provide numerical evidence for the