• 検索結果がありません。

It is well known thatif Qisoneof thelinesof the3-net, then, and anbedened naturallyin suh a waythat adistinguished element of Q (say 1) beomes the unitofQ

N/A
N/A
Protected

Academic year: 2022

シェア "It is well known thatif Qisoneof thelinesof the3-net, then, and anbedened naturallyin suh a waythat adistinguished element of Q (say 1) beomes the unitofQ"

Copied!
28
0
0

読み込み中.... (全文を見る)

全文

(1)

Identities and the group of isostrophisms

Ale

s Dr

apal, Vitor Shherbaov

Abstrat.Inthispaperwereexaminetheoneptofisostrophy.Weonnetitto

the notionoftermequivalene,anddesribetheationofdihedralgroupsthat

areassoiatedwithloops bymeansof isostrophy. Wealsouseittoproveand

presentinanewwaysomewellknownfatsonm-inverseloopsandmiddleBol

loops.

Keywords:isostrophe,isostrophism,paratope,paratopism,middleBol

Classiation: Primary20N05;Seondary15A30

Let A, B and C bepenils of a3-net. If , and bijet aset Q upon A,

Band C,respetively, thenthere existsa(unique)quasigroup onQ()suh that

xy = z if and only if(x), (y) and (z) meet in aommon point. It is well

known thatif Qisoneof thelinesof the3-net, then, and anbedened

naturallyin suh a waythat adistinguished element of Q (say 1) beomes the

unitofQ. Thisonstrutionwillserveasthedepartingpointofthepaper.

Supposethus thatQ2Aandthat 12Q. Dene and in suh awaythat

both(a)2Band(a)2C areinidenttoa, foreverya2Q. IfQ()istobea

loopwithunit1,thenthere mustbea1=a,andhene(a)2Ahastobethe

linethatisinidenttotheintersetionof(1)and(a). Withthisdenitionof

weget(1)=Qsine(1)and(1)meetin1. Now,(1)=Qimplies1a=a

foreverya2Q,bythedenitionof and . WehaveobtainedaloopQ(;1).

ConsidernowaloopQ=Q(Æ;1) that isobtainedbythis method whenr^oles

ofB andC areexhanged. ThenxÆy =z ifandonly(x),(y)and(z)meet

in apoint. In partiular, (a), (1) and (a) have a ommon point, and that

denes . Theexisteneof theommon pointmeansthat 1

( (a))a=1for

everya2Q. Thus 1

((a)) =1=a, andtherefore(a)=(1=a). Wesee that

xÆy =z ,(1=x), (y)and(z)meetin aommonpoint, (1=x)z =y ,

z=(1=x)ny.

Wehavedesribedthegeometrialmeaningofoperation(1=x)ny. Theopera-

tionis induedbythetransposition (B C) oftheset fA;B;Cg. Infat,everyof

thesixpermutationsanbeusedtoinduealoop. Artzy [3℄ seemstohavebeen

therstwhosystematiallyinvestigatedthesetransformationsofloops. Healled

them isostrophisms. Theonept isreexamined in this paper. Our approah is

purelyalgebrai.

(2)

ForaloopQdenotebyl(Q)theloopwithoperation(1=x)nyandbyo(Q)the

loopwithoperationyx (the opposite loop|itorrespondsto thetransposition

of A and B). It is easy to verify that l(l(Q)) = Q = o(o(Q)). Nevertheless,

alternatingappliationsoflandoprodueasetofloopsI(Q)thatanbeinnite

(however,itontainsatmostsixisomorphismlasses).Operatorslandoatupon

I(Q)asinvolutionsandgenerateapermutationgroupI(Q). Thisgroupiseither

dihedral,orylioforders1or2. (TheKleinfour-groupisregardedasadihedral

group.)

Weshallobservethat I(Q)atsnearlyalwaysregularly. There areonlythree

exeptionalsituations,twoofwhihanbeonsideredasrelatedtoBolloops(and

thatiswhyweshalldisussthemiddleBolidentityaswell). Intheseexeptional

asesjI(Q)j2f3;6g.

Ourmainaimistopresenttheoneptofisostrophyinaoherentandompat

way. Therearesomenewresultsandtherearemanynewproofsofoldresults.

However,itshouldbestressedthatnoideasinthispaperareprinipallynew.

Furthermore, many statements that are new might have been present in some

formin mindsofthose whooinedandstudied theoneptsofthis paperinthe

sixties. Wehopethat this paperwill sueed in illustratingthat theseonepts

arerelevantto ontemporarylooptheoryandan motivatefurtherresearh.

Veryimportantamongtheobjetsofourstudyarethem-inverseloops dened

byKarklinsand Karklin[14℄. Theyarisein anaturalwayasageneralizationof

ross inverse [1℄, [2℄ and weak inverse properties [21℄. It wasobserved already

byArtzy in [3℄that CIand WIpropertiesanbeobtainedviaidentiationsof

ertain isostrophes. Weshall see that suh an approah anbe extended to all

m-inverseloops. In fat, ourdesription hasa parallel in the work of Karklins

andKarklin[14℄ andanberegardedasaninterpretationoftheirSetion2.

Theisostrophes ofQ(i.e.theelementsofI(Q))havebeenalledinverseloops

(ofQ)by Belousov[7℄. He alsomentions themin his book [6, p.19℄. Usingthe

terminologyofBelousovasinspiration,wesuggesttoalll(Q)theleftinverse of

Q(weshalldene theright inverse r(Q) asamirrorimage).

AthoroughgeometrialtreatmentofisostrophyanbefoundinChapterIIof

Pugfelder'sbook[22℄. (InthePrefaeto[22℄Pugfelderwrites\ToRafaelArtzy

Iamgratefulforhisenouragementandadvieandforwritingtheoriginaltextof

ChapterII.")Artzy himself oeredin[4, Setion2℄amorestrutured approah

to the material of [3℄. In Setion 3of the samepaper he dened net motions.

Thealgebraiexpressionofnetmotionsisparatopy,whih is,togetherwithloop

terms,amaintoolofthispaper.

Notethatm-inverseloopshavebeenreentlystudiedwithrespettoapossible

appliation in ryptography [17℄ and that Buhsteiner loopsweredisovered[8℄

tobe1-inverse(synonymously,doublyweak inverse).

ProblemsthatinvolvethestrutureofI(Q) mightbeofinterestin thefuture

sine this is an areawhere the algebraistruture (loops) gets mixed with the

ombinatorial struture (normalized latin squares). Hene a future appliation

toryptographyannotbeexluded, whileitsguiding priniplemaybedierent

(3)

thanthatexpressedbyKeedwellin[16℄(whihmotivated[17℄andthesubsequent

papers[18℄and[19℄).

Setion 1 desribes endomorphismsof amonogenerated free loop. Setion 2

shows that isostrophies anbe viewed as paratopiesthat yield term equivalent

loops. In Setion 3 we dene the group of isostrophisms I(Q) and disuss its

strutural properties. The impat upon nulei is presented in Setion 4. The

numberofisostrophiisomorphismlassesisstudiedinSetion5. Inthatsetion

wealsodeneloopsof odd type asloopsthatareeither ommutativeorhavean

automorphism I r

for an odd r. We showhow suh loopsan be desribed via

I(Q). Setion 6 presents the onept of isostrophi varieties and employs it to

interpretseveralstandardresultsonLIP,RIP,AAIPandBolloops.

Inthispaperthemappings areomposedfrom righttoleft.

1. Freeloops in one generator

Thissetionis ofanauxiliaryharater. Itprovesinanelementarywaythat

all automorphismsof afree loopgenerated by asingle element x (denote it by

F(x)) are those substitutions that map x to one of its iterated inverses. This

resultwaspublished already in 1953byEvans[10, Theorem 1℄. Weshall useit

inCorollary2.9.

TheproofofEvansisshortand elegant. It depends uponthetheoryofloops

that arerelativelyfreewith respet to aset of(dening) relationsthat are in a

losed form. This theory wasdeveloped by Evans in [9℄. A speial ase is the

aseof the voidset ofrelations, that is thease of afree loop. The assoiated

setofrewritingrules(f.Table1)beamepartofafolkloreknowledge. Infatit

isone offew resultsof loopand quasigroup theorythat is well known bymany

non-speialists. However,the generaltheory ofrelations in alosed form isnot

nearlyas well-known. That is why we oer aproof that uses nothing else but

the well understood struture of a free loop. As a bonus we prove that every

nontrivialendomorphismofF(x) isinjetive| afat that seemsto beevident,

butforwhihwedonotknowareferene.

Forasetof variablesX onsiderthetotallyfreealgebraoftermsW(X)over

thebinaryoperations,=,nandthenullaryoperation1. Anelementw2W(X)is

saidtoberedued ifnoneofitssubtermsanbesubjetedtooneoftherewriting

rulesthatappearinTable1.

t

1 (t

1 nt

2 )!t

2 t

1 n(t

1 t

2 )!t

2 t

1

=(t

2 nt

1 )!t

2 t

1 1!t

1 t

1

=1!t

1

(t

2

=t

1 )t

1

!t

2 (t

2 t

1 )=t

1

!t

2 (t

1

=t

2 )nt

1

!t

2 1t

1

!t

1 1nt

1

!t

1

Table 1. Therewritingrulesforloopterms

It is lear that eah term w 2 W(X) an be transformed by a sequene of

(4)

beause theabove systemof rewriting rulesis knownto beonuent [9℄,a ter-

minalelementofsuhasequenewillalwaysbethesamereduedterm(inother

wordstheterminaltermisindependentofthehosenpath). Weshalldenotethe

(terminal) redued termby (w). Theset of allredued termswill be denoted

F(X)alluringthustothefatthatthereduedtermsyieldamodelofafreeloop

forwhih X isthefreebase(f.[9℄, [10℄fordetails).

If u and v are redued, then their term produt uv need not be redued.

Hene the produt in F(X) is dened as (uv). Left and right division are

treatedsimilarly.

As a synonym for tn1 write I(t). Similarly interpret I 1

(t) as 1=t. Note

that (II 1

(t)) = (t) =(I 1

I(t))sine 1=(tn1) ! t and (1=t)n1 ! t. Thus

(I r

I s

(t))=(I r+s

(t))foranyr;s2Z.

Weshallwrite F(x) andW(x)inplae ofF(X)and W(X)whenX =fxg.

For t 2 F(x) dene a mapping

t

: F(x) ! F(x) so that it expresses the

substitutionx7!t. Thusfors=s(x)2F(x)weset

t

(s)=(s(t)). Forexample

x 2

(xn(1=x))=x 2

n(1=x 2

)and

I(x)

(xn(1=x))=(xn1)nx.

Itiseasytoseethatforeveryt2F(x)thereexistuniquek2Zandt

0

2W(x)

suhthat

(1.1) t=I

k

(t

0

) and t

0 6=I

1

(s) forall s2W(x):

Forexample,ift=1=(1=x 2

),thenk= 2and t

0

=x 2

.

Callt

0

theI-ore of t and k theI-depth oft. Forthe nextthree statements

letusassumethatt6=1isreduedandthatt

0

andkaretheI-oreandI-depth

oft,respetively.

Lemma1.1. I j

(t

0

)2F(x)foreveryj2Z.

Proof: Anysubterm ofareduedtermhasto beredued,and thus t

0

2F(x).

Weanproeedbyindutiononjsinethemirrorsymmetryallowsustoassume

j 1. Note that t

0

n1 is reduedunless t

0

=1ort

0

=1=sfor somes2 W(x).

The latter situation is exluded by the denition of the I-ore, while t

0

= 1

would imply t=1. Thestatementthus holds forj =1. Assume j 2and set

s=I j 2

(t

0

). ThenI j 1

(t

0

)=sn12F(x),andheneI j

(t

0

)=(sn1)n12F(x)as

well.

Corollary1.2.

t (I

j

(x))=I j+k

(t

0

)foreveryj2Z.

Proof: Wehave

t (I

j

(x)) =(I j

(t))=(I j

(I k

(t

0

))) =(I j+k

(t

0

)). However,

I j+k

(t

0

)isredued,byLemma1.1.

Fors2W(x)denetheweightjsjas2i+j,whereiisthenumberofourrenes

ofxandj isthenumberofourrenesof1. Forexample,j1=(1=x 2

)j=6.

Leta;b2W(x). Thenabanmeananyof ab,a=bandanb. If morethan

oneoperationisinvolved,weshallalsouseaÆb.

(5)

Lemma1.3. Lets

0

betheI-oreof s2F(x)andletj beitsI-depth. Then

t (s)=

8

<

:

1 if s=1;

I j+k

(t

0

) if s

0

=x;

I j

(

t (a)

t

(b)) if s

0

=ab:

Furthermore,themapping

t

:F(x)!F(x)isinjetive.

Proof: Itisobviousthat

t

(1)=1. Corollary1.2givestheformulafors=I j

(x).

Fortherestweshall proeedbyindution onjsj. Theindution steponsistsof

showingthat

(a)

t (s)=I

j

(

t (a)

t

(b))whereabistheI-oreofsandjistheI-depth

ofs;andthat

(b)

t (s)=

t (s

0

)impliess=s 0

ifs;s 0

2F(x)andjsjjs 0

j.

Ifjsj2,thens=1ors=x. Part(a)isvoidlytruesine(a)assumess=ab.

Part(b)isobvious.

Toprove(a)forjsj3weneedtoshowthatI j

(

t (a)

t

(b))isredued. Note

that

t

(a)=1impliesa=1bypart(b)andtheindutionassumption. However,

ifa=1,theneitherabisnotredued,orjisnottheI-depthofs. Henea6=1

and

t

(a)6=1. Similarlyb6=1and

t

(b)6=1. ThereforeI j

(

t (a)

t

(b))2F(x)

if

t (a)

t

(b) 2 F(x). That follows by indution if j 6= 0. Assume j = 0

and suppose that there is a rule in Table 1 that applies to

t (a)

t

(b). We

have observed that it anbe none of the four rules that involve 1. In view of

theleft-right(mirror) symmetrywean assumethat

t

(b) =uÆv andthat the

rewritingrule mathes

t

(a)(uÆv). (Henethe rewritingrule mustbeoneof

t

1 n(t

1 t

2 )!t

2 ,t

1

=(t

2 nt

1 )!t

2 andt

1 (t

1 nt

2 )!t

2 .) Letb

0

betheI-oreof b.

Weknowthatb

0

6=1. Assumeb

0

6=x. Bytheindutionassumptionthestruture

of

t

(b)opies thestrutureofb. Hene b=Ædwhereu=

t

()andv=

t (d).

From part (b) weknowthat if

t

(a) =

t

() then a =, and if

t

(a) =

t (d)

thena=d. Therewritingrulethatmathes

t (a)(

t ()Æ

t

(d))thusappliesto

s=a(Æd) aswell. That isaontraditionsinesisassumedto beredued.

Tonishtheproofof(a)itremainstotreattheaseofb

0

=x. Thenb=I r

(x)

forsomer2ZanduÆv =

t (b)=I

r+k

(t

0

),byCorollary1.2. Frompart(a)of

theindution assumptionandfrom Corollary1.2weseethatj

t

(a)jjt

0 j. Both

uandv aresubtermsoft

0

ifr+k=0. Insuhaasejuj<j

t

(a)j,jvj<j

t (a)j,

and none of the above mentionedthree rewriting rules mathes

t

(a)(uÆv).

Thus r+k6= 0and theoperation Æis equalto nor=. Noneof thethree rules

allowsthealternativeof=,and soÆequalsn. Thatmeans r+k>0and v=1.

Sine

t

(a) 6= 1, the onlypossibility for simpliation is that of u(un1) ! 1.

Fromun1=

t

(b)weseethat theweightoftheI-oreofuisequaltojt

0

j. Ifthe

I-oreofa isdierent from x,then theI-oreofu=

t

(a) is ofweightat least

2jt

0

j, by part(a) of the indution argument. Hene a= I q

(x) for someq 2 Z.

Then

t (a)=I

q+k

(t

0

)=uwhih yieldsr=q+1ands=I q

(x)I q+1

(x). This

(6)

Toprove(b)rstnotethatj

t

(s)j>1ifs 6=1. Henes 6=1anbeassumed.

Byonsidering againtheweightsof I-ores, thistime with respetto

t (s)and

t (s

0

),weeasily distinguishthe asewhen theI-oreof s isequal tox andthe

I-oreofs 0

isnotequaltox(orvieversa). Now,Corollary1.2anbeemployed

ifbothI-oresare equalto x. Suppose thatnone oftheI-oresequalsx. Then

theI-depth of

t

(s)agreeswiththeI-depthofs,andhene(b)followsfrom(a)

byadiretindution argument.

Theorem1.4. Amapping':F(x)!F(x)isanendomorphismofthefreeloop

F(x)ifandonlyifthereexistst2F(x)suhthat'=

t

. Theendomorphism

t

isinjetiveif andonly if t6=1. It isan automorphismif andonly if t=I k

(x)

forsomek2Z.

Proof: Beause fxg is thefree base of F(x) there exists for everyt 2 F(x) a

unique endomorphism ' with '(x) = t. This endomorphism fulls '(s(x)) =

(s(t))foranys2F(x)andheneitagreeswith

t

. Ift6=1,then

t

isinjetive

byLemma 1.3. Of ourse,

1

maps everyelement of F(x) to 1. Letus assume

t 6=1 and lett

0

bethe I-oreof t. FromLemma 1.3 we see that j

t

(s)j jt

0 j

for every s 6= 1. Note that the endomorphism

t

is an automorphism if and

only if x 2 Im(

t

). Sine this annot happen if jt

0

j > 2 there must be t

0

= x

and t =I k

(x), where k is theI-depth of t. Insuh aase x =

t (I

k

(x)), by

Lemma1.3.

Corollary 1.5 (Evans). Aut (F(x)) isan inniteyli groupthat is generated

bythesubstitution x7!1=x.

2. Paratopisms,isostrophismsand terms

Quasigroupsanbe seenassets oftriples (a

1

;a

2

;a

3

)suh that twoelements

ofthetripleanbehosenfreelyfrom thegivenset Qwhile thethird elementis

determineduniquelybythishoie. Itisusualtoseta

3

=a

1 a

2 ,a

2

=a

1 na

3 and

a

1

=a

3

=a

2

. Put alsoa

3

=a

2 Æa

1 ,a

2

=a

3 nna

1 anda

1

=a

2

==a

3

. Inthis waywe

get sixquasigroup operationsthat arealled parastrophes. Theyare relatedby

permutations2S

3

. SaythatQ()isa parastrophe ofQ=Q()ifa

1 a

2

=a

3

is equivalent to a

(1) a

(2)

= a

(3)

. In other words, if we start from triples

(a

1

;a

2

;a

3

) where a

3

= a

1 a

2

, then thenew triples are obtainedby sending a

i

fromtheposition itotheposition (i). Itfollowsthatthe parastropheofa

parastropheisthe parastrophe.

IfQ

1 and Q

2

arequasigroups,then =(

1

;

2

;

3

)isanisotopism Q

1

!Q

2

ifall

i

arebijetionsQ

1

!Q

2 and

1 (x)

2 (y)=

3

(xy)forallx;y2Q

1 .

By ombining the notions of parastrophy and isotopy we get the notion of

paratopy. This term wasoined by Sade [24℄. It provides an algebrai frame-

workfortheombinatorialnotionofmain lasses. (The alternativeisostrophy =

isotopy +parastrophy hasadierentmeaning in thispaper. Admittedly, there

mayexist authorswhouseitasasynonym forparatopy.)

LetQ

1 andQ

2

bequasigroups. Thepair(;)=(;(

1

;

2

;

3

))issaidtobe

aparatopism fromQ to Q if :Q !Q is abijetion foralli2f1;2;3g,if

(7)

2S

3 andif

1

(1) (a

1

(1) )

1

(2) (a

1

(2) )=

1

(3) (a

1

(3) )

whenever a

1 a

2

=a

3

holds in Q

1

. It is not diÆult to dedue that is an iso-

topismfromQ

1

tothe 1

parastropheofQ

2

,andthatbyomposingparatopisms

(;) :Q

1

!Q

2

and (;):Q

2

!Q

3

weobtainaparatopism Q

1

!Q

3 . The

ompositionfollowstherule

(;)(;)=(;

); where (

1

;

2

;

3 )

=(

(1)

;

(2)

;

(3) ):

Hene(;) 1

=( 1

;( 1

)

1

). Therefore

b

1 b

2

=b

3 inQ

2

,

1

1 (b

(1) )

1

2 (b

(2) )=

1

3 (b

(3) )inQ

1 :

For aquasigroup Q,a set S, apermutation 2 S

3

and bijetions

i

:Q! S,

i 2 f1;2;3g, there exists a unique quasigroup struture on S suh that (;)

is a paratopism Q ! S. It is alled the quasigroup paratopially indued by

(;). Themultipliationandtheleftandrightdivisionsofsuhquasigroupsare

expliitlyshowninTable2foreah 2S

3 .

2S

3

multipliation leftdivision rightdivision

id

3 (

1

1

(x) 1

2

(y))

2 (

1

1 (x)n

1

3

(y))

1 (

1

3 (x)=

1

2 (y))

(123)

2 (

1

1 (y)n

1

3

(x))

1 (

1

3 (x)=

1

2

(y))

3 (

1

1 (y)

1

2 (x))

(132)

1 (

1

3 (y)=

1

2

(x))

3 (

1

1

(y) 1

2

(x))

2 (

1

1 (x)n

1

3 (y))

(12)

3 (

1

1 (y)

1

2

(x))

1 (

1

3 (y)=

1

2

(x))

2 (

1

1 (y)n

1

3 (x))

(23)

2 (

1

1 (x)n

1

3

(y))

3 (

1

1

(x) 1

2

(y))

1 (

1

3 (y)=

1

2 (x))

(13)

1 (

1

3 (x)=

1

2

(y))

2 (

1

1 (y)n

1

3

(x))

3 (

1

1

(x) 1

2 (y))

Table 2. Paratopiquasigroupoperationsinduedby(;)

LetQbealoop. PutI(x)=xn1andJ(x)=1=xforeveryx2Q. Thenboth

I

Q

=I andJ

Q

=J permuteQ,andJ =I 1

. FurtherpermutationsofQarethe

left translations L

a

: x 7!ax and the right translations R

a

: x 7!xa, for every

a2Q.

An isotopismof loops(

1

;

2

;

3

):Q!

Qis alledprinipal if

3

=id

Q . In

suh aasethere exist e;f 2Qsuh that

1

=R

f and

2

=L

e

. Furthermore,

Q=Q(Æ) where xÆy =(x=f)(eny) for allx;y 2 Q. LoopsQ(Æ) are known as

theprinipal isotopes ofQ.

Everyisotopism of loops : Q !

Q anbe written as(R

f

;L

e

;) where

e;f 2 Q. Thus it an be expressed as a omposition of an isomorphism :

Q(Æ)!

Qwithaprinipal isotopism(R

f

;L

e

;id

Q

):Q!Q(Æ).

A paratopims (;(

1

;

2

;

3 )) : Q

1

! Q

2

of loopsQ

1 and Q

2

will be alled

unital if (1)= (1)= (1)=1.

(8)

Lemma2.1. Let(;):Q

1

!Q

2

beaparatopismof loops. Thenthere exists

aunitalparatopism(;):Q

1

!Q

3

andaprinipalisotopism:Q

3

!Q

2 suh

that(;)=(id ;)(;).

Proof: Theinverseofaprinipal isotopismisaprinipal isotopism. Therefore

itsuÆestondaprinipalisotopism:Q

2

!Q

3

suhthat(id;)(;)=(;)

isaunital paratopismofloops.

Theisotopism will be ofthe form (R

f

;L

e

;id

Q2

) forsome e;f 2Q

2 . Then

1

(1)

= R

f

1

(1) ,

1

(2)

= L

e

1

(2) and

1

(3)

=

1

(3)

. Put e =

1

(1)

(1)and f =

1

(2)

(1). Ineveryloop11=1. Thusef =

1

(3) (1) =

1

(3) (1)=

1

(2) (1)=

1

(1)

(1). Theelementef servesastheunitofQ

3

.

Lemma2.2. LetQbealoop,S aquasigroup,and(;) aparatopism Q!S

suh that

i

(1)=1foreveryi2f1;2;3g. Then S is aloopifandonly ifthere

existsabijetion:Q!S,(1)=1,suhthat

(a) =(;;)if =id or=(12);

(b) =(I;;)if=(123)or=(2 3);and

() =(;J;)if=(132)and =(1 3).

Proof: Assume,forexample, that =(1 23). ByTable2 theoperationin S

anbeexpressed as

2 (

1

1 (y)n

1

3

(x)). Setting y =1yields

2

=

3

. Denote

this mapping by . Setting x = 1 yields y = I 1

1

(y) for all y 2 Q. Thus

1

=I. Otherasesaresimilar.

Foreahunitalparatopism(;)ofloopstherethusexistsa(unique)bijetion

suhthatthereareatleasttwodistinti;j2f1;2;3gwith

i

=

j

=. Aunital

paratopism is fully desribed by the pair(;). We shall say that it is arried

by (;). In Table3 we reord expliitlythe multipliation in S when Q! S

isa unitalparatopism arried by(;). The table anbe obtainedbyapplying

Lemma2.2toTable2. ForeveryloopQthesearetheloopsparatopially indued

by(;).

id (

1

(x) 1

(y))

(123) (J 1

(y)n 1

(x))

(132) ( 1

(y)=I 1

(x))

(12) ( 1

(y) 1

(x))

(23) (J 1

(x)n 1

(y))

(13) ( 1

(x)=I 1

(y))

Table3. Paratopiallyinduedloopoperations

LetQbealoop. Theloopparatopiallyinduedby((12);id

Q

)istheopposite

loopQ op

, while ((23);id

Q

) and(1 3);id

Q

) indue theleft inverse loop and the

right inverseloop ofQ,respetively.

Leftandrightinverse loopsandtheoppositelooparespeialasesof isostro-

phes ofQ. A loopis saidto beanisostrophe ofQ ifitis paratopiallyindued

by(;I m

),for somem2Zand 2S

3

. A (unital)paratopismQ!S is alled

anisostrophismifitisarriedby(;I m

)forsomem2Zand2S .

(9)

Lemma 2.3. LetQ

1

! Q

2

be aunital paratopismthat is arried by(;#). If

':Q

0

!Q

1

and :Q

2

!Q

3

areisomorphismsofloops, then(; #') arries

aunitalparatopism Q

0

!Q

3 .

Proof: Thisfollowsdiretlyfrom theruleforompositionofparatopisms.

Corollary 2.4. Every unital paratopism anbe expressed asa omposition of

anisomorphismandof anisostrophismthat is arriedby(;id

Q

),where Qis a

loopand2S

3 .

Proof: CombineLemmas 2.2and2.3.

The set of all isostrophes of Q will be denoted by I(Q). We an thus say

that I(Q) onsistsofall possibletargets forisostrophismsstartingfrom Q. Iso-

strophisms from Qto Q ouldbe alled autostrophisms. However,weshallnot

usethis termin thispaper. AutostrophismsofQ orrespondto theelementsin

thepointstabilizerofQinthegroupI(Q)(thegroupisdenedin Setion3).

Forapermutation 2S

3

denethe sign sgn()=" sothat"=1if isan

evenpermutation and"= 1if isanoddpermutation(atransposition).

Lemma 2.5. Consider aunital paratopism of loops Q! S that is arried by

(;). PutI =I

Q

. ThenI

S

=I sgn()

1

.

Proof: Suppose that x;y 2 S aresuh that xy =1. We shall useTable3. If

= (1 2 3), then J 1

(y)= 1

(x) and so y = I 1

(x), asrequired. Other

asesaresimilar.

Lemma2.6. Aompositionoftwoisostrophismsisagainanisostrophism. The

inverseofanisostrophismisalsoanisostrophism.

Proof: Let (;) : Q

1

! Q

2

be a unital paratopism of loops. Put I = I

Q1 .

From Lemma 2.2 we see immediately that this paratopism is an isostrophism

if and only if there exist k

i

2 Zsuh that

i

= I ki

for all i 2 f1;2;3g. Let

(;) : Q

2

! Q

3

be another paratopism of loops. If (;) is an isostrophism,

thenI

Q

2

=I 1

byLemma 2.5. Ifboth(;) and(;) areisostrophisms,then

there exist `

i

suh that

i

=I

`

i

. Formulas for the omposition and inverse of

paratopismsyieldtherest.

Corollary 2.7. Let Q

1

and Q

2

be loops. Then Q

1

2 I(Q

2

) if and only if

Q

2 2I(Q

1 ).

Proof: For loops A and B on a set S write (A;B) 2 if and only if B 2

I(A). Therelation issymmetriand transitivebyLemma 2.6. Hene itisan

equivalene.

Weshallnowdesribeanotherapproahtoisostrophy. Itisinspiredbynotions

ofuniversalalgebra. AloopQ

2

issaidtobeatermparatope ofaloopQ

1

ifthere

exist terms t

i

2 F(x), 1 i 3, and 2 S

3

suh that (;) : Q

1

! Q

2 is a

paratopism,where

i (u)=t

i

(u)foreahu2Q

1

. (LoopsQ

2 andQ

1

areassumed

(10)

Term paratopyis aspeialaseof amoregeneralonept: LetQ

1

bealoop

with binary operationsxy, xny and x=y, theunit ofwhih is equalto 1. Let

Q

2

bealoopuponthesameunderlying set,andwith thesameunit 1. Suppose

that thethree binaryoperationsof Q

2

anbeexpressed ast

1 (x;y), t

2

(x;y)and

t

3

(x;y), wherethe termst

1

;t

2

;t

3

2F(x;y)are evaluated in Q

1

. If weanpass

fromQ

2 toQ

1

in asimilarway,weallQ

1 and Q

2

term equivalent.

FromCorollary2.7and fromTables2and3wesee thateveryisostropheofa

loopQisatermparatopeofQ. Henewehave:

Corollary 2.8. Let Q

1 and Q

2

beloops suh that Q

2 2I(Q

1

). Then Q

1 and

Q

2

aretermequivalent. Furthermore,Q

1

isaterm paratopeof Q

2 andQ

2 is a

termparatopeof Q

1 .

Corollary 2.9. AloopisatermparatopeofthefreeloopF(x) ifand onlyifit

isanisostropheof F(x).

Proof: This follows from Theorem 1.4 sineu7!t

i

(u) doesnotpermuteQ =

F(x)ift

i

isnotoftheformI m

(x).

Isostrophesarehenetheonlytermparatopesthatanbeonstrutedwithout

assumingsomeadditionalequationalpropertiesoftheloopQ.

Term equivalene is astandardnotion of universal algebra. Term equivalent

algebrasshare subalgebras and ongruenes. This is easy to verify, and in the

aseofloopstheproofiseveneasier. Weanhenestate:

Proposition2.10.LetQ

1 andQ

2

betermequivalentloops. ThenSisa(normal)

subloopof Q

1

ifandonlyifitisa(normal)subloopof Q

2

. Inpartiular,thisis

trueif Q

2

isanisostropheof Q

1 .

Afurtherdisussionofonnetionsbetweenlooptermsandisostrophyanbe

foundinSetions6and7.

3. Isostrophismsand their groups

Letusinvestigatewhat exatlyhappenswhenweomposetwoisostrophisms.

Asanexampleonsider'Æ ,whereQ,RandSareloopswiththesameunderlying

set,and =((1 3);(I;id;I)):Q!R and'=((123);(I;id ;id)):R !S are

paratopisms. Notethat I in meansI

Q

,whileI in'meansI

R

. ByLemma2.5,

tobase bothparatopisms inQwehavetoreplaeI in 'byJ =I 1

. Usingthe

formulaforomposingparatopismsweanexpress'Æ as

((23);(I;id;id))=((123);(I;id;id))Æ((13);(I;id ;I)):

Inthis equality I means I

Q

in the outer triples,and it meansI

R

in themiddle

triple. LoopsQ,RandS sharethesameunderlyingset, andheneid

Q

=id

R

=

id

S

. ThehoieofRisdeterminedby ,whilethehoieofSisdeterminedby'.

Theequalityanbethusseenastruerelativeto Q. Ofourse, itistrueforany

hoie of aloopQ. Thereforewean viewtheequality asarulethat expresses

(11)

at upon the lass of all loops. For set theoretial reasons we annot dene a

mappinguponthelassofallloops. However,weandene'and asmappings

uponanysetofloopsthatislosedunder isostrophes.

Ournextaimistodetermineageneralomposition rule,i.e.to desribebya

formulatheisostrophismthatisobtainedwhenthereisomposedanisostrophism

thatisarriedby(;I n

)withanisostrophismthatisarriedby(;I m

). Inevery

givenasetheresultanbeomputedsimilarlyasabove. Table4givestheresults

forsituations when m=n =0. The table usesanabbreviatedform in whih 0

representsid ,andspaes,ommasandouterparenthesesaresuppressed.

0(000) (123)(I00) (132)(0J0) (12)(000) (23)(I00) (13)(0J0)

(123)(I00) (132)(I0I) 0(000) (13)(0J0) (12)(000) (23)(0JJ)

(132)(0J0) 0(000) (123)(0JJ) (23)(I00) (13)(I0I) (12)(000)

(12)(000) (23)(I00) (13)(0J0) 0(000) (123)(I00) (132)(0J0)

(23)(I00) (13)(I0I) (12)(000) (132)(0J0) 0(000) (123)(0JJ)

(13)(0J0) (12)(000) (23)(0JJ) (123)(I00) (132)(I0I) 0(000)

Table 4. Compositionsofisostrophismsthat arearriedbytheidentity

Proposition 3.1. Let :Q!R and':R!S beisostrophismssuhthat

isarried by(;I m

Q

)and 'by(;I n

R

). Then ' isanisostrophismQ!S that

isarriedby(;I k

Q

)wherek=m+sgn()n+d(;)andwhered:S

3 S

3

!

f0; 1;1gisdeterminedbythefollowingtable:

id (123) (132) (12) (23) (13)

id 0 0 0 0 0 0

(123) 0 1 0 0 0 1

(132) 0 0 1 0 1 0

(12) 0 0 0 0 0 0

(23) 0 1 0 0 0 1

(13) 0 0 1 0 1 0

Proof: Inthis proof we shalldenote by

0

(T)the isostrophismthat is arried

by(;id

T

), for every 2 S

3

and everyloop T. We see (f. Corollary2.4) that

=

0 (

Q)I m

Q

, where

Q is dened so that I m

Q

: Q !

Q is an isomorphism.

Similarly ' =

0 (

R )I n

R

. Put n 0

= sgn()n. We anexpress ' as

0 (

R )I n

0

Q , by

Lemma 2.5. Considernow the isostrophism I n

0

Q

0 (

Q). It is arried by (;I n

0

Q )

and so it equals

0 (T)I

n 0

Q

, where T is the loop suh that I n

0

Q :

Q ! T is an

isomorphism. Note that I

T

= I

Q

= I

Q

, by Lemma 2.5. We an express '

as

0 (

R )

0 (T)I

m+n 0

Q

. Thefat that

0 (

R )

0

(T)isarriedby(;I d(;)

T

)follows

(12)

TheompositionruleforisostrophismsthusinduesagrouponS

3

Zinwhih

(;n)(;m)=(;sgn ()n+m+d(;)):

ThegroupwillbedenotedbyI. Itatsinanaturalwayuponanysetofloops

that islosedunder isostrophes. Writing(;m)(Q)=R meansthatthere exists

a(unique) isostrophismQ!Rthat isarriedby(;I m

Q

). If(;n)(R )=S,then

((;n)(;m))(Q)=S.

ItanbeeasilyveriedthatIatsfaithfullyuponI(F)whenF isafreeloop.

Beforeinvestigating possiblekernelsofthe ationuponI(Q) forother loopsQ,

we shallrst study theabstrat nature of I. It is quiteeasy to seethat I isan

innitedihedralgroup.

Indeed,puts=((123);0). FromthedenitionofIweseethats 2

=((132);1)

and s 3

=(id ;1). Hene s 3k

=(id ;k)for every k 2 Zand sohsi =f(;i) 2I;

sgn() =1g. Put also o=((1 2);0), l=((2 3);0) and r =((1 3);0). Further

omputationsinI yieldthefollowingresults:

Proposition 3.2 (Artzy). The group I satises dening relations ho;s; o 2

=

1;oso=s 1

i. Furthermore,l=os,r=os 1

,r=s 2

landI=ho;li=ho;ri.

Inthe rest of this paper we shall treatI as an(innite dihedral) group that

isdetermined bythe dening relationsof Proposition 3.2, andshall notusethe

identiationofelementsofI aspairs(;m).

Reallthat identities J(x)(xy)=y, (xy)I(y)=x,J(xy)x=y, J(x)(yx) =y

and J(xy)=J(y)J(x)dene what is known asLIP, RIP, WIP, CIP and AAIP

loops. Therespetive\InverseProperty"isthusLeftorRightorWeakorCross

orAnti-Automorphi. Loopsthat are both LIP and RIPare alled IP (inverse

property)loops. Notethat Qisommutativeifand onlyifo(Q)=Q.

Lemma3.3 (Artzy). LetQbeloop. ThenQisanLIPorRIPorAAIPloopif

and onlyif l(Q)=Q, r(Q) =Q, oros 3

(Q) =Q, respetively. In eah of these

asesI =J.

Proof: The ase of LIP is immediate sine LIP an be learly expressed in a

weakerformthat foreveryx2Qthereexistsx 0

2Qsuhthatx 0

(xy)=y forall

x2Q. UsingTables3and4weseethatos 3

(Q)=QifandonlyifI(J(y)J(x))=

xy for allx;y 2 Q. TheequalityI =J is well known and easy(in aseof LIP

useJ(x)=J(x)(xI(x))=I(x),forAAIPemploy1=J(xI(x))=xJ(x)).

We have observed that the isostrophism s 3

equals (id ;(I;I;I)), and so it is

in fat anisomorphism. This fat isreordedin the nextlemmafor thesakeof

referene. TheinversesofloopsQandS oinide,say,byLemma2.5.

Lemma 3.4. Let Q be a loop. Put S = s 3

(Q). Then I = I

Q

= I

S is an

isomorphismQ

= S.

Supposethatthesetofallfk2Z;s k

(Q)=Qgisnontrivial. Thenthereexists

k

(13)

divisibleby3,thenthere existsauniquem2Zsuhthat j3m+1j=t. Insuh

aases 3m+1

(Q)=Q.

The isostrophism s 3m+1

is arried by ((1 2 3);I m

). Table 3 implies that if

s 3m+1

(Q)=Q,thenxy =I m

(JI m

(y)nI m

(x)) forallx;y 2Q. This isequiv-

alent to J m+1

(y)J m

(xy) =J m

(x). Everyloop satisfying suh an lawis alled

m-inverse [14℄.

Them-inverse lawan beequivalentlyexpressed asI m

(yx)I m+1

(y)=I m

(x)

[14℄, [8℄. A proofalong the lines of thispresentationan be obtainedif we put

m 0

= m 1 and note that s 3m

0

+2

is arried by ((1 3 2);I m

0

+1

). We have

m 0

+1= mandj3m 0

+2j=t,andsoTable3yieldsxy=J m

(I m

(y)=I m+1

(x)).

ThatisthesameasI m

(xy)I m+1

(x)=I m

(y).

Note that 0-inverse loops are the CIP loops (t = 1), and that ( 1)-inverse

loopsaretheWIPloops(t=2).

Proposition 3.5. LetQ bea loop and lett >0be suh that s t

(Q) =Q and

thatt istheleastpossible.

(i) If t = 3k, then I k

2 Aut (Q) and Q is not n-inverse for any n 2 Z.

Furthermore,I

`

2Aut (Q)ifandonlyif kdivides`.

(ii) If t=3k1,putm=k. Thent=j3m+1j. TheloopQisann-inverse

loopif andonly if 3m+1divides 3n+1. Furthermore,I

`

2Aut (Q)if

andonlyif 3m+1divides`.

Proof: If Q is an n-inverse loop, then we an reverse the proess desribed

above to show that s 3n+1

(Q) = Q. This is possible if and only if 3n+1 is

divisiblebyt. FortherestusethefatthatI k

2AutQifandonlyofs 3k

(Q)=Q

(Lemma3.4).

Thevalueofminthedenitionofanm-inverseloopanbethusseenasaway

ofoding thepositiveintegert =3k1. Up to nowthere isno evidene ofan

interestingalgebraitheory thatwouldinvolvem-inverseloopsfor highervalues

of jmj. Known onnetionsto other lasses of loopsare restrited to situations

when t is a small power of two. If t = 2 k

, then m = (( 2) k

1)=3. In suh

asesanm-inverse loopisalled [8℄aW k

IPloop(ithasthek-fold weak inverse

property). NotethatthenI 2

k

2Aut (Q),byProposition3.5.

Note alsothat a CIP loopis m-inverse foranym 2Z. Inpartiular, the CI

propertyimpliestheWIproperty.

The group I ats upon I(Q). The image of this ation will be denoted by

I(Q). Hene I(Q)isapermutationgroupthatis eithertrivial,orylioforder

two,ortheKleinfour-grouporanonommutativedihedral group. Thus I(Q)is

ommutativeifandonlyifjI(Q)j isadivisorof4.

Proposition 3.6. LetQbealoopsuhthatjI(Q)j divides4. Thenexatlyone

ofthefollowingasestakesplae:

(1) QisanonommutativeWIPloopthatis notIP;jI(Q)j=4.

(2) QisanonommutativeIPloop;jI(Q)j=2.

(14)

(4) QisanonommutativeCIPloop;jI(Q)j=2.

(5) QisaommutativeIPloop;jI(Q)j=1.

Proof: Our assumption an be also expressed by saying that s 2

ats trivially

upon I(Q). Hene Q is a WIP loop. From r = s 2

l we see that l(Q) = Q is

equivalenttor(Q)=Q. Thathappensexatlywhen Qis anIPloop. Eahofs,

oandlatsuponI(Q) either triviallyorasaninvolution. If noneof themats

trivially,thenwegetase(1). Cases(2){(4)desribesituationswhenexatlyone

ofthematstrivially(notethat anIPCIPloopisommutative).

A permutation group G on is said to be regular if it is transitive and if

g =id

wheneverg 2Gis suh thatg(!)=! for some! 2. If Qis aloop,

then I(Q)is transitive, but notneessarily regular. Weshall see that there are

onlyfewnonregularases. Atransitiveommutativepermutationgroupisalways

regular. Thereforeanite nonregularI(Q)hasto beisomorphito thedihedral

groupD

2n

forsomen3. Weshallseethatn2f3;6g. NotethatD

6

=S

3 .

A loop Q is said to haveautomorphi inverse property (AIP) if I 2 Aut (Q)

(i.e. I(xy) =I(x)I(y) for all x;y 2 Q. Equivalently J(xy)=J(x)J(y).) For a

looptohavetheAIpropertyitisnotneessarythatI =J. However,AIPloops

ourringinProposition3.7haveI =J (thenI(x)=J(x)iswritten asx 1

).

NotethatifQhastheAIP,theneveryelementofI(Q)hastheAIP.

NotealsothatI 2Aut (Q)ifandonlyifs 3

(Q)=Q,byProposition3.5.

Proposition 3.7. Let Q be aloop suh that I(Q) is notregular. Then oneof

thefollowingasestakesplae:

(1) I(Q)

= S

3

, jI(Q)j=3andthere exists auniqueommutativeAIPloop

Q

1

2I(Q) suhthat I(Q)=fQ

1

;s(Q

1 );s

1

(Q

1

)g. Thens(Q

1

)hasthe

LIPand the AIP, and s 1

(Q

1

) hasthe RIPand theAIP. On theother

hand,I(Q)

= S

3

andjI(Q)j=3wheneverQisanAIPloopthat isnot

IP,andisommutativeorRIPorLIP.

(2) I(Q)

= D

12

,jI(Q)j=6andthereexistinI(Q)twodierentommutative

loops Q

1 and Q

2

suh that I: Q

1

= Q

2

and I(Q) = fQ

i

;l(Q

i );r(Q

i );

i2 f1;2gg. On theother hand if Qis aommutativeloop withoutthe

AIP, thenjI(Q)j=6andI(Q)

=D

12 .

(3) I(Q)

= D

12

, jI(Q)j = 6and I(Q) onsists of two LIP loops, two RIP

loopsand twoAAIP loops,noneof whih isommutativeoranIPloop

oranAIPloop. Ontheotherhand,ifQisneitheranIPloopnoranAIP

loop,butitisanLIPlooporanRIPlooporanAAIPloop,thenitisnot

ommutative,I(Q)

= D

12

andjI(Q)j=6.

Proof: SupposethatI(Q)isnotregular. ThenitisisomorphitoD

2n

forsome

n 3. If I = J, then I 2

= id

Q

, and hene s 6

(Q) = Q. Thus n 2 f3;6g if

I = J. If nis odd, then I(Q) ontainsonly oneonjugay lass of involutions.

If n is even, then in I(Q) there are two lasses of nonentral involutions. One

ofthelassesontainsthenonentral involutionsthat arexedpointfree,while

(15)

thenland oyieldinvolutionsthat arenotonjugate. Weanthus assumethat

Qfulls l(Q)=Qoro(Q)=Q. BothasesimplyI =J (f.Lemma3.3),andso

n2f3;6g.

Suppose rst that n = 3. Then all elements of I(Q) are AIP loops sine

I =J2Aut (Q),byLemma3.4. Thereisonlyonelassofinvolutions,andsowe

anassumethatQisommutative. Thenls(Q)=os 2

(Q)=os 2

o(Q)=s 2

(Q)=

s(Q)sine l=os andsines 3

(Q)=Q. Thusl xess(Q)and, similarly, rxes

s 1

(Q). Thisprovesase(1),byLemma3.3.

Suppose nowthat n=6. If o(Q)=Q, then os 3

(Q) =os 3

o(Q)=s 3

(Q) =

s 3

(Q). We an thus put Q

1

= Q and Q

2

= s 3

(Q). Then I: Q

1

= Q

2 , by

Lemma 3.4, andtherest of ase(2)followsfrom l(Q

i

)=lo(Q

i )=s

1

(Q

i )and

r(Q

i

)=ro(Q

i )=s(Q

i

),i2f1;2g.

It remains to onsider the ase when n = 6and l(Q) = Q. Then ls 3

(Q) =

ls 3

l(Q)=s 3

(Q). Toprove(3) itthussuÆes toverifythat rs(Q) =s(Q) and

thatos 3

(s 1

(Q))=s 1

(Q),byLemma3.3. FromProposition3.2weobtainthat

rs(Q)=s 2

lsl(Q)=s 2

s 1

(Q)=s(Q)andthat os 2

(Q)=lsl(Q)=s 1

(Q).

Let us investigate more losely ase (2) of Proposition 3.7. It involves (a)

ommutative loops, (b) loops in whih the left inverse is ommutative and ()

loops in whih the right inverse is ommutative. Sine J

Q

= I

Q

when Q is

ommutative,thereis J

Q

=I

Q

inotherasesaswell.

Now,l(Q)isommutativeifandonlyifJ(x)ny=J(y)nxforallx;y2Q. The

latterlawanbeequivalently expressedas xny =J(y)nI(x) ory =J(xy)nI(x)

orJ(xy)y=I(x).

Proposition 3.8. LetQbealoop.

(i) If Qsatises forsome "; 2 f 1;1ga lawxny =J

"

(y)nJ

(x) oralaw

J

"

(xy)y =J

(x), then I =J, and Qsatises alleightthese laws. This

takesplaeifandonlyif l(Q)isaommutativeloop.

(ii) If Q satises forsome "; 2 f 1;1g alaw y=x=I

(x)=I

"

(y) oralaw

yI

"

(yx) = I

(x), then I =J, and Q satisesall eight these laws. This

takesplaeifandonlyif r(Q) isaommutativeloop.

Ifbothl(Q)andr(Q)areommutativeloops,thenQisaommutativeWIPloop

and l(Q)=r(Q). If l(Q) (or r(Q)) isommutativeand Q isnot ommutative,

then I(Q)

= D

12=d

and jI(Q)j =6=d, where d =2 if Q satises theAIP, and

d=1otherwise.

Proof: Ifxny =J

"

(y)nJ

(x), theny =J

"

(xy)nJ

(x)andJ

"

(xy)y=J

(x). If

J(xy)y=J(x),thenI(x)=J(xI(x))I(x)=J(x). IfJ(xy)y=I(x)orI(xy)y=

J(x),thenI(x)=J(x)anbeobtainedbysetting y=1. IfI(xy)y=I(x),then

I(y)y = 1, and soI(y) = J(y). We have already observed above that l(Q) is

ommutativeifandonly ifxny =J(y)nI(x) forallx;y 2Q. That provespoint

(i). Point(ii)followsbymirrorsymmetry.

Now,l=osandr=os 1

,byProposition3.2. Hene ol(Q)=l(Q),s(Q)=

2 1 1 2

(16)

Ifbothol(Q) =l(Q)and or(Q) =r(Q) aretrue, then s (Q) =s (Q) is om-

mutative,andheneQ

=s 3

(Q)isommutativeaswell,byLemma3.4. Insuha

aseQ=s 2

(Q),QisaommutativeWIPloopandweanuseProposition3.6.

If l(Q) is ommutative and Q is not ommutative, then no ase of Proposi-

tion3.6applies,andheneoneofasesofProposition3.7hastobesatised.

Loops that satisfy the equality J(xy)y = J(x) (i.e. loops in whih the left

inverse is ommutative) were introdued by Johnson and Sharma [13℄ and re-

entlystudied byGreer andKinyon[12℄. Theyareknownasweak ommutative

inverseproperty loops,orWCIPloops. Inthispaperweshallallthemleftross-

ommutativeloops. Loopsinwhihtherightinverseisommutativewillbealled

rightross-ommutative. BysayingthatQisross-ommutative wemeanthatit

isleftross-ommutativeorrightross-ommutative.

Situations that are not overed by Proposition 3.7 and Proposition 3.6 are

desribed in the following statement. The laims about the m-inversity follow

fromProposition3.5.

Proposition 3.9. Suppose that Q is neither WIPnor LIP norRIP norAAIP

loop,andthat itis neitherommutativenorross-ommutative. ThenI(Q)is a

regularpermutationgroupthatisisomorphieithertotheinnitedihedralgroup,

orto D

2n

, n 3. If n = 3k+", where " 2 f 1;1g, then Q is "k-inverse. If

n = 3k, then I k

2 AutQ (and Q is m-inverse for no m 2 Z). On the other

hand,if I(Q)isregularandnonommutative,thenQisneitherommutativenor

ross-ommutativenorWIPnorLIPnorRIPnorAAIPloop.

Lemma3.4 impliesthat I(Q) ontainsatmostsix isomorphismlasses. This

ispreisedin detailin Setion5.

4. Paratopismsand nulei

LetQbeaquasigroup. IsotopismsQ!Qarealled autotopisms. Theyform

a group that will be denoted by Atp (Q). An autotopism an be seen as a

paratopism(id ;):Q!Q,andvie versa.

Hene eah paratopism f = (;) : Q ! R yields an isomorphism f

:

Atp (Q)!Atp(R )that sends2Atp (Q)to()

1

2Atp (R ). Indeed,

(;)(id;)(;) 1

=(;)(

1

;( 1

)

1

)=(id;( 1

)

1

):

Foreveryi2f1;2;3gdenotebyAtp

i

(Q)thegroupofall(

1

;

2

;

3

)2Atp(Q)

with

i

=id

Q .

Lemma 4.1. Let f =(;) : Q ! R be a paratopism of quasigroups. Then

f

(Atp

i

(Q))=Atp

(i)

(R ) foreveryi2f1;2;3g.

Proof: If 2 Atp(Q), then 2 Atp

i

(Q) if and only if

i

= id

Q

. Now, the

(i)thomponentof ( 1

)

1

is equalto

i

i

1

i

. Clearly

i

i

1

i

=id

R if

andonlyif =id .

(17)

Weshallinlude awellknown fataboutnuleiof loops. Theproofissimple

enoughtowarrantomitting. Reallthat N

=N

(Q)=fa2Q;a(xy)=(ax)y

forall x;y 2Qgis knownastheleft nuleus,while themiddle and right nulei

N

andN

areobtainedbyshiftingtotherightthepositionofa.

Lemma 4.2. LetQ bea loop. Then Atp

1

(Q) equals f(id

Q

;R

a

;R

a

); a 2N

g,

Atp

2

(Q) equals f(L

a

;id

Q

;L

a

); a 2 N

g, and Atp

3

(Q) equals f(R 1

a

;L

a

;id

Q );

a2N

g.

TheonnetionmakesunderstandablewhyAtp

i

(Q)isalledanA

i

-nuleusby

someauthors. Lemma4.2makeslearthatforloopstheonstrutofAtp

i (Q)is

notneeded,unlessitanbeemployedwithadvantageinaproof. Thisisexatly

whatweshalldobelow. Tomaketheonnetiondiret,wedubN

(Q)asN

1 (Q),

N

(Q)asN

2

(Q) andN

(Q)asN

3 (Q).

Lemma4.3. Let(;) :Q!R be aparatopismof loopssuhthat

i (1)=1

foralli2f1;2;3g. Then

N

(i)

(R )=

j (N

i

(Q)) forall i;j2f1;2;3g suhthat i6=j:

Proof: Let i and j be as assumed. By Lemma 4.2, elements of N

i

(Q) are

exatlythose that anbeexpressed as

j

(1) for =(

1

;

2

;

3

) 2Atp

i (Q). If

2Atp

i

(Q),then( 1

)

1

2Atp

(i)

(R )byLemma4.1. ElementsofN

(i) (R )

an be expressed as

(j)

(1), where 2 Atp

(i)

(R ), by Lemma 4.2. If =

( 1

)

1

, 2Atp

i

(Q), then

(j)

=

j

j

1

j

. Thus

(j)

(1)=

j (

j (1))2

j (N

i

). We haveproved that

j (N

i

(Q)) N

(i)

(R ). By onsidering (;) 1

we get 1

j (N

(i)

(R )) N

i

(Q), and hene the required equality really takes

plae.

If (;) : Q ! R is an isostrophism, then N

(i)

(R ) = N

i

(Q) sine

j is a

powerofI. Table5showsthenuleioftheisostrophethatappearsintheseond

olumn(says 3k +1

(Q)). Thevalueof isin therstolumn ((123) fors 3k +1

),

and olumns 3-5 show the soures fornulei of the given loop in the order N

,

N

andN

. Forexampleappearsintheolumn3in therowofs 3k +1

(Q),and

thatmeansthatN

(s

3k +1

(Q))=N

(Q).

id s

3k

(Q)

(1 23) s 3k +1

(Q)

(1 32) s 3k +2

(Q)

(1 2) os 3k

(Q)

(2 3) ls 3k

(Q)

(1 3) rs 3k

(Q)

Table5. Isostrophiesandtheinterdependeneofnulei

(18)

ThefatthatisostrophismsswiththenuleiwasobservedalreadybyArtzy[3℄.

HealsonotedtheonsequenesforLIP,RIPandAAIPloops.

Inm-inverseloopss 3m+1

(Q) =Q,and soTable5shows thatall threenulei

haveto oinide. ThatwasprovedbyKarklinsand Karklin[14℄in adiretway.

Wereordtheseresultsinthenextstatement. Theproofanbederiveddiretly

fromTable5.

Proposition 4.4. If Qisanm-inverseloop,thenN

=N

=N

. If Qhasthe

LIP,thenN

=N

. If QhastheRIP,thenN

=N

. If QhastheAAIPoris

ommutative,thenN

=N

.

KarklinsandKarklin[14℄alsonote that N(Q)=Z(Q) ifQis2k-inverse. We

shall explain this phenomenon in Corollary 4.8. As a preparatory step let us

reordthefollowingeasyfats:

Lemma 4.5. Let Q be a loop. If a 2 N

\N

, then I(ax) = I(x)a 1

and

J(xa)=a 1

J(x). If a2N

,thenI(xa)=a 1

I(x)and J(ax)=J(x)a 1

.

Proof: Fullling I(ax)=I(x)a meansfullling 1=(ax)(I(x)a). That learly

holdsifa2N

\N

. Theotherasesan beprovedsimilarly.

Corollary4.6. LetQbealoop. Ifa2N(Q),x2Qandk2Z,then

I 2k

(ax)=aI 2k

(x); I 2k

(xa)=I 2k

(x)a;

I 2k +1

(ax)=I 2k +1

(x)a 1

and I 2k +1

(xa)=a 1

I 2k +1

(x):

Proof: ProeedbyindutionusingLemma 4.5.

Theorem 4.7. LetQ bealoop. Then I 2k +1

2 Aut (Q)for somek 2 Zifand

onlyif sisofanoddorderinI(Q). InsuhaaseN(Q)=Z(Q).

Proof: ByLemma3.4,s 3r

(Q)=QifandonlyifI r

2Aut(Q). Ifthisistruefor

anoddr, thenI r

(xa)=I r

(x)I r

(a)=I r

(x)a 1

foreveryx 2Q anda2N(Q).

However,byCorollary4.6wealsohaveI r

(xa)=a 1

I r

(x).

Corollary4.8(KarklinsandKarklin). If Qisa2h-inverseloopforsomeh2Z,

thenN(Q)=Z(Q).

Proof: IfQis2h-inverse,thenI

`

2Aut(Q)for`=6h+1,byProposition3.5.

5. Isomorphismsand the leftand rightinverses

Lemma5.1. Supposethat 2S

3

, andthat (;

i

)is aquasigroup paratopism

Q

i

!R

i

,i2f1;2g. ThenQ

1

isisotopitoQ

2

ifandonlyif R

1

isisotopitoR

2 .

Proof: AnisotopismR

1

!R

2

anbeobtainedfromanisotopism:Q

1

!Q

2

asaomposition(;

2

)(id;)(;

1 )

1

=(;

2 )(

1

;( 1

1 )

1

)=

(id ;

2 (

1

)

1

).

(19)

Proposition 5.2. Let Q

1 and Q

2

be loops and let f 2 I be an isostrophism.

ThenQ

1

=Q

2

ifand onlyif f(Q

1 )

=f(Q

2

). Furthermore,Q

1

is isotopitoQ

2

ifandonlyif f(Q

1

)isisotopitof(Q

2 ).

Proof: Thepartaboutisotopyfollowsfrom Lemma5.1. Fortheisomorphisms

just notethatif':Q

1

= Q

2

,then'(t(x;y))=t('(x);'(y))foranyt2F(x;y).

Proposition 5.3. Let Q be an m-inverse loop for some m 2 Z. Then every

elementof I(Q)isisomorphitoQortoQ op

. IfQisommutative,thenQ=Q op

.

If QisanAAIPloop,thenQ

= Q

op

aswell.

Proof: IfQ

1

;Q

2

2I(Q)areinthesameorbitofs,thenthereexistsk1suh

that s 3k

(Q

1 )=Q

2

sinethelengthof theorbitis j3m+1j. ByLemma3.4 this

settlestheaseofm-inverseloops. Therestisobvious.

Proposition5.4. LetQbealoopthatisnotanIPloop. If QisaLIPorRIPor

AAIPorommutativeloop,thenI(Q)ontainsexatlythreeisomorphismtypes.

Theyarerepresentedbys k

(Q),jkj1.

Proof: By Proposition 3.7 eah element of I(Q) an be expressed as s k

(Q),

k2Z. Henewegetallpossibleisomorphismtypesifkisrestritedto 1,0and

1,byLemma3.4. Weneedtoprovethatnotwoofthemmaybeisomorphi. For

ases(1)and(3)ofProposition3.7thisfollowsfromthefataloopisanIPloop

ifitsatisesatleasttwooftheLI,RIandAAIproperties. Suppose nowthatQ

isommutative. Thenoannotxs k

(Q)fork2f 1;1;2gsineQands 3

(Q)are

theonly pointsof I(Q) that arexed byo. If s 1

(Q)

=

s(Q), thenQ

= s

2

(Q)

byProposition5.2. However,theommutativeloopQannotbeisomorphitoa

nonommutativeloops k

(Q),k2f 1;1;2g.

ByProposition3.9,theonlyasesnotoveredbyPropositions5.3and5.4are

thosefor whih I(Q) isregularand, if nite, oforder 6k, k1. Forsuhloops

weanusethefollowinggeneralstatement:

Theorem 5.5 (Artzy). Let Qbea loop. Then I(Q) ontains1 or2or3 or6

isomorphismlasses.

Proof: ByProposition5.2isomorphiloopsyielduponI(Q)asetofonjugate

bloks. Consider the ation of I(Q) upon this set. The kernel of the ation

ontains s 3

, by Lemma 3.4. The image of the ation is hene equivalent to a

transitiveationofS

3

sineI=hs 3

i

= S

3

.

Intherestofthissetionweshalladdressthefollowingquestion: Startingfrom

Qiterativelyonstrutleftand rightinverses. WhendowegetfullI(Q)?

Note rst that by Proposition 3.2 the subgroup hl;ri I is of index 2, and

equalshl;s 2

i=hos;s 2

i=fs 2k

;os 2k +1

;k2Zg.Hene eitherhl;ri(Q)=I(Q),or

hl;ri halvesI(Q) into twodierent orbits. Intheformer aseweshallsay that

(20)

ItislearthatQisofoddtypeifitisommutativeorifitisaCIPloop. WIP

loops are those loops Q for whih l(Q) = r(Q), and so nonommutative WIP

loopsareofeventype,byProposition3.6.

ThenonregulargroupsofProposition3.7areofoddtypeinases(1)and(2),

andofeventypeinase(3).

SupposethatI(Q)isregularnonommutative(Proposition3.9). Ifitisinnite,

thenitisofeventype,andthatisalsotrueintheniteaseif4dividesjI(Qj=

jI(Q)j. Theremainingasesareofoddtype.

WethusknowwhenQisofoddoreventypeinallases. UsingProposition3.5

it is easy to verifythat ourresults an be formulatedin thefollowingompat

way:

Theorem5.6. AloopQisofoddtypeif I(Q)ontainsaommutativeloopor

ifthereexistsk2Zsuhthat I 2k +1

2Aut (Q).

Weanthusrestate Theorem 4.7as: If aloop is of odd type, then the entre

andthe nuleusoinide.

Lemma5.7. AloopQisofoddtypeifandonlyiftheationsof landrgenerate

thegroupI(Q).

Proof: IfI(Q)isregular,thenthereisnothingtoprove. SoitsuÆestoverify

thatlandrgenerateI(Q)inases(1)and(2)ofProposition3.7. Thatiseasy.

TheharaterizationofoddtypeloopsinTheorem5.6givesimmediately:

Corollary 5.8. A subloopor afatorloop of an oddtype loop is an oddtype

loop.

Proposition 5.9. Let Q be an oddtype loop. Suppose that V U Q are

subloopssuhthatVUandthatU=V isanIPloop. ThenU=V isommutative.

Proof: The loop U=V is of an odd type by Corollary 5.8. Hene I(U=V) is

generatedbylandr,byLemma5.7. Sineweareassumingl(U=V)=r(U=V)=

U=V,thesetI(U=V)hastoontainonlyoneelement. Thuso(U=V)=U=V.

6. Isostrophialvarieties

Sometimesitisusefulto denoteaquasigroupoperationbyaletterinsteadof

bya binaryoperator. If Q(A)is aquasigroup,then by A

we shalldenote the

parastrophe. (Thisisanadhonotationthatwillbeusedonlyintherstpart

of this setion.) Thus A= A

id

, and ifA(x;y) =xy, then A

(23)

(x;y) =xny,

A

(13)

(x;y)=x=yet. WehaveA

(a

1

;a

2 )=a

3 ,A(a

(1)

;a

(2) )=a

(3) ,whih

wereordintheform

A

(a

(1)

;a

(2) )=a

(3)

, A(a

(1)

;a

(2) )=a

(3) :

(21)

Lemma 6.1. Suppose that f = (;) : Q(A)! S(B) is a paratopism. Then

B(x;y)=

1

(3) (A

(

1

1

(1) (x);

1

1

(2)

(y))). If 2S

3 ,then

B

(x;y)=

1

1

(3) (A

(

1

1

1

(1) (x);

1

1

1

(2) (y))):

Proof: Thefatthatf isaparatopismanbeexpressedby

B

(

1

1

(1) (a

1

1

(1) );

1

1

(2) (a

1

(2) ))=

1

1

(3) (a

1

1

(3) )

as( 1

1

)=. Setx=

1

1

(1) (a

1

1

(1)

)andy=

1

1

(2) (a

1

1

(2) ).

Ourformulastatesthat B

(x;y)=

1

1

(3)

(z),where z =a

1

1

(3)

is equal

toA

(a

1

1

(1)

;a

1

1

1

(2)

). Bythehoieofx,a

1

1

(1)

= 1

1

1

(1) (x).

Theseondargumentdependsuponyinasimilarway,andthatgivestherequired

expressionofB

(x;y).

Theabovelemma is nothingelse, but aformalveriationthat if f =(;)

is a paratopism, then is an isotopism to the 1

parastrophe of the target

quasigroup |afat that hasbeenmentionedin Setion 2. Sine theoperation

B depends fully upon f and A, we an denote it by f(A). Note that Table 2

tabulatesf(A)fortheallpossiblevaluesof .

Lemma 6.2. Suppose that f : Q

1

! Q

2

and g : Q

2

! Q

3

are paratopisms.

Denotethequasigroupoperationof Q

1

byA. Thenthequasigroupoperationof

Q

3

anbeexpressedbothas g(f(A)) andas(gf)(A).

Proof: Sine gf is a paratopism Q

1

! Q

3

, the operation of Q

3

is equal to

(gf)(A). However, it is also equal to g(B), where B = f(A) is the operation

ofQ

2

.

Lemma6.3. ConsiderafreeloopF(X). Thenf(F(X))isalsoafreeloopwith

baseX,foreveryf 2I.

Proof: Every loop an be expressed as f(Q), for some loop Q. A mapping

':X !Q anbe extendedtoa(unique) loop homomorphism :F(X)!Q.

Bytermequivalene,amapping :F(X)!Qis ahomomorphismifandonly

ifitis ahomomorphismf(F(X))!f(Q).

SupposenowthatX =fx

1

;x

2

;:::g. ByLemma6.3thereexistsauniqueloop

homomorphismf

:F(X)!f(F(X))suhthat f

(x

i )=x

i

foreveryi1. To

omputef

(t) for aterm t use either Lemma 6.1 orTable2. Note that f

is a

mappingfrom F(X) to F(X), and heneit maps a reduedloop term upon a

reduedloopterm.

Lemma6.4. If f;g2I,theng

f

=(fg )

. Inpartiular,(f

) 1

=(f 1

)

.

Proof: DenotetheoperationofF(X)byA. Thenf

:F(X)(A)!F(X)(f(A))

andg

:F(X)(A)!F(X)(g (A))areloophomomorphisms. Hene

(22)

F(X)!F(X)(fg (A))isaloophomomomorphismaswell. This homomorphism

isidentialuponX,andheneithastoagreewith(fg )

.

Lemma 6.5. Suppose that Q is a loop, f 2 I, s;t = F(x

1

;:::;x

m

) and that

a

1

;:::;a

m

2Q. Thens(a

1

;:::;a

m

)isequaltot(a

1

;:::;a

m

)inf(Q) ifandonly

if (f

(s))(a

1

;:::;a

m

)isequalto(f

(t))(a

1

;:::;a

m )inQ.

Proof: PutF =F(x

1

;:::;x

m

)anddenoteby thehomomorphismF !f(Q)

that sendsx

i toa

i

. Furthermore,denoteby'the homomorphismf(F)!f(Q)

thatsendsx

i toa

i

. Thehomomorphisms and'f

agree upon x

1

;:::;x

m ,and

henetheyagreeeverywhere. Sine'anbealsointerpretedasahomomorphism

' : F ! Q wean write the equality (f

(s))(a

1

;:::;a

m ) = (f

(t))(a

1

;:::;a

m )

(whih is assumedto betrue in Q)as'(f

(s)) ='(f

(t)). This isthe sameas

(s)= (t),andthat meansthat s(a

1

;:::;a

m )=t(a

1

;:::;a

m

)in f(Q).

Corollary 6.6. Let V be a variety of loops and let f 2 I. Then the lass of

all f(Q), Q 2 V is also a variety of loops (we shall denote it by f(V)). A law

s(x

1

;:::;x

n

) = t(x

1

;:::;x

n

) holds in f(V) if and only if the law f

(s)= f

(t)

holdsinV.

VarietiesVandf

(V)aresaidtobeisostrophi. ByLemma3.4,Q

= s

3

(Q)for

anyloopQ. Henef(V)=fs 3k

(V). WeseethatS

3

atsuponvarietiesisostrophi

toV.

Corollary 6.7. There are 1or2 or3or 6varieties isostrophito avariety V.

EverysuhvarietyisequaltoV of l(V)orr(V),oritisavarietythatisopposite

tooneofthese threevarieties.

Todesribeisostrophivarietiesitthus suÆestobeableto expressthemul-

tipliationanddivisionsin o(Q),l(Q),r(Q) andr(Q). WedosoinTable6.

loop Q o(Q) l(Q) r(Q)

multipliation xy yx (1=x)ny x=(yn1)

leftdivision xny y=x (1=x)y 1=(ynx)

rightdivision x=y ynx (y=x)n1 x(yn1)

Table 6. Operationsin isostrophiloops

Proposition 6.8. Assume m 2 Z. Every variety isostrophi to the variety of

m-inverseloopsisequaltothatvariety.

Proof: A loopQis m-inverse ifitfulls J m+1

(x)J m

(yx) =J m

(y). Thelatter

lawisequivalenttoI m

(xy)I m+1

(x)=I m

(y)(f.Setion 3). Now,

o

(J m+1

(x)J m

(yx))=I m

(xy)I m+1

(x)ando

(J m

(y))=I m

(y). ThusQ op

isalso

anm-inverseloop. ThestatementthusfollowsfromProposition5.3.

Thevarietyofallloopsthatfulll alaws(x

1

;:::;x

m )=t(x

1

;:::;x

m

)will be

denotedbyEq[s(x

1

;:::;x

m )=t(x

1

;:::;x

m

)℄. InformulasweshalluseLIP,RIP

(23)

Lemma6.9. Supposethat";2f 1;1g. Then:

(i) LIP=Eq[I

"

(x)(xy)=y℄=Eq[(x=y)(y=x)=1℄;

(ii) RIP=Eq[(yx)I

"

(x)=y℄=Eq[(xny)(ynx)=1℄;and

(iii) AAIP=Eq[I

"

(x)I

(y)=I(yx)℄=Eq[J

"

(x)J

(y)=J(yx)℄.

Proof: InaLIP loopI(x)=J(x)by Lemma 3.3. If I(x)(xy)=y holds, then

y = 1 yields I(x)x = 1, and so I(x) = J(x) again. Now, (x=y)(y=x) = 1 is

equivalenttoy=(xy)=xn1,andthatis y=J(x)(xy).

InanAAIPloopI(x)=J(x)byLemma 3.3. Ifanyof"and isequalto 1,

thenwegetI =J bysettingx=1ory=1. Therestislear.

FromCorollary6.6 andTable6weseethatl

(I(x)(xy))=xn(J(x)ny). Sine

xn(J(x)ny) = y if and only if J(x)(xy) = y we see that l

(LIP) = LIP. Fur-

thermore,r

((x=y)(y=x))=(xI(y))=I(y(I(x)), andsor

(LIP)=Eq[J(x)I(y)=

I(yx)℄=AAIP. Inthiswayweobtainadiret proofforthefollowingstatement.

ThestatementanbealsoderivedfromProposition3.7. Wehavehosenadiret

prooftoillustratetheoneptofisostrophivarietiesuponawellknownandeasy

example.

Proposition 6.10. r

(AAIP) =LIP = o

(RIP), l

(AAIP) =RIP= o

(LIP),

and r

(LIP)=AAIP =l

(RIP). Furthermore,l

(LIP)=LIP, r

(RIP) =RIP,

ando

(AAIP)=AAIP.

Everyloop variety V ontainsasubvariety Itp(V) ofloopsQ suh that every

loopisotopeofQ isin V. Loopsofthis kindarealled isotopially invariant or

universal (withrespettoV). Notethat Itp(Itp (V))=Itp (V).

Proposition6.11. LetV andW beisostrophivarieties,withW=f(V),where

f 2I. ThenItp (W)=f(Itp (V)). Inpartiular,if Itp(V)=V,thenItp(W)=W.

Proof: This follows from the fat that f maps lasses of isotopesto lassesof

isotopes,byProposition5.2.

It is well known (and easy to prove) that ItpEq[xy = yx℄ is the variety of

abelian groups. If V is the variety of left ross-ommutativeloops(f. Proposi-

tion3.8),thenItp (V)isthevarietyofabeliangroupsagain,byProposition6.11.

Put lBol = Itp(LIP), mBol = Itp(AAIP) and rBol = Itp(RIP). Proposi-

tions6.10and6.11immediatelyyield:

Corollary 6.12. r

(mBol)=lBol=o

(rBol),l

(mBol)=rBol=o

(lBol),and

r

(lBol)=mBol=l

(rBol). Furthermore,l

(lBol)=lBol,r

(rBol)=rBol, and

o

(mBol)=mBol.

Lemma 6.13. Let V be a variety of loops suh that Q

= Q op

2 V for every

Q 2 V. Then Itp(V) onsists of all loops Q suh that the left isotope (x=e)y

belongsto V foreverye2Q.

Proof: SupposethataloopQfullstheonditionofthestatement. Weneedto

(24)

onsider an isomorphism ' : Q ! Q . We get '(x(eny)) =('(y)='(e))'(x).

Therightisotopeisheneisomorphitotheoppositeloopofaleftisotope. Sine

theleftisotopebelongstoV,theopposite loophastobelongtoV aswell.

Lemma6.14. LetQbealoopande2Q. DenotebyS theleftisotope(x=e)y.

ThenJ

S

(x)=(e=x)eand I

S

(x)=(x=e)ne.

Proof: Thisanbeveriedinadiretway.

The rst part of the next statement was formulated by Robinson as Theo-

rem 3.1 of [23℄. The seond part seems to have appeared for the rst time in

ChapterXIofBelousov'sbook [6℄.

Proposition 6.15. ThevarietylBol isequaltoEq[x(yxz)=(xyx)z℄,rBolis

equaltoEq[z(xyx)=(zxy)x℄. Furthermore,mBolisequaltoEq[(x=y)(znx)=

(x=(zy))x℄=Eq[(x=y)(znx)=x((zy)nx)℄.

Proof: ByCorollary6.12itsuÆesto proveonlytherstequalityin theeah

partofthestatementsineo(lBol)=rBol ando(mBol)=mBol.

Denoteby L

x

theleft translationy 7!xy. AloopQ hastheLIP ifandonly

ifL 1

y 2fL

x

; x 2Qg foreah y 2Q(i.e. theleft translationsare losed under

inverses).

Let Qbe aLIP loop. The left translations of aleft priniple isotope (x=e)y

arelosedunderinversesforanye2Q. Thelefttranslationsofarightpriniple

isotopex(fny)arelosedunderinversesifandonlyifforallx;f 2Qthereexists

z 2Q suh that (L

x L

1

f )

1

=L

z L

1

f

. Insuh aaseL

z

=L

f L

1

x L

f

. Thus if

Q2lBol,then forall x;y 2Qthere exists z 2Qsuhthat L

x L

y L

x

=L

z , and

sox(yxw) = (xyx)w for all x;y;x;w. By plugging y = 1=x we get the LI

property,andhenetheargumentanbereversed.

From Proposition6.10and Lemma 6.13itfollowsthat Q2mBol ifandonly

iftheloop (x=e)y hastheAAIP foreverye2Q. Fixeand denote theloopby

S. FromLemma6.14wegetJ

S

(y)=(e=y)eandI

S

(ze)=zne. FromLemma6.9

itfollowsthatS isanAAIPloopifandonlyif(e=y)(zne)=(e=(zy))e.

It isusual to allelementsof lBol,rBol and mBolleft, right and middle Bol

loops,respetively.

LetQbealeftBolloop. Thenxny =x 1

ysineitisaLIPloop. Theoperation

ofthemiddleBolloopr(Q)anbethusexpressedasx=y 1

. Gvaramija[11℄notes

thatthere isanotherexpression: y(y 1

xy). Thisfollowsfrom thefat thatthe

leftBolidentitygivesx=y=y 1

(yxy 1

).

Syrbu[25℄,[26℄givesfurthermiddleBolloopidentities. Theseidentitiesdier

onlybyrearrangingtherighthandside,whenweputu=zy andexpressx(unx)

(or(x=u)x)inanequivalentway. Weshallnishthissetionbyshowingthatthis

phenomenonanbeexplainedbythepropertiesof

ItpEq[1=x=xn1℄lBol[rBol:[mBol:

参照

関連したドキュメント

Reynolds, “Sharp conditions for boundedness in linear discrete Volterra equations,” Journal of Difference Equations and Applications, vol.. Kolmanovskii, “Asymptotic properties of

We have formulated and discussed our main results for scalar equations where the solutions remain of a single sign. This restriction has enabled us to achieve sharp results on

Kilbas; Conditions of the existence of a classical solution of a Cauchy type problem for the diffusion equation with the Riemann-Liouville partial derivative, Differential Equations,

Turmetov; On solvability of a boundary value problem for a nonhomogeneous biharmonic equation with a boundary operator of a fractional order, Acta Mathematica Scientia.. Bjorstad;

It is well known that the inverse problems for the parabolic equations are ill- posed apart from this the inverse problems considered here are not easy to handle due to the

We give another global upper bound for Jensen’s discrete inequal- ity which is better than already existing ones.. For instance, we determine a new converses for generalized A–G and

Going back to the packing property or more gener- ally to the λ-packing property, it is of interest to answer the following question: Given a graph embedding G and a positive number

7.1. Deconvolution in sequence spaces. Subsequently, we present some numerical results on the reconstruction of a function from convolution data. The example is taken from [38],