• 検索結果がありません。

Model Test and Numerical Simulation of Penetration Process of Sleeve for Cast-in-Place Piles Driven by Vibratory Hammers

N/A
N/A
Protected

Academic year: 2021

シェア "Model Test and Numerical Simulation of Penetration Process of Sleeve for Cast-in-Place Piles Driven by Vibratory Hammers"

Copied!
10
0
0

読み込み中.... (全文を見る)

全文

(1)& ' ( ) * + + , ! 52 " ! 4 # 2017 $ 8 % JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY. :. ( ). . Vol. 52 No. 4 Aug. 2017. :. 0345 02582724 2017 04070510 DOI 10. 3969 / j. issn. 02582724. 2017. 04. 008. 6789:;<=>?@ ABCDEFGAH. ,. ,. !"# $%& '(). (Pi*+DjHI+k,Pl Pi 350116) : , , z|B}DsE~D€Ip‚ƒ„ †‡mMN; lˆm‰Š‹rchYZ[\]^_`a yz{E、 , bIpKLMNcd Œvtucdef†‡*‚KLchgvŽ. >?‘’: YZ[\]`a“”• – 0. 2 m, —xyz{E~z|B}DsEM˜•– 1 kPa ~ 8 kPa, ™}Drspš›œžŸ w¡¢£\ ]w¤¥¦C 6 §]¦pœ¨; ©ª\]«FD¬p­®¯°, ±@²³Q€pD, \]´µ¶·D ¹ºD»¼m 80% p¨½¾E; ¿À\]Á¦•*, D€I©²³Q€bÂóQĀÅÆ; ¸, \]`aÇȓÉ, Ê~ËDÌ2wD́CÎËÌ2wD́p 1. 2 §. KLM:YZ[\]; ^_`a; cdef; KLch; }D; D NOPQ5:TU473 0RSTU:A I J Cm>?YZ[\]^_`anopqHrs )btucdef v\]`abIg`abIwx. Model Test and Numerical Simulation of Penetration Process of Sleeve for CastinPlace Piles Driven by Vibratory Hammers. ,. ,. XIAO Yongjie CHEN Fuquan DONG Yizhi. (School of Civil Engineering,Fuzhou University,Fuzhou 350116,China). :A model test was carried out to investigate the excess pore pressure,the radial extruding stresses,and the degree of soil plug of a vibratory driven sleeve for castinplace piles. A finite element model was also introduced by using the commercial code,ABAQUS. The results from the finite element analysis are in a strong agreement with the experimental observations. The results show that the excess pore pressure and radial extruding stresses increase to 1 kPa and 8 kPa,respectively; nevertheless,the extruding effect is mainly limited within a radial distance of about 6 times the sleeve diameter. The soil shear strength and granular cementation force decrease during vibratory sleeve driving,which is induced by cyclic shearing action in the shear interface. As a result,the inside sleeve of the soil plug is in an incompletely plugged mode. During vibratory sleeve driving,the soil plug in the sleeve end forms an annular soil arch,which gives rise to an obvious increase in internal friction resistance. The soil plug of this section withstands 80% of the internal friction resistance. When the penetration depth is the same,the height of the soil plug in a saturated sand foundation is 1. 2 times the height of the soil plug in a dry sand foundation. The vibration frequency,sleeve Abstract. :20151111 :-./01+234567(41272299 ) :89:(1988 — ),;,<=>?@,>?ABCDE+F2GHI、JDHIKLMN,Email:xiao_yongjie@ 126. com :OPQ(1971 — ),;,RS,<=,>?ABCDE+F2GHI、JDHIKLMN、TUHI, Email: phdchen@ fzu. edu. cn 2017 , 52 (4 ):705714. /012:89:, OPQ, VWX. YZ[\]^_`abIcdefgKLch[J]. &'()*++,, XIAO Yongjie,CHEN Fuquan,DONG Yizhi. Model test and numerical simulation of penetration process of sleeve for castinplace piles driven by vibratory hammers[J]. Journal of Southwest Jiaotong University,2017 ,52 (4 ):705714. !"#$ %&'( )*+, -.)*.

(2) ! " # $ % & & '. 706. ,. diameter and saturation have significant effects on the soil plugging effect.. ( 52 ). : sleeve for castinplace pile;vibratory driving;model test;numerical simulation; extruding effect;soil plugging effect ¿ÀQ\]^_ÏDYZ[ÐÑpÒÓÔÕ, M€3dóQ€. YZ[\]^_`aÉpqHrsÖ×pš›Ø YZ[\]Á¦(*、]«(e,F][W¡ Ù×ÙÚÛÜÝZ. žŸ‘Þ¡:\]`anop TUpf˜, gv}DsE~xyz{Ep3[h [ ] [ ] ;YZ[\]^_`abIw\]« ÝiŸ }DßàÐáâ[¬ãä[ßåà ;\]^_ `a±@p—xyz{Eævç‹lè±@²é FD¬jp­®¯°Fkà, v\]¨Dptu [ ] š› ; E+ìű@TUš›, ]¨D»¼m½¾EpžŸµM,F\ ™v¹A!p>?lm‹ [ ] ]pêëaìí°ÇÝ . ,n. Fo¡Ê~ËDÌ2~ÎËÌ2w†‡Kû î[bIw, }DsE~—xyz{Ep‚ƒ ppYZ[\]^_`acdef, MNm\]^ [ ] z|B}DsE~D Áï­ðqHrspñò. Wang ó ôõö÷] _`abIwxyz{E、 [ÞøefKõ, MNm—xyz{EùL~ãú €Ip‚ƒ„ ; 0qvcdef†‡‹rc ‘’—xy ŒMNmYZ[\]^_`abIw\]¨p ‹rDsEpŽLF¦B¢£pÝû, h, [ ] z{E¿¦B¢£*üývKdþÿ;Lee ó 2 D¸rs. ª|!s‚"x#$u%, &'m‰Š()*+, 1 CDVW “- D ¬ } D s E ~ x y z { E p . N /;Xu [ ] 1. 1 CDXY ó )b][^_`a01DÌ2ef,>?m cdrstC 1 m (u )× 1m (v )× 1. 2 m ][`abIw[2D¬}DsEp‚ƒ„ ; [ ] Xing ó ef>?3Þ,][ö÷`aà 5 ~ 8 m (Í),wx 1 yz. Cÿ { D ¬ F c d r ¨ « ½ É, ¦B}DsE4ÃùL,5À¦B¢£67ÿ |, ÈÉ}~cdr€,¡cdr¨«‚ƒ} 8; ÈÉ)b9,][2Dwxyz{Ep‚ „, cdr µ†‹‡zˆ‰, ѪËD‡z. c ƒ, dr µŠ‹Œ† 10 cm ]Ž~DH. 3Þxyz{E5À¦B¢£67:;,<Ë [ ] Dp:;=>ª1D;Yi ó ?Ñ ABAQUS ‹ @A0Bch[C`a1Dw, ²ÈDEFGcd v`a¾E~—xyz{Epš›, ŒHKLMN F£¤Ief†‡Ž(. â$×,î]b [] IDrsØJÃmKL>?;Randolph ó n a“‹rD́ ”MN,ŒôõOE|PQBl ˆm R Ñ ª M N D  ¾ E p | P A I;Nicola [] ó )b£¤Ief,>?mî[ASvDì Liyanapathirana ó [ ]lˆö÷î[bI Åpš›; >?‘’][î[bIwD€ p‹@Acd, [] I©³QĀBµM€bÂ;Henke ó >?3Þ, ?Ñö÷î[É][¨µD¬z|sE TU&Í, ¶D;?Ñ^_î[É][¨µD ¬z | s E V ' Þ ’ T ‚ ƒ,D  r s ² W ¡; x 1 cdefû Thongmunee ó [ ]XÑKLchFefǏYp Fig. 1 Layout of model test device AS,M N m D  » Z E 3 [ p E + I \;Xing [] ó >?‘’,][ö÷`abIw]¨DÍ \]`aû©‘d^_’I、 “”•–—~ [ ] ¿]«]ÿ8^•*;Holeyman ó &'m ˜ \ ] ™ ¶. ‘ d ^ _ ’ I š * ^ _ “ ” C K_`aD¬¾bp^_[c½¾E.N‘4/; 50 Hz, š*›^EC 1 300 N. )b“”•–—ê [ ] Tan ó ef3Þ,][O{`abID©µ œ•–^_’I'p^_“”~^_E, ef“ Key words. 1. 1617. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 7. 14. 15.

(3) ,:. (4 *. 707. +,- . /0123456789:;<=>?@:A. 、. ”M˜C 20 25 Hz ~ 30 Hz. ˜\]Á¦M˜C 0. 05 0. 08 m ~ 0. 11 m « ] C 0. 3 cm u  C. 、. ,. , 1. 5 m. Kõ? û©žŸ—、Kõ?  、’¡~ K¢£I™¶. Kõ?  C HPXY16A ¤K¥¦  , Ѫ? D{žŸ—~x{žŸ—p'§ ¨. ef?ђ¾s‚/žŸ—. 1. 2 CDZ[. ,. efÑË?Ñ©)ªË «¬­®¯°±w x 2 yz «²²³ûK C u = 3. 5 °”ûK C c =. , , 0. 88 , C® ¯ ² é p ² ´ ª Ë. Ë D í  ρ = 1. 92 g / cm , ¨½|µ φ = 28°.. x 4 D́p,ºz¹x Fig. 4 Measurement of the height of soil plug. 2 CD^_EP`. 3. ,. . . . 2. 1 abcd x 5 C²È`a“É ¢\]w¤ 0. 1 m Î —xyz{E~z|B}DsE¿“p‚ƒ· ¸ xw f C^_“” D C\]¦ H C\]`. . , :. . a“.. ;. () :. ©x 5 a êÏ 1 Ð\]`aޟ—Ѷ“É ғ. . (). . . ,. ;. ,. Ηxyz{EÓԕ* Œ4ÃùL \]`a.  . . . . . . . x 2 efËp¬­®¯°± Fig. 2 Particlesize distribution curves of test sand. 1. 3 CD\] x 3 CžŸ—¶·¸z¹x. x 4 CDÍ. ,. , ½¢¾¡\]c, À½¢ÑªÁÂÃ; 0q, HK ¢Ä£IÅL, v\]`abIw¿½¢vspÆ ±~ËD‘!ÃÇpƁ±p‚ƒ†‡ÈÄ; š q, )bɾʓ,¥¦²ÈÉjËvsp`a“. p,ºz¹x. »¼ Hi½¢¾¡\]¨c ¿. ~D́.. (a)|!x Fig. 3 . ;. (b)Ì!x x 3 žŸ—¶(Íß:cm) Arrangement plan of sensors (unit:cm). , ; , (2)VÖ_D-(`a“œÕD-)p—x yz{E¿`a“•–67×Ø, ý’T•*Ù Ö_D- (`a“œãD- )p—xyz{ Ú; E¿`a“•–^Û=ÿ8. ÐÖ_D-±@p —xyz{E—bD¬ÜÝñÉ,D¬Þß, ¶àá)n,âüÖ_D-p—xyz{EÛ= :;. (3)²ÈD-“Îp—xyz{EùL² , È D-“Ù*—xyz{EùLÙ*,g㒠\]^_`anop—xyz{E²äF¦B¢ £‹Ý, ØFD-“ÇÝ. ©x 5 (b)êÏ: (1)Ð\]`aޟ—Ѷ“É,ғ Îz|B}DsE4ÃùL; \]`a“œãµ ß, z|B}DsE¿D-“•–^•*;¡\ ]`a“œÕµß, z|B}DsE¿D-“ •–^ÿ8. (2)VÖ_D-(`a“œÕD-)pz| B}DsE¿`a“•–^67•*; Ö_D(`a“œãD-)pz|B}DsE¿`a“ •–^Û=ÿ8. (3)z|B}DsEp‚ƒF\]`a“ “œãµß —xyz{E¿D-“•–^• * ¡\]`a“œÕµß —xyz{E¿D -“•–^ÿ8..

(4) ! " # $ % & & '. 708. ,. ,. í°ÇÝ ¿À\]`a“p•– 5D-“ pz|B}DsEùL2FýÞ67•*ÙÚ. \ ]`anopz|B}DsEF“åãä{E. ( 52 ). ,. ,. í°ÇÝ “Ù*z|B}DsEÙ* ‘’\ ]`abIwz|B}DsE67©æ-B“žç.. (a)—xyz{E x 5 . (b)z|B}DsE ²È`a“É—xyz{E、 z|B}DsE¿“‚ƒ(¢\]w¤ 0. 1 m Î) Fig. 5 Distributions of excess pore pressure and radial extruding stress along depth at a radial distance of 0. l m varying with penetration depths. ,. ;. x 6 C²È^_“”É ¢\]w¤ 0. 1 m Î. z{E~z|B}DsE¿D-“•–^ÿ8. —xyz { E ~ z | B } D s E ¿ “  p ‚ ƒ ·¸.. z|B}DsEë^_“”š›(8 ^ÈK“ Îp—xyz{E¿^_“”•*^TU•*.. èx 6 wêé'. :. ,. ,. , , yî^_ K(*—xyz{EîŸ`a(“D-, ÉjÇs•u, ï^_nop—xyz{E‹ê‰ 3@:;^‹yðì;w^_öp^_“”(Í, ï—xyz{EÛ=•*, ê‰âüÊ~ËDp_ ‹Xª\]`a. ñÓÔÕð, MN‘’ w^_öp^_“”(ì noí. ²È^_“”É}Drs¿“‚ƒ„ Ç ê Ð\]`ah 0. 6 m ÎÉ Ò“Î—xyz {E~z|B}DsE²4ÃùL ¡ 0. 6 m “. ,. ,. ;. œãµß —xyz{E~z|B}DsE¿D“•–^•* ¡ 0. 6 m “œÕµß —xy. ;. ,. (a)—xyz{E x 6 . (b)z|B}DsE ²È^_“”É—xyz{E、 z|B}DsE¿“‚ƒ(¢\]w¤ 0. 1 m Î) Fig. 6 Distributions of excess pore pressure and radial extruding stress along depth at a radial distance of 0. 1 m varying with vibration frequencies. , èx 7 wêé': ²È]¦É}Drs¿“‚ƒ„ Çê, Ð \]`ah 0. 6 m ÎÉ, ғÎ—xyz{E~ z|B}DsE²4ÃùL; ¡ 0. 6 m “œãµ. x 7 C²È]¦É ¢\]w¤ 0. 1 m Ηx yz{E~z|B}DsE¿“p‚ƒ·¸.. ,. ß —xyz{E~z|B}DsE¿D-“• –^•* ¡ 0. 6 m “œÕµß —xyz{E. ;. ,. ;. ~z|B}DsE¿D-“•–^ÿ8 —xy z{E~z|B}DsE/0Ì¿]¦•*ý’ T•*ÙÚ. gžŸñ©ª]¦Ù* ]¨}'p. ,. D¬Ùò }DrsْT.. ,.

(5) ,:. (4 *. 709. +,- . /0123456789:;<=>?@:A. (a)—xyz{E x 7 . (b)z|B}DsE ²È]¦É—xyz{E、 z|B}DsE¿“‚ƒ(¢\]w¤ 0. 1 m Î) Fig. 7 Distributions of excess pore pressure and radial extruding stress along depth at a radial distance of 0. 1 m with varying sleeve diameters. x 8 C“ 0. 6 m Ηxyz{E~z|B }DsE5¦B¢£‚ƒ. ©x 8 êÏ. :. ,. £C 6D œœ —xyz{E~z|B}Ds E5À¦B¢£•up‚ƒóÿò. gã’\] ^_`abIw}Drspš›œžŸ w¡. ,. ¡¦B¢£ 6D œ¨ —xyz{E~z|. ;. B}DsE5¦B¢£p‚ƒó(* ¡¦B¢. ¢£\]w¤¥¦C 6D pœ¨. ©x 8 a êÏ. () :. . . . .  

(6) 

(7)  

(8) . . . .

(9)  

(10) 

(11)  

(12)  

(13)  

(14) .  . . .  .

(15)  

(16) . . .  

(17) 

(18)  

(19) . 

(20)  

(21) .

(22)  

(23)  

(24)  

(25) 

(26)  

(27) . . .  . . . . . . .  . . . . . (a)—xyz{E. (b)z|B}DsE —xyz{E、 z|B}DsE5¦B¢£M(“ 0. 6 m Î). x 8 Fig. 8 Distributions of excess pore pressure and radial extruding stress along radial distance at a depth of 0. 6 m. , ; ;. , ,. ¡“ 0. 6 m Î Ð\]`a 0. 2 m É D¬ V±@—xyz{E Ð\]`a 0. 4 m É ÒÎ —xyz{Eô‘•– Ð\]`a 0. 6 m É Ò. ;. ,. Ηxyz{EÛ=•– Ð\]`a 0. 8 m É ÒΗxyz{E:;^ðì.. z|B}DsE¿“‚ƒ.. ,. () : , , , ; äë/isEõÑ V±@z|B}DsE Ð\ ]`a 0. 4 m É, ÒÎz|B}DsEô‘•–; Ð\]`a 0. 6 m É, ÒÎz|B}DsEÛ=• –; Ð\]`a 0. 8 m É,Ò Î z | B } D s E ÿ8. x 9 C²ÈËDÌ2É, ¢\]w¤ 0. 1 m Î ©x 8 b êÏ ¡“ 0. 6 m Î Ð\]`a 0. 2 m É D¬. x 9 ²ÈËDÌ2Éz|B}DsE¿ “‚ƒ ¢\]w¤ 0. 1 m Î Fig. 9 Distributions of radial extruding stress along depth at a radial distance of 0. 1 m with varying sand foundations. (. ).

(28) ! " # $ % & & '. 710. :. ,. ©ªÊ~Ëwxyz{EpW¡ «z|B}. ;. DsEÇ(ªÎËwpz|B}DsE* Ð\]. , , * —xyz{E•u=’T•*;¿À\]ö ÷`a, —xyz{E:;,Ê~ËDwz|B} Ãâ9,ËÉ Ê~Ëwpz|B}DsEÛ=•. DsE67ÃâÎËwpz|B}DsE. 2. 2 befe@g. (). D€IKø?ÑD•u” Q ×ù [18] ú . Òû©LüC. ðì.. ,. 19. (a)²È]¦É . .  

(29) . .

(30)  

(31)  . . (1) h CD́; /w: dh / dH C\]`a“•–KýÍßu, D ́p•–º. Q KøΪ 0 ~ 1 Xj; Ð Q = 0 Éã’DÎ ª³Q€I,þ‹ÿ!D¬ö÷†a]¨;Ð Q = 1 Éã’DΪ³QĀI,D́ •ºF\]`a“•ºÇó. x 10 C²È]¦、 ²È^_“”、 ²ÈËDÌ . 2ÉD́¿`a“p‚ƒ ©x 10 (a)êÏ: (1)D́¿`a“p‚ƒ°±¡DæµÉŽ( w, ¿`a“p•–, £;ìÙ*. 㒿À`a“p•–, ]¦vD́pš› <D́F]¦¶"ÇÝÝû. Ù×Ù*, (2)\]`abIw#$ñµM%&,'D ́ h 8ª`a“ H, D()4óQ€p I(Q = 0 ). (3)Q ¿À]¦•*^67•*. MN*C, ¿À]¦•*, ]¨DëÃ]«p+,ÿò,D ^_í-ðì,âüD€Iðì,' Q L•*; Ð]¦Ùª./*É,\]ê0ƒCK1 ˜2, ¹ÉDΪ³QĀÅÆ. ©x 10 (b)êÏ: (1)\]`abIw Q L#$*ª 0,DÎ ªÄ³Q€I. \]`aæµD-É,Q L( Q L‚8. *, ¿À\]`a(“D-É, (2)Ð`a“8ª 0. 2 m É,3^_“”Õ pD́Ä4Ãâ. Ð`a“*ª 0. 2 m É, D́¿^_“”•*^•*, ™^_“”Ù* ¹É,^_“”v Q pš›²’ D́ÙÃâ, T. ©¹êÏ, ^_“”vD€Ipš›W [] ¡K56L, F Rodger ó pefÇ7. ©x 10 (c)êÏ:. 21. . ). 20.

(32)  

(33) 

(34)  

(35) . . . .  . . . . . . . . . (b)²È^_“”É . .  .  

(36)    . . . (. Q = dh / dH × 100%. (1)\]`abIwD#$ΪijQ€ YZ[\]^_`abIw, \ I. MN*C, [ ] ]H^_8Zžçª2D¬ . D¬¡­®¯ D¬ñ~9Eðì,âüDΪ °õÑÕ, [] ²³Q€I . (2)Ê~ËDwp Q LÇvªÎËp*,g ñ©ª\]¡Ê~ËDw`aɱ@p—xyz âüD€I {Eðìm\]FDp½¾E,. . èx 9 wêé'. ( 52 ). . . .  . .  . . (c)²ÈËDÌ2É x 10 D́¿`a“‚ƒ Fig. 10 Variations of soil plug length with penetration depth. Paik ó [18])b][O{`aËDpcdef. , (). (. ). ,. 3Þ Q FD” P = h / H ý±ìÝû Œ&'w / 2 p:f;/..

(37) ,:. (4 *. 711. +,- . /0123456789:;<=>?@:A. (2) :b<u3efQBÕ\]p`a“、 D ́óefKõ,Q F P 2 F ý Þ ± ì Ý û (= x 11 ), ?ѱìhY, «Ýû/C Q = 1. 74P - 0. 72. (3) [ ] )bF Paik ó ][`aËDwpef Ž(3Þ,Ð P LÇÈÉ,\]^_`aËDw p Q L*ª][O{`aËDpef. ©¹ êÏ, ^_î[bIwD€IŽO{î[p Q = 1. 09P - 0. 22.. 18. ; ( ). ;. ^_“” f = 20 Hz _E8ZóL F c = 1 300 N › ^E F d = F0 + F c sin 2 πft .. ,. XY†‡IuìÅ>? cdÌ2?Ѳ´D - D¬‹@AµM?Ñ MohrCoulomb Z[ìc d. ©ªËìD\zìñ x{:;=> KLc. ,. ,. ,. ,. h²`a—xyz{EpFG X¹?ыrsE û©MN ]¬VK=‘ 1.. ,. D€Iì.. (a)AO 1 x 11 P F Q pÝû Fig. 11 Relationship between P and Q. 3 FGAH. (b)AO 2. 3. 1 hijAB 3. 1. 1 >!cd. x 12 ‹@Acd Fig. 12 Finite element model. ?Ñ ABAQUS / Explicit lˆYZ[\]^_ `aQbIpKLMNcd. ©ª\]`abIw. k 1 blmF Tab. 1 Parameters of soils. ,. 2D¬±@’Tp}Dßà D¬ÍA?@́ A° âüBC²D*. C.E\]2D¬*‚. , \]Hâ 0. 1 m œ¨pD¬ÍA?Ñÿ FG, [] ¹Ý@IÒJÝ (ALE )/Rs?@KMLM . ôõcdTNQB²È,lˆÀ_AOp>!c d, wx 12 yz. TNMÀ_QB,AO 1 ?Ñ_ E¾bPQTN;AO 2 ?Ñ.@Ach,.@A ?Ñ 8 –Ë-¬.@AÍA CIN3D8 ,œ>?tu cdefTNQBpš›. \]u L = 1 m, ¦ D = 0. 05 m. \]2C u 1 m、 v 1 m、 “ 1. 2 m pDA,¡MNfRT Nㆶßà+,QB. D¬?Ñ 8 –Ë-¬ÿS ×MÍA C3D8R,\]?Ñ£;T¬ÍA R3D4. `aÃcdpvUì, lˆ 1 / 4 pcd. 3. 1. 2 8ZgBCVK ?ÑEW\ch\]^_`ap›^E, MN VKFtucdefKü, ': OÆ8Z F = 200 N; 22. 0. DE. ^0i / kN m - 3. cº. _` Žν. ËD. 19. 2. 20. 0. 28. ( · ) / MPa. 1aE ¨½ / kPa |µ / °. 3. 2 ^_P` 3. 2. 1 KLFefvŽ. (). 0. 28. ,. x 13 C¢£\]w¤ 0. 1 m Î z|B}D sE5“MpBCFefvŽ.. :. ©x 13 êÏ 1 KLBCz|B}DsEÙÚØñ‘-. (). ,. D¬~“-D¬pz|B}DsE(8 \]´µ. ,. z|B}DsEš* Fcdef-,p„ 2FKü.. (2)AO 1 BCLÇ(ªAO 2 BCLb8.. ‘’tucdefTNQBc¶d­evš ›Œ²(’T.. ,. x 14 C“ 0. 6 m Î z|B}DsE5¦.

(38) ! " # $ % & & '. 712. B¢£MpBCFefvŽ. ©x 14 êÏ.   

(39)        . . . . : (1)KLBCz|B}DsE¿¦B¢£• Fcdef(CÇâ. –ýûKdþÿ, (2)¡¦B¢£ 4D œ¨,BCFef. ( 52 ). . . Ž(fY.. .  . .

(40)  . .    .   . . . 

(41). x 15 D́¿`a“p‚ƒ Fig. 15 Comparison of calculated and measured values of soil plug length with the penetration depth. x 13 BCFefvŽ ¢\]w¤ 0. 1 m Î Fig. 13 Comparison of calculated and measured values of radial extruding stresses at a radial distance of 0. 1 m. (. ).   

(42)  .    . .  

(43)    . . . . . . x 16 D µD¬hBßàóL± Fig. 16 Vertical displacement isoline of soil plug.  . . (2)¿À\]ö÷`a,¨c½¾E•*,â ükâ\]¨«pDîð(*,±@·ßà ¸, '\]w¤µMpDloº²ñš*. Nicola [ ] ó )bef3Þ,][O{`abIw]´Î D¶m¸. ²Èpñ,\]͓^_`ab Iw, \]ÕîÉ\]«nÖ]«2D¬Õî, \]ÉIÉ\]«nÖ]«2D¬ão. \]w ¤µMpD¬ë]«nÖrs(ò, ¡\]͓^ _õÑÕ±@îð,«loºÇv2D¬(8. ¿À]¦•–, \]´µp·ßà¸Ùª|g, gñ©ª]¦•*D¸rsÿò. (3)`a“ 6 m ÎpD µhBßàÇ (ª`a“ 0. 5 m ÎD µhBßà*. 㒠¿`a“•–, D¸rs67•ñ. x 17 CD µD¬žsEóL!. ©x 17 êÏ: \]`a 0. 5 m É, D µD¬žsEóL !2Fý|!M,V±@TUpD¸Þi;¿À \]ö÷`a, \]´µD¬‚JÙ×Ùí-,± ; @·sE¸ ¡¢£]´KLœ¨psE¸š .  . .

(44)  . . . . . 10. x 14 BCFefvŽ “ 0. 6 m Î Fig. 14 Comparison of calculated and measured values of radial extruding stresses at a depth of 0. 6 m. (. ). x 15 CD́¿`a“p‚ƒ. ©x 15 êÏ KLBCFef‚ƒ. :. , , u=(>; Ð\]`ah“-D¬É,D́. „ Çê \]¡æ-D¬w`aÉ D́• •u=‚g. 3. 2. 2 D¸rs x 16 CD µD¬hBßàóL±.. :. ©x 16 êÏ 1 \]`a 0. 5 m É D µD¬hBß. , () àóL±pD¸ÞiŒ²’T, gñ©ª\]`a j#, \]«HâD¬ë½¾Eõѱ@¯°ß à, ^\]¨D¬V'Þ(*pBÕßà..

(45) (4 *. , []. ,:. 713. +,- . /0123456789:;<=>?@:A. ,. CTU ¹ºD»¼m¨c½¾EpžŸµM Fop 23 2F7Y 'ÃÇsEžŸ w¡]. ,. 11911210.. [2] OSINOV V.. Application of a highcycle accumulation. model to the analysis of soil liquefaction around a. ´µÕA.. []. , , ( ):. vibrating pile toe J . Acta Geotechnica 2013 8 6 675684.. [3] IGOE D J P,GAVIN K G,O 'KELLY B C. Shaft capacity of openended piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011 , 137 (10 ):903913. [4] WANG J H,LIANG N,CHEN C H. Ground response during pile driving[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001 ,127 (11 ):939 949.. x 17 D µD¬žsEóL! Fig. 17 Principal stress isosurface of soil plug. [5] LEE F,JUNEJA A,TAN T.. Stress and pore pressure. changes due to sand compaction pile installation in soft. [] , , ( ):116. [6] XU X,LIU H,LEHANE B M. Pipe pile installation effects in soft clay[J]. Geotechnical Engineering, 2006 ,159 (4 ):285296. [7] XING H F,ZHAO H W,YE G B,et al. Effect of clay J . Géotechnique 2004 54 1. 4 ^ n. :. )befMNJÃwՏ% 1 ¿ÀYZ[\]`a“p•– 5D-. () , “pz|B}DsEùL2FýÞ67•*p ÙÚ; z|B}DsEpš›œžŸ w¡¢£ driving long prestressed highstrength concrete pipe piles in alluvium and its mechanical behavior[J]. \]w¤¥¦C 6 §]¦pœ¨; z|B}Ds Bulletin of Engineering Geology and the Environment, E¿^_“”~\]Á¦p•*^•*; ©ªÊ~ 2012 ,71(4):771781. Ëwxyz{EpW¡, «z|B}DsEÇ(ª [8] YI J T,ZHAO B,LI Y P,et al. Postinstallation pore ÎËwpz|B}DsE*. pressure changes around spudcan and longterm spudcan (2)—xyz{EFz|B}DsE5“ behaviour in soft clay[J]. Computers and Geotechnics, — ~¦B¢£MqƒÆ~r†bIsMÃâ; 2014 (56 ):133147. xyz{E¿^_“”~\]Á¦p•*^•*. [9] RANDOLPH M, LEONG E, HOULSBY G. One (3)\]^_`abIw]¨DΪ²³ dimensional analysis of soil plugs in pipe piles[J]. Q€I; ¿À]¦•*,]¨DëÃ]«p Géotechnique,1991 ,41 (4 ):587598. +,ÿò, D€Iðì;Ê~ËDÌ2wp [10] NICOLA A,RANDOLPH M. The plugging behaviour D€ I  Ç ( ª Î Ë Ì 2 w p D  €  I ì.. []. of driven and jacked piles in sand J . Géotechnique. , ( ):841856.. ,. 1997 47 4. (4)^_“”vD€Ipš›W¡K [11] LIYANAPATHIRANA D,DEEKS A,RANDOLPH M. Numerical modelling of large deformations associated 56L. Ð^_“”8ªíKLÉ,D€I with driving of openended piles[J]. International ¿^_“”•*^ÿ8; Ð^_“”4ÃKLLX Journal for Numerical and Analytical Methods in q, ^_“”vD€Ipš›(8. Geomechanics,2000 (24 ):10791101. (5)tÏYRpVK,*‚‹@A‰Š‹r [12] HENKE S,GRABE J. Numerical investigation of soil ch\]^_`abI. KLMN‘’,\]^_ plugging inside openended piles with respect to the `abIw]´±@·D¸,âü¨½¾E• installation method[J]. Acta Geotechnica,2008 (3 ): *, ¹ºD»¼m¨½¾EpžŸµM. 215223. 13 ] THONGMUNEE S, MATSUMOTO T, KOBAYASHI [ mo0R: S,et al. Experimental and numerical studies on push [1] HENKE S. Influence of pile installation on adjacent up load tests for sand plugs in a steel pipe pile[J]. structures[J]. International Journal for Numerical and Soils and Foundations,2011 ,51 (5 ):959974. [14] HOLEYMAN A, BERTIN R, WHENHAM V. Analytical Methods in Geomechanics,2010 ,34 (11 ):.

(46) ! " # $ % & & '. 714. Impedance of pile shafts under. axial. vibratory. ( 52 ). []. driving in granular soils J . Géotechnique. , 1980,. [] , 30 (3 ):269293. 2013 (44 ):115126. [20] EKANAYAKE S,LIYANAPATHIRANA D,LEO C. [15] TAN Y,LIN G. Fullscale testing of openended steel Influence zone around a closedended pile during pipe piles in thick varved clayey silt deposits along the vibratory driving[J]. Soil Dynamics and Earthquake Engineering,2013 (53 ):2636. Delaware River in New Jersey[J]. Journal of [21] VANDEN J F. Sand strength degradation within the Geotechnical and Geoenvironmental Engineering, 2013 ,139 (3 ):518524. framework of vibratory pile driving[D]. Louvain: Université Catolique de Louvain,2001. [16] LEHANE B,GAVIN K. Base resistance of jacked pipe piles in sand[J]. Journal of Geotechnical and [22] KHOUBANI A,AHMADI M M. Numerical study of Geoenvironmental Engineering,2001 ,127 (6 ):473 ground vibration due to impact pile driving[J]. 480. Geotechnical Engineering,2012 ,167 (1 ):2839. [17] RANDOLPH M. Science and empiricism in pile [23] LOBOGUERRERO S,VALLEJO L E. Influence of foundation design[J]. Géotechnique,2003 ,53 (10 ): pile shape and pile interaction on the crushable behavior of granular materials around driven piles: 847875. [18] PAIK K, RODRIGO S. Determination of bearing DEM analyses[J]. Granular Matter,2007 (9 ):241 capacity of openended piles in sand[J]. Journal of 250. Geotechnical and Geoenvironmental Engineering, (BC:D E) 2003 ,129 (1 ):4657. [19] RODGER A,LITTLEJOHN G. A study of vibratory loads J . Soil Dynamics and Earthquake Engineering. . (FG( 684 H). [13] uvw,xyz,{|T. *}˜]~D¸€p [15] ‹Œ,$Ž. *}w»/˜]~D¸€@» 2003 , 38 (6 ): 2007 , 37 (6 ): LìMN[J]. &'()*++,, Z‰E[J ]. ‘*++,:H+’, 654657.. , ZHAO. Zhijun. , HUA. 13081312.. ,. Xugang.. YUN Di ZHANG Sumei. Analysis on ultimate load. Stability analysis of longspan arch bridge of concrete. bearing capacity of large span halfthrough CFST arch. SHEN Yaoxing. bridge[J]. Journal of Jilin University: Engineering [] , , ( ):654657. and Technology Edition,2007 ,37 (6 ):13081321. [14] ‚ƒ’,„ ,†‡,ó. 46. 5 m *}ˆ˜¸ [16] “‹,$”{,•{o,ó. ˜]~Dû–¸€— 2009 , 2014 , 44 (4 ):5056. GpLg«‰Šš›MN [J ]. HIE+, jLìMN[J]. €˜l†, 26 (11 ):172178. HUANG Yun,ZHANG Qinghua,YE Huawen,et al. XIONG Zhongming, WEI Jun, CAO Xin, et al. Analysis of spatial stability of a CFST tied arch bride[J]. Bridge Construction,2014 ,44 (4 ):5056. Analysis of stability and imperfection effect of 46. 5 m longspan arc steel arch structure [J ]. Engineering Mechanics,2009 ,26 (11 ):172178. (IJBC:D E KJBC:L M) filled steel tubes J . Journal of Southwest Jiaotong University 2003 38 6.

(47)

参照

関連したドキュメント

It is suggested by our method that most of the quadratic algebras for all St¨ ackel equivalence classes of 3D second order quantum superintegrable systems on conformally flat

The analysis presented in this article has been motivated by numerical studies obtained by the model both for the case of curve dynamics in the plane (see [8], and [10]), and for

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

The following result about dim X r−1 when p | r is stated without proof, as it follows from the more general Lemma 4.3 in Section 4..

0.1. Additive Galois modules and especially the ring of integers of local fields are considered from different viewpoints. Leopoldt [L] the ring of integers is studied as a module

It is evident from the results that all the measures of association considered in this study and their test procedures provide almost similar results, but the generalized linear

We provide an efficient formula for the colored Jones function of the simplest hyperbolic non-2-bridge knot, and using this formula, we provide numerical evidence for the

This paper improves 3D spatial grid partition algorithm to increase speed of neighboring particles searching, and we also propose a real-time interactive algorithm on particle