• 検索結果がありません。

壁板スリップ破壊によって支配される1スパン1層鉄筋コンクリート造 : 耐震壁の水平耐力算定式

N/A
N/A
Protected

Academic year: 2021

シェア "壁板スリップ破壊によって支配される1スパン1層鉄筋コンクリート造 : 耐震壁の水平耐力算定式"

Copied!
13
0
0

読み込み中.... (全文を見る)

全文

(1)

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

[:n

!]

JouTnal

of

Structural

and

Constructio]

Engineering

Hptflss7.ftesio'kutXru=ee

uDG:6g.o22:6gg.s41:624.ol2.4

CTransactionsofAIJ)No.366,

August,

1986

za

366

g・mtu

61

4sA

EXPRESSION

FOR

CALCULATING

LATERAL

SHEAR

'

'

CAPACITY

OF

ONE-BAY

ONE-STORY

REINFORCED

CONCRETE

FRAMED

SHEAR

WALLS

FAILING

IN

'

SLIP

SHEAR

OF

THEIR

INFILLED

WALL

PANEL

by

MASAHIDE

TOMII",

and

FUMIYA

ESAKI"',

Members

of

A.

I.

J.

1.

Introduction

According

to

experimental studies on

framed

shear walls

(hereafter

referred

to

as "shear walls"),

the

shear

failure

mode

of

a

shear

wa}1

can

be

classified

into

two

typica}

types

(see

Fig.

1),

If

the

boundary

frame

is

sufficiently strong

and

properly

reinforced,

in

the

ultimate state

the

compressive

struts

tormed

by

inclined

cracgs

in

the

infilled

wall

panel

{hereafter

referred

to

as "wall") are crushed

progressively

forrning

either a

horizontal

or vertical

failure

plane

without significant

damage

to

the

boundary

frame

(see

Fig.

1

a).

This

web crushing

is

the

slip

failure

of

the

wall.

This

type

of shear

failure

of

shear walls

is

not

dangerous,

because

even

if

the

relative story

displacement

of

the

shear walls

increases

after

the

slip

failure

the

peripheral

colurnns can sustain vertical

loads

of

the

shear wallsi and

fairly

good

ductility

can

be

expected.

On

the

other

hand,

if

the

boundary

frame,

together

with

the

shear reinforcement

in

the

wall, can not restrain

the

expansion of

the

cracked wall which

behaves

as an anisotropic

plate

causing

diagonal

compTession

field

by

shear,

in

the

ultimate

state

the

shear crack

propagated

from

the

wall

penetrates

the

end of

the

edge columns or edge

beams

and

the

loss

of

load

capacity associated with shear

failure

of edge members occurs suddenly.

This

type

of shear

failure

of shear walls

is

dangerous

brittle

failure

mode,

because

if

the

peripheral

columns

fail

in

shear

bearing

capacity of

the

shear wall

decreases

and

the

upper stories supported

by

the

shear walls are

in

danger

of

falling.

Te

prevent

a such

dangerous

brittle

failure,

it

is

necessary

to

present

the

expressions which can

predict

the

shear

failure

modes and which can estimate adequately

the

lateral

shear capacity,

Some

studies on

the

ultimate shear capacity of shear walls

failing

in

shear

have

been

carried out

by

Dr.

Suganoi),

Di.

Hirosawa2),

Dr.

Yamada3)

and

Dr.

Mochizuki`).

Dr.

Mochizuki

shows

the

expressions

for

calculating

the

ultimate shear capacity of shear walls

based

on

the

shear

failure

mechanism.

But

his

analysis makes

it

difficult

to

present

the

rational expressions,

because

the

member stresses necessary

to

calculate

the

lateral

shear capacity

depend

on

the

stresses,

acting

on

the

boundary

between

the

boundaTy

frame

and

the

wall, which are

determined

by

using

the

assumption

different

from

the

results of

the

elastic analyses of uncracked and cracked shear walls5]・6i,

The

other

investigators

propose

the

empiricaL expressions

giving

emphasis

to

practical

calculation.

But

the

shear

failure

modes cannot

be

predicted

b,y

their

expressiens.'

In

order

to

propose

the

design

rnethod

to

prevent

the

piene

/

dangerous

brittle

failure

of she,ar walls,

the

objective of StT"t

..,..k

this

paper

is

to

present

an

ekpression

for

the

lateral

crack shear

capacity

of

one-bay

one-story

monolithic

rein-forced

concrete shear walls

failing

in

slip shear of

their

(a)

The

paltetn

of a slip

Cb)

The

pattern

of a shear

wall

based

on

the

shear

failure

mechanism.

failUre

ofawall

i::u:e

of the

boundary

The

predicting

method of

the

shear

failure

modes

is

Fig.

1

Typical

pattern

of

the

sheaf

failure

of a sltear wall slipfa ±luTepl

.t.tt...,,・c.o.:?.r..ssf

.,,ti'!,.',.,'"'shear

:.・iJ',・-'-es.,,,.'

sheaTfatlure'

ISii'

isll,i

'shea

*

Professor

of

Struetural

Engineefing,

Department

of

Architecture,

Faculty

of

Engineering,

Kyusyu

Univ.,

D.

Eng.

#

Research

Assistant

of

Structural

Engineefing,

Department

of

Architecsure,

Faculty

of

Engineering,

Kyusyu

Univ,

,

M.

Eng.

{Manuscript

received

June

17,

1985)

(2)

--142-Architectural Institute of Japan

ArchitecturalInstitute of Japan

discussed

in

Refgrence

7.

The

experiments and

the

elastic analyses

of

the

uncracked and cracked shear walls5),a) show

that

the

slip

failure

plane

are

formed

at

the

position

near

the

plane

of

the

wall where

the

maximurn

shear

stress

acts.

Therefore,

to

obtain

the

lateral

shear capacity

dominated

by

the

slip

failure,

it

is

necessary

to

determine

the

shear stress

distribution

and

the

ultimate shear strength

Qf

the

wall.

In

this

paper,

the

shear stress

clistribution

is

determined

by

using

the

rational assumption

based

on

the

available

information

of

the

elastic analyses of

the

uncracked

and

cracked

shear walls5)・ fi)and

the

experimental

re$ults.

The

slip strength of

the

wall

is

determined

by

the

multiple regression analysis

of

the

assumed m4ximum

shear

stress,

because

the

theoretical

slip strength

of

the

wall suitable

for

the

slip

failure

has

not

yet

been

proposed,

2.

Assumptions

for

Analy$is

ct

Lateral

Shear

Capacity

ot

Shear

Walls

To

develop

an expression

for

calculating

the

lateral

shear capacity of shear walls,

the

following

assumptions are used.

1)

A

bounclary

frame

of shear wails

does

not

fail

in

shear

before

the

slip

failure

of'the wall

occurs.

2>

Shear

cracks

occur across

the

slip

failure

plane

of

the

wall.

They

incline

at angle

e

frem

the

horizontal

line

(see

Fig,1a),

3)

The

wall reinforcement across

the

shear cracks

in

the

area of

the

slip

failure

does

not

yield

in

tension

when

the

slip

failure

of

the

wall occurs.

This

assumption

is

considerd

by

the

fact

that

the

boundary

frame

sufficiently

restrains

the

expansion of

the

cracked wall.

4)

The

ratio of Tue[we)

to

iuoiws),

zma== r"ocusiliuDiws)

is

equal

to

x, where ti,orus)

is

the

slip

strength of

the

wall

for

the

case

in

which

it

can

be

assumed

that

the

vertical

forces,

N',

acting on

the

edge

beams

are zero

(see

Fig,2

b),

iuocws)=Quohas)1tl

(Quocws)==lateral

shear

capacity

dominated

by

the

slip

failure

with regard

to

one-bay one-story

shear walls assumed

to

be

N';O,

t=thickness

of

the

wall,

l=distance

frorn

center

to

center

of edge columns

adjacent

to

wall)

is

the

mean unit shear stress on

the

horizontal

section of

the

shear wall when

the

slip

failure

occurs,

and

x= T.li

is

the

shape

factor

for

the

shear stress at

the

center of

the

wall, Tic,, obtained

by

the

elastic

analysis of shear walls whose walls

are

assumed

to

be

isotropic

elastic

plates5)

(hereafter

referr6d

to

as "isotropic

analysis")

(i=Qltl==the

mean unit

shear

stress on

the

horizontal

section of shear walls).

Comments

:

(a)

z...

takes

the

va}ue

between

the

shape

factor

x

for

tlooand

the

shape

factor

oz.., =J T.li

for

the

maximum

shear

stress of

the

wall, rin,

given

by

the

elastic analysis of shear walls whose walls are assumed

to

be

45

degree

orthotropic

plates6}

(hereafter

referred

to

as "orthotropic

analysis")

where

the

reduction coefficient of

the

Young's

modulus of concrete

in

the

direction

peTpendicular

to

the

cracks

of

the

wall,

pt,,

is

assumed

to

be

'

zero.

(b)

(T.lrmo)=(ox...lx)

takes

the

value

between

1.1

and

1,3

in

such

case

as shear walls are subjected

to

the

polar

symmetric

forces

(see

Fig.

3),

since

a,

for

shear walls subjected

to

the

vertical

force

N

(see

Fig.

2

b)

is

negligible

(see

Table

2),

Table

2

also

shows

the

maximum shear stress

T.

for

shear walls whose

aspect

ratios

are showh

in

Table

1

and which are subjected

to

the

forces

shown

in

Figs.

2

a and

2

b.

It

is

obvious

that

r.due

to

N

shown

in

Fig.

2

b

is

negligible,

But,

T.

is

affected

by

the

vertical

forces,

IV',

acting on

the

edge

beams

as

g,tr-:・2trat,S

r'

' hL.[

g]z=

m,=..,.fg

lbSb

rL

V-d

(a),lateral

foree

Q

Fig.2

The

external

I,lD,b

Il.,

!i!

t,L Jt

r

7

Ii

・"ipt';FFFFFR-FIU;i!i'YtV'

''''''

'''''''

'''

'''

rE

2

lt

!s'i!N

ttttttt/

t

tt

't

tt.tt/tt.'

'ttLifFu2t"-,,J

{b)

yerticat

force

AT

(c)

vertical

foEce

N'

forces

and

the

definitions

ef sltear walls

(3)

-143-Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute ofJapan

Table2

Table

1

Aspect

ratio of shear walls

xabac'BbBc

ease11.0O.ISO.152.02.0

2LOO.2e.23.03.0

31.5O.15O.IS2.02.0

41.5O.2O.23.03.0

52.0O.ISe.ls2,O2.0

62.0O.2e.23.03.0

where,x=k,

%=I}i,

qe-DhC,

Bb=!l]i,

Be-btC

(See

Ftg;

2

about notatien.)

Maximum

shear stress

in

the

shear cracked wall of the shear wall subjected

to

lateral

force

Q

or verticalfo[ceN, where

"i

=

O

is

assumed

in

orthotrepic analysisTw case(a)untt:(qltz)(b)unit:(NftZ)

11.609(!.781)o.038(o.188)

21.164(1.33e)o.037(O.054)

31.568(1.62B)o.,ooo(o.046)

4L238(1.226)o.O08(o.036)

sL437(1.653)-o.O16(o.074)

6L174(1.237)-o.OOI(o.061)

oKmax

T

1,8

1,6

L4

1,2

i.o

e::::IngYmmetriex

O::::In:S)'Trmetr

±c N1/17i・t:.;.././,;i'i/'/'t'11'i'';' r

,/.:t,',.1.,.;/g/tt/ttt//t/ttt

.t.illll.il/i,ll,1

N

.'-

f..ae.

ge,

x-'el・6" -.v/

-Me

.・o

--'---o-'-4S xsl'gptapt -coEo' e' - -x-e ---..1. 'spta:o'7g ".

e.

tptapt.o.1.0s

1,O

'

1,1

L2

- K

'

Note:

The

values

in

the

parentheses

are

Fig.3

The

Telation

between

z and ,x.., with regard to the

derived

by

assuming the elaStie shear walls applied

to

the

analysis of

the

slip

constants,

EI,

GA,

of

the

frame

.

are

the

half

of tha

initial

ones. strength of the wall

tt

a

part

of

NS)

(see

Fig.'2

c).

Then,

in

multistory

shear

walls,

i't

is

necessary

to

consider

the

effect of

N'

on T..

<c)

The

shape

factor

,z...

for

shear walls subjected

to

thg

polaT

asymmetric

forces

(see

Fig:3)

tends

to

be

larger

than

that

for

the

case

(b)

due

to

the

shear

stress

concentration

in

the

wall.

But

it

is

expected

that

the

shape

factor

.x...

for

these

shear walls

ls

nearly

equal

to

that

for

the

case

(b),

because

the

lateral

shear capacity of

shear

walls

does

not

degrade

imrnediately

due

to

the

relief of

the

shear stress concent[ation

in

the

wall after

the

occurrence of

the

slip

failure

of

their

wall,

'

3.

Slip

Strength

ot

The

Wall

of

Shear

Walls

The

slip

failure

of

the

wall

is

the

crushing

failure

caused

by

diagdnal

compression

due

to

shear.

Therefore,

it

is

assumed

that

the

slip strength of

the

wall T.in.,

is

the

sum

of

the

pure

shear strength

ft

of

the

wall

in

the

stafe

that

a

normal stress

does

not act en

the

slip

failure

plane

and

the

increment

of shear strength Th=uak

due

to

compressiye

'

t

t

stress aR

on

the

slip

failure

plane

of

the

wal19).

-

,

Twtws=h+th=th+#aitH''"'"''-''"''"'''''''''"''H'''H''"'''-'''''"''-''''''''-・"-''--・-・--・・・・・::;-・・-・・-・-・-・・・(1)

where

In

the

case

of

the

horizontal

slipping:

'

th=f(F.,p.)''''H''''--''''''-''"'"''''''''`''''"''''''''""''-'''"''"''"'''''"'''''''''-'''H''"H'''H''''''''''''''<2a)

In

the

case of

the

vertieal slipping:

k=f(L,p.)・---・---・----・---・---・---・----・---・---(2b)

p.,

ph=shear

reinforcement ratio of vertical reinforcing

bars

ahd

that

of

horizontal

reinforcing

bars

in

the

wall

'

'

'

E,;compressive

strength of concrete

ll;factor

for

the

effect

of

the

compressive stress on

the

slip strength

of

the

wall

For

the

case

in

which

N'=O,

from

the

equilibrium of

the

forces

acting on

the

triangular

elgment

of

the

cempressive

brace

between

the

shear cracks across

the

slip

failure

plane

(see

Fig.

4.

In

the

ultimate state,

r=

r.ot..], .a.;.ooo and rah=ra),o.

),

the

compressive stress aR acting on

the

slip

failure

plane

is

obtained as

foliows.

In

the

case of

the

horizontal

slipping:

aR==Tuo[uatane-pvTavo,.,.,,-・・・・・・・・・・・・・・--・・・・,.H,.-・・・・・・・・・・・・・・・---・・-・・・・・・,・.,・H,,,,,,.,.,-・・・--・・・・・-・・・・-(3a)

In

the

case

of

the

vertical slipping:

(4)

Architectural Institute of Japan

ArchitecturalInstitute ofJapan

aR=

korus)

COte-ph

raho-・-"・-・・-・・・・・・・・・・・・{3

b)

whererakrd,

raho=tensile stress of vertical reinforcing

bars

and

that

of

horizontal

reinforcing

bars

which

cross

the

shear

cracks

close

by

the

slip

failure

plane

for

the

case

in

which

N'=O

The

slip strength

of

the

wall assumed

to

be

IV'=O,

Tuotwsh can

be

obtained

as

follows,

by

substituting

Eqs.

(3a)

and

<3b)

in

Eq.(1).

In

the

case

of

the

horizontal

slipping:

th-mpvravo

TltOcwsi==

1-ptane

M''''H''-''-'''""''''H'{4a)

In

the

case

of

the

vertical slipping: thLmphraho

Tuocws,=

1""cote

''''''H''''-"'''-'-''"'''(4b)

kor..,

is

given

approximately

by

Eq.(s)

by

the

(1)

The

thickness

of

the

wall of shear walls whose

%

Fig.4

Forces

acting on

the

triangular

eleTnent

(as

shewn

by

the

hatched

area) of

the

compTessive

brace

between

the

shearcracks

(the

directions

taken as

positive

are as

indicated)

following

reasons

shear

failure

is:lnducedbytheslip

failureof

theirwall

is

Table3Shear

walls applied

to

the

muitiple regressionanalysis oftheslipstTength ofthewallTtte[urst

zhDdbc

t

N

e

e)"?tuoCwt)Qduo(ws)

HEFE-RENCESPECIMEN(em)<cm)(cm}{cm)Dt}{cm)bb(cm)(cm)Ps<:)ay(IkEg,)em

Fc(-k)em(tDn)degTees)rtz{:cllfi[km)tz(-ck.)

IAO-1

40.52S.54.S4.S4.53.0e.6o-18Se401.0633.33Z6

O-(1)

40.S28.54.S4.S4.S3.0O.6o-ISSe4S1.0631.432.6

o-(2)

40.528.S4.54.S4.S3.0O.6o.185o401.0633.332.6

A-1

40.528.54.54.54.S3.0e.6O.272930185o451.0640.741.8

A-2

40.S2S.54.54.S4.S3.0O.6O,27293018Se451.0638.94L8

B-1

40.S28,54.54.54.53.0e.6O,53293018Se451.06so.oSO,7

2AO-1

40.S28.S4.54.S4.53.0e.6o-300e401.0648.24L6

3A7.1.SW-lS2.037.07.e4.57.04.51.SO.67270Sl96o451.0950.3S6.4

7-1.5W-2S2.037.07.04.S7,O4.S1.5O.67270S209o4s1.0950.S57.S

9-1.5W-lS2.037.e9.04.S9.04.S1.5O.672705195e4S1.03SB.956.]

9-1.5U-2S2.037.e9.04.S9.04.S1.SO,672705223e4S1.035S.9S8.6

7-.2W-l

67.037,O7.04.S7.04.5LSO.672705198e35k1.104S.OS6.6

7-2W-2

67.037.07.04.S7,O4,SLSO,6727es166e35k1.1047.253.7

9-2W-1

67,O37.09.04.S9.04,SL5O.6727es196e35k1.0650.SSS.4

4A20X20-680.0145.e20.020.04S.O30,O6.0O.792710200oasO.9867.16e,8 ISx18-682.014S.O18.018.04S.O30,O6.0O,603490237o451.02S8.557.3

SA1.es-Rw-1S2.037.07.04.57.04,SLSLOS214S327o451.e9Sl,979.1

1.05-RW-2S2.037.07,O4.57.04,SL51.05214S327o401.0979.e19.1

da1.0-RW-137.e37,O7,O4.57,O4.5LSO..702334251o451.0579.061,8

1.S-RW-1S21037.07,O4.S7.04.5L5O.7023342Slo451,0965.86L8 1.5-RW-2S2.037.07.04.57.04.SL5O.7023342Slo4S1,e97LO61.S

7A1.05-NR-1S2.037.07.04.S'7.04.5LSLOS227332S1,88?!,0979.979,O

8A1.05-W-167,D37.07.04.S7.04.5L5L0520!2274o451,1064.S7S.4

1.05-W-267.037,e7,O4.S7.0a.sL51.052012274o40I.1068.875.4

3BB-2-.1

13S.Oloo,e20.020.020.017.06.0O.7S4190242o

?1,OO63.062.8

B.2-2

13S.O100.020.020.02e.o17.06.0O.7S41902SOo

?1.0066.463.t,

4Bwc-s

240.0IS2.032.032.032.032.08.DO.S6360o201o401.0649.SS3.1 WC-8A

240.0152.032.032.032.032.08.0O.56]600264o401.0654.7S8.0

SBWl-3

ll2.089.012.0IO.O14,O10.03.eO.26SS2021910,O4St1.18a6,944,4

6BW-2

180.0120.020.020.020,O20.07.SO.7523oe183o4S1,0957.458,O

7B3psO.71A-76120.080.014.014.014.014.03.0O.71165031818,4451.QO67.866.9

8BS-30--S100.0110.0IS.Ol5.020.0IS.O4.2O.6021Sl19423,7so1,0566.453.8 R-30-S 100.0110.0IS.D15.020.015.04.6O.552i8124523,7soLOS60.756.3 R-30-IOloe.o110.0IS.OIS.O20.015.04.6O.S5218126323.750LOS60,7S7.6

9BW6

100.06S.OIS.OIS.O15.0le.os.eL134166292IS.O?O.9992,479.4

W8

loe.o65.0IS.OIS.OIS.O10.0s.o1.134166191le.o40O.99.S2,O7L6

W9

loe.o6S.OIS.OIS.OIS.O10.0s.e1.13al66263IS.O?O,99S3.27L]

10B4S2SW40-79120.080.014.014.014.0'14.04.eO.2S411022S2ZO4SLOS48.144.S

4SSOW40-7S12e.o8e.DIa.o14.014,O14.04.0o.so31SO29534.74SLOS50.658.2

4S67W40.-78120.080.014.014.014.014.04.0O.6731SO31229.4451.esS8.165.2

4S50W20-7812e.o80.0.14.014.a14.014.04.0o.so315D33232,64SLOS57.160.7

4SSOW60-78ne.o80.0l4.014,O14.014.04.0O.5031SO3032S.645L054g,o58.S

11BRC.Ol-6ne.o110.020.020.020.02e.o6.0O.46266021440.045LOO6S.2SO.7

Note:Theaf

data

rnarked k

denote

the

angle of shear

the

reference.

craekspresumed

bythedescription

(5)

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

usually

thin.

Therefore,

the

angle

e

of

the

shear cracks

in'the

wall

is

almost equal

to

4sO.

(2)

th>smpvraoo, k>srphraho

due

,to

the

item

3>

in

section

2,

t

ttt

t

t

'

Tuofws);

1.

-thu

''''''"'''''-'''''

:'''':':':,'''''H''''''''''''''''''''''';':'''-'''1'H'''''''''H''''''''''''''''''''''''''''(

5

}

The

multiple regression analysis

of

q,or..,

(

= x

(,.Q.of..,1

t'l}

by

using assumption

4)

in

section

2,

ixihere

..Q.o[..)

is

the

experimental

lateral

shear capacity

dominated

by

the

slip

faililre}

is

m'ade

with regard

to

the

43

shear walls

(shear

reinforcement

ratio

in

the

wall

D.=p.=p,)

assumed

to

be

IV'=O

(see

Table

3)

to

determine

what

fact6rs

affect T.,,..,

given

by

Eq.

(

'5

).

In

this

analysis,

the

combinations of

the

factors

which are

Constant

and'

e

or

VFT,

and

p.==p.=

ph

or

(psahr)=(pvayv)=(phayh)

are considered, where a,= a..=

oph

is

a

yield

strength

of

verticAl

hhd

horizontal

wall

reinforcernents,

・・

-'

'

'

t/

'

SheaT

walls subjected

to

the

compressive

load

in

the

diagonal

directien

are not applied-to

the

multiple r.egression

analysis

because

of

the

fact,

as observed

in

the

experiments conducted

by

Dr,

Yamad,a3),

thaf

the

lateral

shear

force

applied

to

the

shear wall

tends

to

increase

after

the

occurrence of

the

slipping.

The

external

forces

of

the

shear wall subjected

to

the

compressive

load

in

the

diagonal

direction'

,can

'be

decomposed

into

two

tYpes

of

fundamental

components,

Type

I

and

ll,

as shown

in

Fig,5,

The

component efthe

Type

ll

i.s

thg

va;iable axial co.mpressive

force

of

the

boundary

frame.

Therefore,,

the

tendenc\

observed

in

the

experiments

is

understood

by

the

reason

that

even

if

the

lateral

shear

force

of

the

wall

decreases

in

accordance with

the

occurrence of

the

slipping

the

shear

strength

of

the

boundary

frame

increases

by

the

variable axial compressive

force

and consequently

the

boundary

frame

can

supply

the

lateral

shear

force

larggr

than

the

logs

of one'oi

the

wall.

.'

The

empirical

expression・

for

the

slip strength of

the

wall

Eq,(6)

is

obtained

ffom

the

multiple

regression

analysis.

The

standard

qeviation

of ..Q.oTus,IQ.of..) calculated according

to

this

eguation,is smallest among other

eqttations

expressed

ip

other

factors,

'

'

p p p

e

,

X`.

xl

i-

'

'・

= Typel

+

x.e. -:

;N

,

i

Fig.5,The'fundamental

components of

the

E\ternal

force

ef a shear wall subjected to the comprefisive

'

load

in

the

diagonal

direction

N2

2

/t-tt..t/t'''',TyP9II.tttt.

.tt.t''

-P

P "E

6oeytut

-te-:F

L

3e

1

- 24 shesr valls sllb]ected tD pelar syrmetr ±c loads

other tha" the cempresstve lead tn the direatton of

the diagonel ltne

O 19 shear valls subjected te pelar asyuumEt[ ±c leads x6 shear wslls

(Ps,1.2Z}

net applied te the

ple regression anelYets

U6

shear walls

(Psopl,2Z)

not applted te the

mult ±ple regressten analysis Xmax=,Xo, . -o

os

e

e o:o .. n

xxS eO Axe cTuocm-=2

nn ll'

.56/-ii-

:

x:'Shape facter for the shear stress at

the cemter of thewall obtained by

tsetreptc analysis

2,56M

erNo{ pts)=

2.

s6Vil-

+3590

Psextuo(ths)

o

loo

,

2eo

3oo

4eo

soo

-

R(kg!cm2)

Fig.6

'

The

relation

betwelen

.t..ua and

F.

obtained

flom

the

rnultiPle

fegression

analysis oflthe slip strength of

43

shear walls

(the

ratioof vertical and

horizontal

wall

reinforc'emeni

p.=p.;ph51.2

%),

where cTuo,ou

is

the concrete componeatof T.... and

Fl

is

compressive

strength of cencrete

146-r,gxLt-;si

k

1

e24'shearwallssubjectedtopelarsymmetric'loads oLherthanthecemptessiveloadtnthedilectSonof thedtagone1line O19x6shEarshearwallsvallssubje.cted

'(Ps)1.2:}topelarnotappl

±editoasymmetrtetheloadsmult ±

-'pleregressienanalysts

rr6sheaTvalls(Ps{D}'1,2T.)notappliedtethe

multtpleregresstenanalysts

80

'

'

'&/

'

'

60'

Inln,1n/ x

tlB/-:rruDcros)=43

'

v

40

l--

'

l :

''

.d]

',e1.

tt

o 1

'

q.1kmax=X1,

'

'

20

-hs`b"x:Shape 1,atthefacterferthecenterefthewallsheaTstressobtaiued tl,Asv 11by1 tsotroptcanalysis

3590p,

-". 1rTHeCas1=1

2.56F.+3590Pse:Tuefws]

1

'

o

LOl.22.O

3.o

4.

Fig.7

43

e

-

Psi(%>

The

relation

between

.;... and

p.

6btained

frorn

the

multiple regression analysis of the slip strength of

43

shea[ walls

(the

.

ratio

6f

vertical an'd

horizontat

wall reinfofcement

p.=p.=ph\1.2

%},

whFre rTuo[urr,

iS

(6)

Architectural Institute of Japan

ArchitecturalInstitute of Japan

Table4

Shear

Walls

with

the

wall reinforcement ratio

larger

than

1.2

%

REFE-RENCESPECIMENz(cm)h(cm)Dc(cm)bc(cm)Di)(cm)bb(cm)t(cm)Ps(Z)Oy(-lsg,)emFe(-!!E,)emN(ton)e(degrees)rcexQ/uoms)t("k,) /Qt,otu"1/T(gek,)・

IB

s5LO51.e6.0'6.06.04.01.03.662900325o

451.1392.184.I

9Sl.O51.06.06,O6.04.e2.01.S329003SOo

401.2662.88S.2

/

1051.051.06.06.06.04.02.01.832900307o

?1.2674.582.9

115!.O・SLO6.06.06.04.02.01.832900356o

?1.2662.886.1

2B3651.05LO6.06.06.0'4.0LO1.833000467o

?1・.1385.392.7

3951.051.06.06.06.04.01.01.83'3000・443o

?IL1387.791.3

37'51.05LO6.Q6.06.04,Ol.O1.83rk3000472o

?1.13110.4114.4

'

3851.05LO6.06.06.04.0LO1.83de3000478o

?1.13114.1114.7.

405LO51.06.06.06.04.0LO1.83k3000465e

?1.13116.1114.e

4151.051.06.06.06.04.02.01.83*3000446o

?1.2681.9112.9

4351.051.06.06.e6.04.02.01.83-3000448e

?1.2676.5113.0

455LO51.06.06.0'6.04;O2.01.83de3DOO469e

?1.2679.9114.2

Notes:

1)

The

data

rnarked t denote the

diagonal

wall reinforcement,

,

2)

When

the

diall

reinfercement is vert ±cal ancl

horizontal

wall retnforeernents,

Quo(ws)

is

calculated

by

substituting

for

Ps

=

1.2Z

tnto

Eq.

(8).

'

Tue[wsi=2.56Viill,+3590ps

,

(kglcmi)

・:・-・・・・・・・・・・・・・・・・・・・・・・・・・t・・・・・・・・・・・・・・・・・・・・・・・"・・-・・・・・・・・・・・・・・・・・・・・・・・・・-・(6}

where

p.=O.O12

when

p.>O.O12

The'restilts

of

this

regreSsion analysis show

that

factor

{pi

o.)=(p.a,b)=(p.a,.} scarcely affects

the

slip strength Tuor..F.

This'fact

'coincides

witli

the

assumption

3)

in

section

2,

"

The

contribution of

the

boundary

frame

to

the

sheai stJength

is'

considered

in

Eq.

(

6

),

becquse

the

ultimate shear

t/

stress, T.o[.., on

the

failure

plane

is

determined

by

using

the

shape

factor,

x, ot

the

shear stress

of

the

wall which

depends.Qn

the

geometrical

condition

of a wall

and

a

boundary

fra;ne.

,

,.

The

results of

this

regression analysis are shown

in

F.igs.

6

and

7.

In

the

case

of

the

shear

walls with vertical and

horizontal

wall reinforcements whose ratio

is

larger

than

1.

2

%,

it

is

pessible

to

estimate adequately

the

slip strength of

the

wall

by

substituting

pb=O.

O12

in

Eq.

(-6

)

(see

Table

4

and

Fig.

7),

But

it

is

obtained

from

the

experimental results

that

the

contributioR of

the

diagonal

wall・ reinforcement

to

the

slip strength of

the

wall

is

proportional

when

psuSl.8%

(see

Table4

and

Fig.7).

4.

Lateral

Shear

Capacity

ot

Shear

Walls・

,

,

,

'

The

lateral

shear capacity

dominated

by

the

slip

failure

with regard

to

shear walls assumed

to

be

N'=O,

Q.or..),

is

given

by

Eq.{7).-

'

Quodws)=ii/uoiws)tt=

Tx":{:S)

tl=

TiC:/us)

tl''''''':'-'''''''''''''''''''''''''''i''''''''''''''''''''.',,.,,.,,,.,・,・-・・・-・・・・・:[.(7)

'

tt

The

frequgncy

distribution

of

the

ratio of

the

experimental value ..Q.b,..,

to

the

calculated value

Q.,,..)

obtained

by

substituting

Eq.

(

6

)

in

Eq,

(

7

),

..Q.oc..)fQ.o,.., with.regard

to

the

43

shear wqlls

applied

to

t.he

multiple regression analysis of T.oc..],

is

shown

in

Fig.8.

It

is

seen

from

Fig.8

that

this

distribution

is

nearly normal

distribution.

The

mean

and

,the

standard

dbviation

of

these

ratios are

1.002

and

10.4

%,

respectively.

The

corretation coefficient

of

i.,,..,

is

O,

907.

It

is

seen

from

Fig.

9

that

most

of

the

shape

factor

x

for

shear walls

failing

in

s]ip shear

is

almost

1.

o5.

Therefore,

the

practical

expression,

Eq.(8),

of

the

lateral

shear capacity

is

giveh

by

substituting z=1:05

in

Eq,(7),

The

mean

and

the

standaTd

deviation

of ..Q.,f..,IQ.o..,

and

the

corTelation

coefficient

of

7.,,..]

calculated according

to

Eq.(8)

(see

Fig.Il)

are similar

te・those

according

to

Eq.(7)

(see

Fig,8).

Quocws,=iuortus,tl=(2・4VjiT+3400p.)tl

(kg)''''''-''''vt・・・・・・・・・・・-・・・・-・・・-・・・・・・-・・・・・・・・・・・-・・・・-・・-・・-・・・・・・・(s)

where

E,=compressive

strength

of

concrete

(kg/cm2)

p.=shear

reinforcement ratio

in

the

wall, where

p.==O.O12

wheri

p.>O.O12

The

retation

between

the

vertical

load,

N,

applied

to

the

shear wall and ..Q.o,..,

is

shown

in

Fig.

10.

It

is

seen

from

Fig,

lo

that

the

vertical

loads,

N,

scarcely affects

the

experiFiental

lateral

shear capacity ..Q.o,..).

This.

fact

coincides with

the

assumptiop

4)

in

section

2.

When

the

lower

bound

of

lateral

shear capacity

dominated

by

the

slip

failure,

Q.e,...i.

and

the

upper

bound

of one

(7)

-147-Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan ptu[-]avLL1

lg:Y

1210s642o246810

c:Qttdrm;//

Qso(m)

rema:=

O.7

O,8

O,9

LO

1,1x12L

Mm

.

3

Results o'E theeretical

expression

fisheer.wails CPs(DPI.2X) 6 shear'walls CPs>1.2:) 43 sheai walls (Ps!1,.:X) exQuocws) meEn 1.oo2 standard deviatien

Qvv(pt]

,,

o.zoa

Ps

==

PA

=

Pv

Results of pF'actical expressien 43 shesr wails (Pssl.2X) t:Que(ws) mdart'

'

'o',

Qmocwilj

O,7

O.8

O,9

1,O

LI

1.2

1,3

eiQ#ettus}

Qvocza)xmax=1,os

Fig.8

Frequency

distribution

of

the

ratio

value ..Q.e[us) te the theoretical

to

the

shear walls whose

lateral

dominated

by

the

slip

failure

of

t

t

tt

tt

t

ttt

Quofvs]ma=

are

given

by

Eqs.

g

a,

b

and

bound

(see

Fig.11).

sta"datd 99SdevtEtten O.112 L

n

-n

"E-e

s.

"eg

di',-T

/t

1,31,21.0O.8

o.

e24 shear walls subjected to polar symetrZc

,leads

other than the eompressive legd ln the

dtrectton of the diagonsl line

O19, shear walls subjected Lo'polar asym:etric

loads

'

'

X6 shear walls,

(Ps)1.2X)

"ot applted te the

multtple regresston a"alysts

n6

ehear walls

(Ps(D}>1.2Z)

not applled to

the mult ±ple regTesstbn ahalysts

sL.

---J","'-x-r

,

----r--'-/x

s."

of

the

experimental value

Q.or..,

with regard

shear capacity

is

,

ttt

'

the wall

10

a,

b,,

one

datum

/

Fig.9

95

1,O

ms

1.1

1:2・

1,3

ttt

'

-x

'

The

ratio of

the

expFrimental vaue evQ.,,..i

to

the

theoietical

value

QLGf..]

and

the

shape

factor

for

the shearstress at

thecenter

of'the wall, Tlan, obtained

by

the

elastic

ap.

,alysis

with regaT,d

to

55

shear walls, whose shear

failure

is

induced

by

the

slip

failure

of

the

wall

is

below

the

lower

bound

and

four

data

are'above

the

upper

i

when

Q.,c.enltl$60kglcm2

.

・,・

-

,・.

,

,・

,

Quocuamin=O・8Quo(wsi''''-"''"'''''''''''''"''-H''"''':'''''''''''''"'''''''"''''''r'''''"'''s'v.:""t-''-''"''-,(9a)

Quocwsttacr=1,2Quoiws)''-'"''"'''-'''''-'--'''"`'"'''t`''''"''''''/H''"i''"''"''''''J''H''''''H'''H'-H'-H'':'(10a)

when

Quocwetltl>6okglcmt

,

Quocwennttn=Quo{ws,-12

tl

(kg)''''''"'''''''''''''-'''''''"''-''""-'''-''-''''"''"''"r'"'''"''''''''''''''(9b>

Quocwsmax=Quocwsi+12

tl

(kg)

'"':"'L"'"''''''"'''"''"''H''"''"'''"''"'k'Lk''''''"''H'''''"-'H-'''''(10b>

After

the

regression

analysis,

manyone-bay one-story

shear

walls,(shear reinforcement ratio

p.Ei

p.==

ph)

assumed・

to

be,

N'=O

are coll.ected

(see

Table

5),

With

regard

to

the

shear walls

failing

in

slip sheai

the

relation

between

the

'

experimental

values

and

the

values calculated according

to

Eq.

(

s

)

is

shown

ln

Fig.

n.

Most

of

data

are

plotted

in

the

zone

between

the

lower'bound

Eq.

(

9'

)

and

the

upper

bound

Eq.'(10).

The

'rnean

and standard

deviation'of

the

ratios of ..Q.ot.,,IQ.o',ua

with

regard

to

tetal

shear walls are'1.os3 and

14.7%;

resp6ctively,'

The

c6trelatibn

Shearwalls(N=O)..Loadin N=O .N)O

mean

O.989

stanarO.093

deviation

polarsyrrcrnetricleadtng othertha"the"compressive loadinsalongad ±agonal 1±ne

'

÷

.i23shearwallse1shEarwall'

/

'

'/ttt

t

t

'

'

freq'ueney2,4,6polarasymmetr ±eloadtng,5shearwallsO14shearwalls

'

total'28shearwallsISshearwalls

t/'

//e

----

'---ttt

---

'-o-o-=ssorH t...'ee'

ttee/o-o--m-n'

L2---?gx.-o

'tt'-o'-.

--o

l.2g's'・1.0cr-.0,8O,7

ltuL.

・el

oo el

="Lgdiw08---rol

oo---o---

'---

---T

t-.-"'

7

--'

OO.2O.4O,6O.81,O1,21.4

oo.o2o.o4.o.o6o.o's.o,,leo.12o,14

Fig.10

'

-M"

Q..N(..)・

・.

N

,

,

(2beDc+tl')R

.,

'

The

relalion

between

the ratio ofthe experirnental value ..Q.ty.., tothe theoretical value

Q.,,..,

and th'evertical

load

N

with

'

regard

to

the

shear wall whose shear

faiiure

is

induced

by

the

slip

failure

of

the'wall

(the

ratioofvertical and

horizontal

wall

'

reinforcement'p.=pv=phSl.2'%)

'

''

'

(8)

Architectural Institute of Japan

ArchitecturalInstitute of Japan

coefficient of

i.,c.st

is

O.856.

.

,

5.

Conclusions

The

following

conclusions with regarcl

to

one-bay one-story shear walls may

be

drawn

from

this

investigation.

(1)

The

slip

strength

of

the

wall

is

affecFed

by

the

square

root of

the

compressive strength of concrete and

the

ratio of wall reinforcement.

In

the

case of vertical and

horizontal

reinforcements,

however,

when

p.ll,2

%

the

contribution of wall reinforcement

to

the

slip strength

is

not

proportional

but

becomes

constant

while

in

the

case of

diagonal

reinforcement,

it

is

piopbrtional

when

p..$1,8

%.

(

2

)

'

The

lateral

shear capacity of shear walls

failing

in

slip shear of

the

wall

can

be

estimated

adequately

(mean

=O.

998

(1,

053>,

standard

deviation=O,

112

(O,

147),

correlation coefficient=O.

883

(O,

856),

the

sized values

denote

ones with regard

to

total

shear walls)

by

the

practical

expression

Eq.<s

),

Table5

Shear

walls

gollected

after

the

regression analysl's REFE-RENCESPECI"[EN z

{ctu)'h(em)De(etu)be(cm)ng(em)bb(cm)t(am)?s(z)"(::2)Fc(2fi,)N(ton)G(degrees)

'exque(vs>

.(thkm2)

que(vs)Tt(thk.2)

9AleRw

S2.o37.0zo4.S7.04.s1.ee.7e2330400o40

7.071.B

leAO.35-FTI-1 73.eS2.010.06.S10,O6.s2.0O.3S1710e4eo?

66.1S6.2

O,3S-FW-2

73.o52.010.0・6.S10.06.sz.oO.3S1710340o?

6S.3S6.2

O.70-VW-1

73.o52.010.06.S10.06.s2.0e.7o19SO362e?

7s.e69.5

O,70-FW-2

73.oS2.010.06.510.06.s2,OO.7019SO362oT 64.269.S

1.0S-FW-1

73.oS2.0lo.e6.S10.06.s2.01.0SI9SO362o?

79.2Sl.4・

1.0S-FW-2

73.oS2.010.06.S10.06.52.01.0Szgse362o!

Bl.SSl.4

11A2eW-O.6F-1

73.o52.010.06.S10.06.s2.0O.3S2217329o1

66.4SS.4

20W-O.6F-2 73.oS2.010.06.S10.06.s2.0O.3S2217329o?

6S.S5S.4

20W-1,2F-1 73.o52;Ole,o6.510,O6.s2.eO.3S2217]29o?

77.3jS.4

20W-i.2F-2 73.oS2.010.06J10.0・6.s2.0O.3S2217329o44 eo.15S.4

3SW-1.2F 73.eS2.D10.06.510.06.53.SO.3S2241214o?

44.247.0

12A.O.3S-SW-7.0 7S.oS2.0lo.e7.010.0Lo2.0O.3S19U340o? S8.3S6.2 O.3S-SW-S.S

73.oS2.0lo.eB.S10.08,52.0O.3S1911359o!

75.3S7.4

O.3S-SW-10.0

73.o52,O10.010.010.010.o2.0O.351911330o? 6S.Sss.s

o.7o-sw-7.e

73.oS2.0lo.aze10.07.o2.0o.7e1911345o?

63.968.4

O.70-SN-8,S 73.oS2,O10.08.510.0s.s2.0O.701911352o?

74.868.8

O.70-SW-10.0

73.oS2.010.010.010.010,o2.0O.701911345o?

7S.968.4

10SO.64-S.G/1.7-O(1)22.448.0s.sS.620.0IS,o1.7O.772290285e45

79.36G.7

SO.64-S.61.7-O222.448.0S.65.620.0IS.L7Oa772290267o4 84.86S.4 12BBl-1 ISO.3102.9le.1660.96IS.24IS2.410.I6o.sS30029So38

71.0S8.2

B2-1

18e.3102.910.1660.96IS.24152.410,16o.s536e167o42

S3.94S.o

]3-2

180.3102.910,1660.96IS.24IS2`410.16o.s5400276o3S

62.e・S6.9 B7-5

ISO.35S.2S10.166n,96IS.24152.410.16o.s5260262o40

63.7SS.9

B8-5

18e.319S.110L1660.96IS.24IS2.410,16e.s522e'239o45

49.SS4.1

13BIFI-O-O-Ol 7S.O120.0IS.O2S,O20.025.08.01.4110724824.Se・tt91.77S,6 M-I-O-O-02, 7S.O120.0IS.O2S.O20.02s.e8.01.4110724824.642

88.378.6

M-m-o-e-ol 75.0120,OIS.O2S.O20.0Z5.08.0O.731072Sl24.641

68.364.0

M-II!-O-O.e2

7S.O120.0IS.O2S.O20,O25.b8.0O,7310728124.6S3

lo.o64.0

14B4S2SW40-T8 12e.o80iO14,O14.014.014.04.0O,2S31SO]7429,351 65.654.9

ISBAW-1

9067,S10.010.017.5IO.O4,OO.6S582et2808.04S 73.962.3 16BB 2S9.817S.450,OS6.0,so.o41.011.SO.373670292e3S

66.0・S3.6

17Bw-e

lse.o100.020.02o.e20.020,O7.0O.9114242S912.0!

・69.069.6

ISBNe,1 220.0130.040.040.04o.e40.018.0O.4236302S2o35

77.0S2.4

lgBmoNO 2!S.O14S,O2S.O25.030.025.010.0O.64404027537.S?

56.461.S

B-' 13S.Oo.o15.015.020.0IS.O4.0O.30329027013.S45 62.649,6 WO-1.0

135,O80.0!s.eIS.O20,Ols.e4.0LO722027013.S4S

7B.473.4

WO-I.OT 13S.Oso.eIS.O15.020.015.04.0LO722027013.545 82.173.4

21BNo.27

2!O,O116,O20,O20.026.012.04.0O.53410627S!8.044

50.SS8.D No.28 220.0116.020.020.026.012.0s,oO.42410627828.043

39.S54.3

Ne.29 220.0116.020.020.026.e12.0G.Oe.36410627S2S.O47 32.3・S2.3

No.30

220.0116.020.020.026.0!2.0LOO,30410627828.04S

35.7SO.2

221Wll

80.04B.O12.012.011.09.D4.0O.2S1900146o・41 4S.317.S W14

so.o48.012.e12.012,O9,O4.0O,6]9SO146o40

se.649.4

WIS eo.o48.012.012.012.09.0103950146o41

51,963.e

23BLIFO

lse.o100.020.020.020.020.07.0O913SOO13S12.0!

48.1SS.8

24BHS-Ol

130.0120.0IS.O6S,O3o.e65.0IS.Ooi'e3S2S2SOo?

71.16S,2

HS-04 1]e.o120.0IS.O6S.O30.06S.OIS.OO.8352S2SOo45 73.06S.1 Hs-es 130.0120.0IS.O6S.O30.06S.O15.0o.s3S2825eo?

64,763.8

HS-06 130.0120.0'IS.O6s.e3o,e6s.e15.0e.g3S2S2SOo? 64.063.S HS-07

130.0z2o.oIS.O6S.Oso.e6S.Ols.eI.63528233o?

S4.977.4

HS-08

130.0120.0I5,O6S.O]o.o65.0IS.OL63S28233o?

8S.677.4

HM-Ol

2SO.O22o,e30.012S,O4e.o12S.O30.0O.8398126So4S

G6,666.1

HM-02 2SO.O220,O30.0125.040.012S.O30.0o.s3981265o45 66.76S.3 2SBSR125BE02Sle120,Olse.o15.e15.020.0IS.O3.0O.414200370o?

62.S.60.8

sRlooBEo2sle12o.e120.015,OIS.O20.0IS.O3.0O.434200370o?

6S.960.9

sRo7sBEe2ss IZO.D90.0ls.eIS,O20.0IS,O3.0O.S74200305o?

8a.371.5

SR075BE02SIO120.090.0IS.OIS,O2a.ols.a3.0O.4]4200370o?

67.S6e.8

251FW-1

200.0ss,e15.0IS.O2o,ele.os.oO,8383123SIS.O45

6e.9.o

FVJ"2 200.0BS.OIS.OIS.O10.0.2S.Os.oo.s.381129718.0? G9.668.6 FW-3 200.085.010.02S.O10.02S.Os.oo.s38312812o.e?

66.96],4

27BVIN-1

170.0105.020.02e.ozs,oIS,O6.0O.42408723534.04S 6S.87.4

2SBIB

110.0122.e10.022.022.a22.03,OLO661S4!9.o4S

S6.183.1

Note:The

mark ft

in

the

colurnn of

OY

denotes

omctx.

(9)

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

The

expansion

of

the

shear

cracked

orthetropic

wall

panel

which

behaves

as

diagonal

compression

field

by

shear causes

the

swelling of

the

boundafY

frame.

But,

in

a multibay or mu'ltistory she'ar'whll,

the

s'welling'of'

the

intermediate

column or 'interm'ediate

beam'

is

res-trained

by

the

adjacent wall.

This

fact

means

that

the

wall of amultibay

or

multistory shear wall

is

effectivlely

confined

by

the

boundary

frame:

'

''

Consequently

the

lateral

shear

6apacity

of multibay er multistory shear walls

failing

in

slip shear of

their

infilled

wall

panel

is

larger

than

the

capacity

galgulated

by

the

expression

pTopo\ed

in

this

paper

with regard

to

one-bay one-story

'shear

wall assumed

to

be

N'=OiO).

Therefore

the・lateral

shear

capacity

of

a

wall

frame

structure

.is

underestimated

by

the.

expression

proposeid

in

this

paper

and

consequentl'y'is

safely

estimated,

'

t/

References・・

1)

S.

Sugano:Summaries

of

Technical

Papers

of

Annual

Meeting

of

ArchitecturaL

Institute

of

Japan

(A.I.J.

),

Oct.

]g73,

pp.]3os-l3od

(in

Japanese),

2)

M,

Hirosawa,

T.

Akiyamaand'

M,

ies

of

Technical

Papers

of

Annual

Meeting

of'A,

I,J.

,

Oct.

Ig75,

pp.1173-1174

(in

Japanese),

'

3}

M.

Yamada:Gihodo

Publishing

Co.

LTD.,

Aug.

1976,

pp.l13-l14

{in

Japanese).

4)

S.

Mochizuki:

Failure

of

Wall

Panel-,

Trans.

of

A.I.J.,

No.306,

5)

M,

Tomii

and

H.

Columns

of

their

Boundafy

Frames

Part

1,

2

and

3,

pp.75-83,

No.275,

Jan.

1979,

pp.45-53

"n

English)

6)

M,

Tomi.i,

T,

SueokaandH,

Hiraishi

:

45-Degree

Orthotropic

Plates

Part

1

and

2.

Trans.

of

A

60

(in

Eng]ish).

'

7)

Ml

TomiiandF,

the

Japan.

Concrete

Institute

(J:C.I.

);

Vol,4,

198Z,

8)

F,

Esaki,

'K.

Funamoto

and

M.

9}

Y.

Suenlaga

and

R.,

Ishirnaru

:

Kinematic

Analysis

A.J,J.,

No.220,

June

1974',

pp.1-7

(in

Japane'se).

10)

F.

Esaki,

M.

TomiiandM.

of

J.C.L,

VoL6,

1984,

pp.477-484

(in

English).

References

ef

the

Shear

Walls

Subjeeted

'to

Polar

IA)

M.

(Part

3),

Trans.

of

A.LJ.,

No.60,

Oct.

1958,

2A)

M,

Tomii

andS.

pp.301-304.

3A)

S.

Mochizuki:

Trans

of

A.LJ.,

Ne.249,

Nev.

1976,

pp.13-23..

4A)

M.

Tomii

ei al.:Reports ef

5A')

'

S.

Mochizuki'andS.

6A)

S.

MochizukiandS,

'

7A)

S.

Mochizuki

and

Y.

Hosaka:

--150-120

['

100

=

gx.i---e

:=av:

se

6o

40

1

・2o

Fig:,11

On

the

Ultimate.Shear

Strength

of

Reinforced

Concrete

Shear

Walls

-Bearing

Strength

Controlled

by

Slip

,Aug.・'1981,

Hiraishi

:

Elastic

Analysis

of

Frarned

Shgar

Walls

by

Considering

Shearing

Deformation

of the

lleams

and

Trans.

of

4.I.J.,

No,273,

Nov.

1978,

pp.25-31,

Ne.274,

Dec.

]978,

t

tt/

Elastic

Analysis

ot

Framed

Shear

Wal1s

by

Assurping

their

Infilled

Panel

Walls

to

be

.I.J.,

No.280,

Junel979,

pp.1'Ol-109,

No.284,

OcL

1979,

t

/

'

'

'

.//

t

t

'

t

t

Esaki

:

Predicting

Methed

fer

Shear

Failure

Medes

ef

Reinforced

Co'ncrete

Framed

Sheai

WalLs,

Trans'.

ef

'

pp.

297'304

"n

English}..

Tomii

:

Rep6rts

of

Kyusyu-Chapt'er

of

A.

I.

J.

,

MArbh

lgs3,'

pp.

221-224

'(in

Japanese).

of

Concrete

Mernbers

undeT

g]ombined

Stresses

(Part

,3),

Trans.

Df

Fulita

:

Studies

on

Failure

Mechanism

of

Multibay

or

Multistofy

FTamed

Shear

WallF,

TTans.

.Symmetric

Loads

(all

in

Japa"ese):

.

.

Tomii

:

Experimental

Studie,s

on

Effect

of

Di4ggnal

Loads

to

Reinforced

Concretgl

Plateg

Having

Frame

at

Boundary

pp,389-392,

,

Miyata

:

Outline

of

SlteaT

Tests

Concerning

Puake

Resisting

Walls

Having

Various

Opening

TStudy on

Shearing

Resistance

of

Quake

Resisting

Walls

Haying

'Various

Openings

No.I,

TranS.

of

A.I.J.

,

No.66.

0ct.

1960,

'

'

t

t

'

t

t

'

Experirnents

on

Restri6tion

Effects

by

SuTrounding

Frame'

of

Reinforced

Conc[ete

Wa'11s

After

Cracks,

'

CAugeku-Kyushk-Chapter

of

A.LJ.,

.Feb.

1978,

pp.175r182.

Matsuo

:

Summaries

of

Technical

Papers

of

Annual

Meeting

ef

A.

I,

J.

,

Sep.

1978,

pp.

1ts37-l638.

Kawabe

:

Summaries

of

Technical

Papers

of

Annual

Meeting

of

A.

I.

J.

,

Sep.

1979,

pp.

1459-1460.

Summaries

ef

Teehnical

Papers

of

Annual

Meeting

of

A.

I.J.

,'

Sep.

1979,

pp.

1473-l474.

O

ZO・

40

60

SO''100

120

'i

Quotto,)

''

-'

.

tl

(kg!cmt)

ttt

/t

'

The

relation

between

the

experimenta! rnea" unit sheaT stress, ..Q.qua1tt, on the

horizontal

section of

the

,shearwallswhose

shear

failure

is

induced

by

the

slip

failure

of the wall to the theoretical one

Quedws)!tl'

'

Table 1 Aspect ratio of   shear walls

参照

関連したドキュメント

Keywords: Convex order ; Fréchet distribution ; Median ; Mittag-Leffler distribution ; Mittag- Leffler function ; Stable distribution ; Stochastic order.. AMS MSC 2010: Primary 60E05

One of several properties of harmonic functions is the Gauss theorem stating that if u is harmonic, then it has the mean value property with respect to the Lebesgue measure on all

Inside this class, we identify a new subclass of Liouvillian integrable systems, under suitable conditions such Liouvillian integrable systems can have at most one limit cycle, and

Greenberg and G.Stevens, p-adic L-functions and p-adic periods of modular forms, Invent.. Greenberg and G.Stevens, On the conjecture of Mazur, Tate and

Our method of proof can also be used to recover the rational homotopy of L K(2) S 0 as well as the chromatic splitting conjecture at primes p &gt; 3 [16]; we only need to use the

The proof uses a set up of Seiberg Witten theory that replaces generic metrics by the construction of a localised Euler class of an infinite dimensional bundle with a Fredholm

Using the batch Markovian arrival process, the formulas for the average number of losses in a finite time interval and the stationary loss ratio are shown.. In addition,

Due to Kondratiev [12], one of the appropriate functional spaces for the boundary value problems of the type (1.4) are the weighted Sobolev space V β l,2.. Such spaces can be defined