• 検索結果がありません。

Secret Key Agreement Scheme Based on BER Fluctuation in Radio Communication System

N/A
N/A
Protected

Academic year: 2022

シェア "Secret Key Agreement Scheme Based on BER Fluctuation in Radio Communication System "

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

Secret Key Agreement Scheme Based on BER Fluctuation in Radio Communication System

Takayasu K

ITANO*

, Hisato I

WAI*

and Hideichi S

ASAOKA*

(Received July 13, 2009)

This paper proposes a private key agreement scheme using the fluctuations of BER (Bit Error Rate). In the proposed scheme, the received BER at both authorized users is used as the common information for key generation between them. BER is an appropriate indicator to characterize the wireless channel because it includes all factors to generate bit errors such as fluctuations of amplitude and phase, effect of delayed waves etc. In order to evaluate the performance of the proposed scheme, numerical simulations are carried out assuming the configurations and the parameters of wireless LAN system. The results of the simulations show that the proposed scheme successfully achieves the key agreement at SN ratio of 15dB when it is combined with data deletion and error correction schemes.

-G[YQTFU information security

, secret key agreement, pseudo BER, radio propagation

ࠠ࡯ࡢ࡯࠼

ᖱႎ࠮ࠠࡘ࡝࠹ࠖ㧘⒁ኒ㎛౒᦭㧘ᡆૃࡆ࠶࠻⺋ࠅ₸㧘㔚ᵄવ៝

㒽਄⒖േㅢାߦ߅ߌࠆࡆ࠶࠻⺋ࠅ₸ᄌേߦၮߠߊ⒁ኒ㎛౒᦭ᣇᑼ

ർ㊁ 㓉ᐽ㧘ጤ੗ ⺈ੱ㧘╣ጟ ⑲৻

߹߃߇߈

ή✢ㅢାߩ᥉෸ߦ઻޿㧘⋑⡬ኻ╷ߥߤߩ࠮ࠠࡘ࡝

࠹ࠖኻ╷߇㊀ⷐߣߥߞߡ޿ࠆ㧚ㄭᐕߩ⋑⡬ኻ╷ߣߒ ߡ㧘ᖱႎࠍᥧภൻߒߡવㅍߔࠆᥧภㅢା߇৻⥸⊛ߢ

޽ࠅ㧘ㅍା⠪ߣฃା⠪߇౒ㅢߩᥧภ㎛ࠍ↪޿ࠆ౒ㅢ

㎛㧔⒁ኒ㎛㧕ᥧภᣇᑼ 1, 2) ߇ࠃߊ↪޿ࠄࠇߡ޿ࠆ㧚

౒ㅢ㎛ᥧภᣇᑼߪ㧘ㅍା⠪ߣฃା⠪߇౒ㅢߩ⒁ኒ㎛

ࠍ↪޿ߡᖱႎߩᥧภൻߣᓳภࠍⴕ߁ߚ߼㧘⸘▚㊂ߪ ዋߥ޿߇㧘ᥧภㅢାࠍⴕ߁೨ߦਔ⠪ߩ㑆ߢ⒁ኒ㎛ࠍ

౒᦭ߒߡ߅ߊᔅⷐ߇޽ࠆ㧚⒁ኒ㎛ࠍ౒᦭ߔࠆߚ߼ߦ

㎛㈩ㅍࠍⴕ߁ߎߣ߇ᄙ޿߇㧘ή✢ㅢାߢߪߘߩㆊ⒟

ߢ⒁ኒ㎛߇⋑⡬ߐࠇࠆෂ㒾ᕈ߇޽ࠅ㧘቟ోߥ⒁ኒ㎛

౒᦭ᚻᴺ߇㊀ⷐߣߥࠆ㧚߹ߚ㧘౒᦭ߒߚ⒁ኒ㎛ߪᥧ ภㅢାࠍⴕ߁ߚ߮ߦ૶↪ߔࠆߚ߼㧘หߓ⒁ኒ㎛ࠍ㐳 ᦼߦᷰߞߡ૶↪ߔࠆߣ㧘ᥧภൻᖱႎߩࡄ࠲࡯ࡦ߆ࠄ

⒁ኒ㎛ࠍ⸃⺒ߐࠇࠆෂ㒾ᕈ߽޽ࠆ㧚

ߘߎߢ㧘㔚ᵄવ៝ߩ․ᓽࠍᵴ↪ߔࠆߎߣߢ㧘㎛ࠍ

㈩ㅍߔࠆߎߣߥߊ౒᦭น⢻ߢ㧘ᣂߚߥ⒁ኒ㎛ߩ↢ᚑ

߽ኈᤃߥ⒁ኒ㎛౒᦭ᣇᑼ3-7)߇ឭ᩺ߐࠇߡ޿ࠆ㧚

৻⥸ߦ⒖േㅢାߦ߅޿ߡ㔚ᵄવ៝ߩนㅒᕈ߇ᚑ ࠅ┙ߟߎߣ㧘ࡑ࡞࠴ࡄࠬࡈࠚ࡯ࠫࡦࠣߩᄌേ߇႐ᚲ ߦଐሽߔࠆߎߣ߆ࠄ㧘ㅍฃାዪ߇੕޿ߦାภߩㅍฃ

* Department of Electronics, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan Telephone: +81-774-65-6289, Fax: +81-774-65-6801, E-mail: eti1101@mail4.doshisha.ac.jp

(2)

ାࠍⴕ߁႐ว㧘વ៝〝․ᕈߪ⋧㑐ߩ㜞޿߽ߩߣߥࠆ ߇㧘႐ᚲ߇⇣ߥࠆઁዪߢߩવ៝〝․ᕈߪ⋧㑐߇ૐߊ

ߥࠆ8, 9)㧚ߎࠇࠃࠅ㧘ᱜⷙߩㅍାዪߣฃାዪߢߘࠇ

ߙࠇฃାାภᒝᐲ㧔RSSI: Received Signal Strength

Indicator

㧕ߥߤߩવ៝〝․ᕈࠍ᷹ቯߔࠆߣ㧘ᱜⷙዪ

㑆ߢߪ੕޿ߦ㜞⋧㑐ߣߥࠆ߇㧘⋑⡬ዪߦߪૐ⋧㑐ߦ ߥࠆᖱႎ߇ᓧࠄࠇࠆ㧚ߘߎߢ㧘ᓧࠄࠇߚᖱႎߦ㑣୯ ࠍ⸳ቯߒ

2

୯ൻಣℂࠍⴕ߁ߣ㧘ᱜⷙዪߢߩߺ౒᦭น

⢻ߥ⒁ኒ㎛߇↢ᚑߢ߈ࠆ㧚߹ߚ㧘㔚ᵄવ៝․ᕈࠍᵴ

↪ߒߡ↢ᚑߐࠇߚ⒁ኒ㎛ߪ㧘ౣ↢ᚑ߿౒᦭߇ኈᤃߢ

޽ࠆߚ߼㧘⒁ኒ㎛ߩ૶޿ᝥߡ߽น⢻ߢ޽ࠆ㧚 㔚ᵄવ៝ࠍᵴ↪ߒߚ⒁ኒ㎛౒᦭ᣇᑼߦ㑐ߒߡ㧘ߎ ࠇ߹ߢ㧘

OFDM

ߩ๟ᵄᢙ․ᕈࠍ↪޿ߚᣇᑼ6)㧘นᄌ ᜰะᕈࠕࡦ࠹࠽ߢ޽ࠆࠛࠬࡄࠕࡦ࠹࠽10) ࠍ↪޿ߚ ᣇᑼ7) ߥߤ߇ឭ᩺ߐࠇ㧘ᐢߊᬌ⸛ߐࠇߡ޿ࠆ㧚ߎࠇ ࠄߩ⎇ⓥߪ㧘㎛↢ᚑߩ౒᦭ᖱႎߣߒߡ

RSSI

ࠍ↪޿

ߡ㧘ߘߩᒝᐲᄌേߦၮߠ޿ߡ⒁ኒ㎛ࠍ↢ᚑߔࠆᣇᑼ ߢ޽ࠆ㧚⒁ኒ㎛↢ᚑߩߚ߼ߩ౒᦭ᖱႎߣߒߡ

RSSI

ࠍ↪޿ࠆߣ㧘⋥ធᵄߥߤᡰ㈩⊛ߦߥࠆ㔚ᵄߩ⚻〝߇ ሽ࿷ߔࠆⅣႺߦ߅޿ߡ㧘↢ᚑߒߚ⒁ኒ㎛ߩ⋑⡬⠴ᕈ ߇ૐਅߔࠆߎߣ߇ႎ๔ߐࠇߡ޿ࠆ11, 12)

ߘߎߢᧄ⺰ᢥߢߪ㧘⒁ኒ㎛↢ᚑߩߚ߼ߩ౒᦭ᖱႎ ߣߒߡ㧘ᓥ᧪ࠃࠅᬌ⸛ߐࠇߡ޿ࠆ

RSSI

ߢߪߥߊ㧘 ࡆ࠶࠻⺋ࠅࠍ↪޿ߡ⒁ኒ㎛ࠍ↢ᚑߔࠆᣇᴺࠍឭ᩺

ߔࠆ㧚․ߦ㧘ฃାዪߢߩߺ⊒↢ߐߖࠆߎߣ߇น⢻ߢ㧘 ࡆ࠶࠻⺋ࠅߣ߽㑐ଥߩ޽ࠆᡆૃࡆ࠶࠻⺋ࠅࠍ↪޿

ߡ⒁ኒ㎛ࠍ↢ᚑߔࠆᣇᑼ13)ߦߟ޿ߡᬌ⸛ߔࠆ㧚 ᧄ⺰ᢥߢߪ㧘߹ߕ㔚ᵄવ៝․ᕈࠍᵴ↪ߒߚ⒁ኒ㎛

౒᦭ᣇᑼߦߟ޿ߡㅀߴ㧘ᰴߦ㧘ᡆૃࡆ࠶࠻⺋ࠅ₸ࠍ

↪޿ߚ⒁ኒ㎛ߩ↢ᚑ㧘߅ࠃ߮౒᦭ߦߟ޿ߡᬌ⸛ߔࠆ㧚 ߘߒߡ㧘ή✢

LAN

ࠪࠬ࠹ࡓࠍᗐቯߒߚࠪࡒࡘ࡟࡯

࡚ࠪࡦࠍⴕ޿㧘ឭ᩺ᣇᑼߩ᦭ലᕈࠍ␜ߔ㧚

㔚ᵄવ៝․ᕈࠍᵴ↪ߒߚ⒁ኒ㎛౒᦭

⒁ኒ㎛౒᦭ߩේℂ

㔚ᵄવ៝․ᕈࠍᵴ↪ߒߚ⒁ኒ㎛౒᦭ᣇᑼߢߪ㧘㔚 ᵄવ៝ߩ․ᓽ㧘ߟ߹ࠅ㧘㔚ᵄવ៝ߩนㅒᕈߣࡑ࡞࠴

ࡄࠬࡈࠚ࡯ࠫࡦࠣߩ႐ᚲ࡮ᤨ㑆ଐሽᕈࠍ೑↪ߒߡ޿

ࠆ㧚

Fig. 1

ߦ㧘㔚ᵄવ៝․ᕈࠍᵴ↪ߒߚ⒁ኒ㎛౒᦭

ᣇᑼߩේℂࠍ␜ߔ㧚㔚ᵄવ៝ߦ߅޿ߡ㧘ㅍฃାዪ߇

หߓ႐ᚲߢ޽ࠇ߫㧘ㅍାዪߣฃାዪ߇੤ઍߒߡ߽ห ߓ⚻〝ࠍ⚻ߡવ៝ߔࠆ㧔㔚ᵄવ៝ߩนㅒᕈ㧕㧚ߎࠇ ࠃࠅ㧘ାภࠍ

A

ዪ߆ࠄ

B

ዪ߳ㅍାߔࠆ႐วߣ㧘ߘ ߩㅒߩ

B

ዪ߆ࠄ

A

ዪ߳ㅍାߔࠆ႐วߢ㧘વ៝〝․

ᕈߩ⋧㑐߇㕖Ᏹߦ㜞ߊߥࠆ㧚

৻ᣇ㧘ࡑ࡞࠴ࡄࠬⅣႺߦ߅޿ߡ㧘ฃାዪߩ႐ᚲ߇ ᄌࠊࠆߣ㔚ᵄવ៝ߩ⚻〝߽⇣ߥࠅ㧘વ៝〝․ᕈ߽⇣

ߥࠆ߽ߩߣߥࠆ㧔ࡑ࡞࠴ࡄࠬࡈࠚ࡯ࠫࡦࠣߩ႐ᚲଐ ሽᕈ㧕㧚ߎࠇࠃࠅ㧘

Fig. 1

ߦ߅޿ߡ႐ᚲ߇⇣ߥࠆ⋑⡬

ዪ㧔

Eavesdropper

㧕ߣᱜⷙዪ㧔

B

ዪ޽ࠆ޿ߪ

A

ዪ㧕 ߢߪ㧘᷹ቯߒߚવ៝〝․ᕈߪ㕖Ᏹߦ⋧㑐ߩૐ޿߽ߩ ߣߥࠆ㧚

ߎࠇࠄ㔚ᵄવ៝ߩ․ᓽߦࠃࠅ㧘વ៝〝․ᕈߩᖱႎ ߪᱜⷙዪ㑆㧔Aዪ̆Bዪ㑆㧕ߢߩߺ౒᦭น⢻ߣߥࠆ㧚 ߘߎߢ㧘ߎߩᖱႎߦ

2

୯ൻಣℂࠍⴕߞߡ⒁ኒ㎛ࠍ↢

ᚑߔࠆߣ㧘㎛ߩ㈩ㅍࠍߔࠆߎߣߥߊ⒁ኒ㎛ߩ౒᦭߇ น⢻ߢ޽ࠆ㧚

⒁ኒ㎛↢ᚑᚻ㗅

㔚ᵄࠍᵴ↪ߒߚ⒁ኒ㎛౒᦭ᣇᑼߦ߅ߌࠆ⒁ኒ㎛

↢ᚑᚻ㗅ࠍ

Fig. 2

ߦ␜ߔ㧚Fig. 2ߢߪ㧘߹ߕ㧘⒁ኒ

㎛ࠍ౒᦭ߔࠆዪห჻ߢવ៝〝․ᕈ᷹ቯ↪ାภߩㅍ ฃାࠍ➅ࠅ㄰ߒⴕ޿㧘⒁ኒ㎛ࠍ↢ᚑߔࠆߩߦᔅⷐߥ 㐳ߐߩવ៝〝․ᕈߩ♽೉ࠍᓧࠆ㧚ߘߒߡ㧘ᓧࠄࠇߚ વ៝〝․ᕈߩ♽೉ߦ

2

୯ൻಣℂࠍⴕߞߡ㎛୥⵬ࠍ

↢ᚑߔࠆ㧚ߎߎߢ㧘વㅍ〝ߦ߅ߌࠆ㔀㖸ߥߤߩᓇ㗀

Fig. 1. Principle of secret key agreement scheme

using channel characteristics.

Station A Station B

Eavesdropper Multipath fading

Sharing unique information

Different information

(3)

ߦࠃࠅ㧘੕޿ߩዪߢ↢ᚑߒߚ㎛୥⵬ߦਇ৻⥌߇⊒↢

ߔࠆߎߣ߇޽ࠆ㧚ߎߩ႐วߦߪ㎛୥⵬ߩਇ৻⥌⸓ᱜ ࠍⴕ޿㧘⸓ᱜᓟߩ㎛♽೉ࠍ⒁ኒ㎛ߣߒߡᥧภㅢାߦ

૶↪ߔࠆ㧚

ࡆ࠶࠻⺋ࠅ₸ᄌേߦၮߠߊ⒁ኒ㎛౒᦭ᣇᑼ ࡆ࠶࠻⺋ࠅ₸ᄌേߦၮߠߊ⒁ኒ㎛౒᦭ᣇᑼ

ᓥ᧪ߩᣇᑼ 5-7)ߢߪ㧘⒁ኒ㎛ࠍ౒᦭ߔࠆዪ߇ߘࠇ ߙࠇ

RSSI

ࠍ᷹ቯߒ㧘

RSSI

ߦኻߒߡߘߩਛᄩ୯ߥߤ ࠍ㑣୯ߣߒߡ

2

୯ൻಣℂࠍⴕߞߡ޿ߚ㧚RSSIߦࠃ ࠅ⒁ኒ㎛ࠍ↢ᚑߔࠆ႐ว㧘ᱜⷙዪห჻ߣ⋑⡬ዪ߇੕

޿ߦ⋥ធᵄߩ೔᧪࿤ౝߦ޽ࠆߥߤᡰ㈩⊛ߥࡄࠬ߇ ሽ࿷ߔࠆߣ㧘

RSSI

୯߽ᡰ㈩⊛ߥࡄࠬߦଐሽߒߡߒ

߹޿⋑⡬ዪߢ߽ᱜⷙዪߢ᷹ቯߒߚ߽ߩߣ⋧㑐ߩ㜞

޿

RSSI

߇ᓧࠄࠇࠆ12)㧚ߎߩࠃ߁ߦ㧘ᱜⷙዪ㑆ߣ⋑

⡬ዪߢ㜞⋧㑐ߦߥࠆ

RSSI

ߦၮߠ޿ߡ⒁ኒ㎛ࠍ↢ᚑ ߔࠆߣ㧘⋑⡬ዪߢ߽ᱜⷙዪߢ౒᦭ߒߡ޿ࠆ⒁ኒ㎛ߣ หߓ߽ߩ߇↢ᚑߐࠇࠆෂ㒾ᕈ߇޽ࠆ㧚

ߘߎߢ㧘ᧄ⺰ᢥߢߪ⒁ኒ㎛ߩ↢ᚑߦ

RSSI

ࠍ↪޿

ࠆߩߢߪߥߊ㧘ࡆ࠶࠻⺋ࠅߦၮߠ޿ߡ⒁ኒ㎛ࠍ↢ᚑ ߒ౒᦭ߔࠆᚻᴺߦߟ޿ߡឭ᩺ߔࠆ㧚

ᡆૃࡆ࠶࠻⺋ࠅߩ⒁ኒ㎛↢ᚑ߳ߩㆡ↪

ࡆ࠶࠻⺋ࠅࠍ↪޿ߡ⒁ኒ㎛ࠍ↢ᚑߔࠆߦߪ㧘વㅍ

〝ߢ⊒↢ߔࠆഠൻⷐ࿃߿વ៝〝․ᕈߩᄌേߥߤࠍ

ࡆ࠶࠻⺋ࠅ₸ߦ෻ᤋߐߖࠆߎߣ߇㊀ⷐߢ޽ࠆ㧚߹ߚ㧘

⋑⡬ዪߦኻߒߡᔅⷐએ਄ߩᖱႎࠍਈ߃ߥ޿ߣ޿߁

ⷰὐ߆ࠄ㧘ࡆ࠶࠻⺋ࠅߪฃା஥ߩߺߢᬌ಴ߢ߈ࠆ߽

ߩ߇ᦸ߹ߒ޿㧚ߘߎߢᧄ⺰ᢥߢߪ㧘ࡆ࠶࠻⺋ࠅߣߒ ߡ㧘ฃାᤨߦੱὑ⊛ߦࡆ࠶࠻⺋ࠅࠍ⊒↢ߐߖࠆᡆૃ

ࡆ࠶࠻⺋ࠅ14-20)ࠍ↪޿ࠆ㧚ᡆૃࡆ࠶࠻⺋ࠅߪ㧘ᖱႎ

ାภવㅍᤨߩવ៝〝․ᕈࠍផቯߔࠆᚻᴺߩ৻ߟߢ

޽ࠅ㧘વ៝〝ߩഠൻߦᔕߓߚㆡᔕ೙ᓮߥߤߦ↪޿ࠆ ߎߣ߇ᬌ⸛ߐࠇߡ޿ࠆ㧚

ߎߎߢ㧘ᡆૃࡆ࠶࠻⺋ࠅ⊒↢ࠪࠬ࠹ࡓߩࡉࡠ࠶ࠢ

࿑ࠍ

Fig. 3

ߦ␜ߔ㧚ฃାዪߦ߅޿ߡ㧘ฃାߒߚାภ

ߦੱὑ⊛ߥᱡߺࠍਈ߃ߡᓳ⺞ߔࠆߣ㧘ฃାࡆ࠶࠻♽

೉߇ഠൻߒߚࠃ߁ߥ♽೉㧔ᡆૃࡆ࠶࠻⺋ࠅ♽೉㧕߇ ᓧࠄࠇࠆ㧚ߎߩᡆૃࡆ࠶࠻⺋ࠅ♽೉ߣ㧘ฃାାภࠍ ߘߩ߹߹ᓳ⺞ߒߚ࠺࡯࠲♽೉㧔ฃାࡆ࠶࠻♽೉㧕ࠍ Ყセߔࠆߎߣߢᓧࠄࠇࠆࡆ࠶࠻⺋ࠅ₸߇ᡆૃࡆ࠶

࠻⺋ࠅ₸ߢ޽ࠆ㧚ߎߩᡆૃࡆ࠶࠻⺋ࠅ₸ࠍ⒁ኒ㎛↢

ᚑߩ౒᦭ᖱႎߦ↪޿ࠆߎߣߢ㧘⒁ኒ㎛ߩ↢ᚑ߅ࠃ߮

౒᦭߇น⢻ߦߥࠆߣ⠨߃ࠄࠇࠆ㧚

ߚߛߒ㧘ᓥ᧪ᬌ⸛ߐࠇߡ޿ࠆᡆૃࡆ࠶࠻⺋ࠅ⊒↢

ᴺߢߪ㧘㔀㖸߇㕖Ᏹߦዊߐ޿ⅣႺߦ߅޿ߡᡆૃࡆ࠶

࠻⺋ࠅ߇⊒↢ߒߥ޿น⢻ᕈ߇޽ࠆ㧚ᡆૃࡆ࠶࠻⺋ࠅ ࠍ⒁ኒ㎛౒᦭ߦ↪޿ࠆ႐ว㧘ㆡಾߥ㊂ߩᡆૃࡆ࠶࠻

⺋ࠅ߇⊒↢ߒߥ޿ߣ㧘

2

୯ൻಣℂ߇ਇน⢻ߣߥࠅ⒁ ኒ㎛ࠍ↢ᚑߔࠆߎߣ߇ߢ߈ߥ޿㧚ߘߎߢ㧘ᡆૃࡆ࠶

࠻⺋ࠅࠍ⒁ኒ㎛↢ᚑߦ↪޿ࠆߚ߼ߦߪ㧘㔀㖸ߩᄢ߈ ߐߦࠃࠄߕㆡಾߥ㊂ߩᡆૃࡆ࠶࠻⺋ࠅࠍ⊒↢ߐߖ ࠆᔅⷐ߇޽ࠆ㧚

⒁ኒ㎛↢ᚑߦ↪޿ࠆᡆૃࡆ࠶࠻⺋ࠅߩᬌ⸛

ᧄ⺰ᢥߢឭ᩺ߔࠆᡆૃࡆ࠶࠻⺋ࠅߦၮߠߊ⒁ኒ

Received signal

De- modulation

Distortion

Pseudo BER measurement Received

bit sequence

Pseudo error bit sequence De-

modulation

Fig. 3. Measurement of pseudo BER

Fig. 2. Procedure of secret key agreement.

Transmission and reception Station A

Measurement of channel characteristics

Generating a candidate of secret key

Key disagreement correction

Confirmation of key agreement

Secure communication using secret key

Transmission and reception Station B

Measurement of channel characteristics

Generating a candidate of secret key

Key disagreement correction

Confirmation of key agreement

Secure communication using secret key Binarization

Syndrome

hash

Agree/disagree Process of

secret key agreement

Iteration

(4)

㎛౒᦭ᣇᑼߢߪ㧘㔀㖸એᄖߩવㅍ〝ߩഠൻⷐ࿃ߦၮ ߠ޿ߡᡆૃࡆ࠶࠻⺋ࠅࠍ⊒↢ߐߖࠆᔅⷐ߇޽ࠆ㧚ߘ ߎߢ㧘ߎߎߢߪᡆૃࡆ࠶࠻⺋ࠅ⊒↢ᴺߦߟ޿ߡᬌ⸛

ߔࠆ㧚

ାภߩ್ቯゲߩ⺋ࠅࠍ↪޿ߚᣇᴺ

ᡆૃ⺋ࠅࠍ↪޿ߚࡆ࠶࠻⺋ࠅ₸ផቯᴺ 14-20)ߢߪ㧘 ᄌ⺞ᣇᑼߦ

PSK (Phase Shift Keying)

ࠍ↪޿ߡ㧘ฃ

ାାภߩᓳ⺞ᤨߩ್ቯゲߦࠝࡈ࠮࠶࠻ࠍਈ߃ࠆᣇ ᴺ߿್ቯゲߦ૏⋧࿁ォࠍਈ߃ࠆᣇᴺ߇ᬌ⸛ߐࠇߡ

޿ࠆ㧚

ߎࠇࠄߩ್ቯゲࠍ⺋ࠄߖࠆࠃ߁ߥᣇᴺࠍ↪޿ߡ㧘 ᡆૃ⺋ࠅࠍ⊒↢ߐߖࠆߣ㧘㔀㖸ߦࠃࠆഠൻࠍ♖ᐲ⦟

ߊផቯߔࠆߎߣ߇น⢻ߢ޽ࠆ㧚ߒ߆ߒ㧘ᡆૃࡆ࠶࠻

⺋ࠅߩ⊒↢߇㔀㖸㔚ജߦଐሽߒ㧘㔀㖸㔚ജ߇ዊߐ޿

ⅣႺߢߪᡆૃ⺋ࠅߩ⊒↢߽ዋߥߊߥࠆߚ߼⒁ኒ㎛

ߩ↢ᚑߦߪㆡߒߡ޿ߥ޿㧚ߘߎߢ㧘㔀㖸߇ዊߐ޿Ⅳ Ⴚߢ߽ㆡᐲߦᡆૃࡆ࠶࠻⺋ࠅࠍ⊒↢ߐߖࠆᣇᴺ߇ ᔅⷐߢ޽ࠆ㧚

૏⋧⵬ఘᱡߺࠍ↪޿ߚᣇᴺ

ߎߎߢߪ㧘

OFDM (Orthogonal Frequency Division Multiplexing)

વㅍ 21) ࠍᗐቯߒ㧘ㅢᏱߣߪ⇣ߥࠆࡄ

ࠗࡠ࠶࠻ࠪࡦࡏ࡞ࠍ↪޿ߡવㅍ〝ᱡߺߩ⵬ఘࠍⴕ

޿㧘ᡆૃࡆ࠶࠻⺋ࠅࠍ⊒↢ߐߖࠆᣇᴺߦߟ޿ߡㅀߴ ࠆ㧚

ㅢᏱߩ

OFDM

ࠪࠬ࠹ࡓߢߪ㧘ฦࠨࡉࠠࡖ࡝ࠕߩ

࠺࡯࠲ࠪࡦࡏ࡞ߩవ㗡ߦㅍฃାዪߢᣢ⍮ߢ޽ࠆࡄ

ࠗ ࡠ ࠶ ࠻ ࠪ ࡦ ࡏ ࡞ ࠍ ઃ ട ߒ ߡ ߅ ߈ 㧘 ฃ ା ஥ ߢ

Fig. 4 (a)

ߩࠃ߁ߦ㧘ࡄࠗࡠ࠶࠻ࠪࡦࡏ࡞ߦၮߠ޿

ߡવㅍᱡߺࠍផቯ࡮⵬ఘߒߡ޿ࠆ㧚

ߎߎߢ㧘ฦࠨࡉࠠࡖ࡝ࠕߩ๟ᵄᢙࠍ f㧘ㅍାᖱႎ

s ( f )㧘વ៝〝․ᕈࠍh ( f )㧘㔀㖸ࠍn ( f ) ߣߔࠆ

ߣ㧘ฃା஥ߢߩ

OFDM

ߦ߅ߌࠆฃାାภr ( f ) ߪ㧘

)

( ) ( ) ( )

( f h f s f n f

r (1)

ߣߥࠆ㧚ߎߩାภߦኻߒߡ

Fig. 4 (a)

ߩࠃ߁ߥㅢᏱ ߩᣇᴺߢવㅍ〝ᱡߺߩ⵬ఘࠍⴕ߁ߣ㧘⵬ఘᓟߩାภ y ( f ) ߪ㧘

) ( ) ( ) ( )

( f s f n f h f

y (2)

ߣߥࠆ㧚ㅢᏱߢߪ㧘ߎࠇࠍᓳ⺞ߔࠆߎߣߢᖱႎࠍᓧ ࠆߎߣ߇ߢ߈ࠆ㧚

ߎߩવㅍ〝ᱡߺߩ⵬ఘߩ㓙ߦ㧘⺋ߞߚࡄࠗࡠ࠶࠻

ࠪࡦࡏ࡞ࠍ↪޿ߡᱡߺ⵬ఘࠍⴕ߁ߣ㧘ᡆૃ⺋ࠅࠍ⊒

↢ߐߖࠆߎߣ߇น⢻ߢ޽ࠆ㧚⺋ߞߚࡄࠗࡠ࠶࠻ࠪࡦ ࡏ࡞ࠍ↪޿ߡ૏⋧⵬ఘࠍⴕ߁ᣇᴺߩ৻଀ߣߒߡ㧘

Fig. 4 (b)

ߩࠃ߁ߦ

OFDM

ߩోࠨࡉࠠࡖ࡝ࠕߩ࠺࡯

࠲ࠪࡦࡏ࡞ࠍ㧘ਛᔃ๟ᵄᢙfcߩࠨࡉࠠࡖ࡝ࠕߩࡄࠗ

ࡠ࠶࠻ࠪࡦࡏ࡞ࠍ↪޿ߡᱡߺ⵬ఘࠍⴕ߁ᡆૃࡆ࠶

࠻⺋ࠅ⊒↢ᴺࠍឭ᩺ߔࠆ㧚ߎߩᣇᴺࠍ↪޿ߚ႐ว㧘 ᑼ

(1)

ߩฃାାภߦኻߒߡ㧘

) ( ) ( ) ( ) ( ) ( )

(

c c

e

f h f h f s f n f h f

y (3)

ߣ޿߁ᱡߺ⵬ఘࠍⴕ߁ߎߣߦߥࠅ㧘ᡆૃࡆ࠶࠻⺋ࠅ

₸ߦh ( f ) / h ( fc

)

ߩᓇ㗀ࠍ෻ᤋߔࠆߎߣ߇ߢ߈ࠆ㧚

(a) Regular phase compensation.

(b) Phase compensation for occurrence of pseudo BER.

Fig. 4. Phase compensation using pilot symbol.

Pilot symbol Data symbol

Phase compensation

Frequency (Sub carrier)

Time

Pilot symbol Data symbol

Center frequency ( fc)

Phase compensation

Frequency (Sub carrier)

Time

(5)

ᧄ⺰ᢥߢߪ㧘એ㒠ߪਛᔃ๟ᵄᢙߢᱡߺ⵬ఘࠍⴕߞ ߡ⊒↢ߐߖࠆᡆૃࡆ࠶࠻⺋ࠅࠍ↪޿ࠆ㧚

⸘▚ᯏࠪࡒࡘ࡟࡯࡚ࠪࡦ ࠪࡒࡘ࡟࡯࡚ࠪࡦ⻉ర

ឭ᩺ᣇᑼߩ᦭ലᕈࠍ⏕⹺ߔࠆߚ߼㧘ή✢

LAN

ߩ

ࠪࠬ࠹ࡓࠍᗐቯߒ㧘ࠪࡒࡘ࡟࡯࡚ࠪࡦࠍⴕ߁㧚

ࠪࡒࡘ࡟࡯࡚ࠪࡦߢ↪޿ࠆࡄ࡜ࡔ࡯࠲ࠍ

Table 1

ߦ␜ߔ㧚વ៝ⅣႺߪ┵ᧃ⥄૕߇ࠁߞߊࠅߣ⒖േߔ ࠆ㧘޽ࠆ޿ߪ๟࿐ߩੱ߿߽ߩߩ⒖േߦࠃࠅ㧘Ᏹߦ વ៝ⅣႺ߇ᄌേߔࠆߎߣࠍᗐቯߔࠆ㧚

Table 1

ߦ␜

ߔࠃ߁ߦ㧘ᗐቯⅣႺߦ߅ߌࠆㆃᑧᵄߩㆃᑧᤨ㑆ߪ

0.1Ps

ೞߺߢ㧘ߘࠇߙࠇ⋧ኻ㔚ജ߇

0dB

-5dB

-10dB

ߩ

3

ࡄࠬࡕ࠺࡞ߣߒ㧘ฦࡄࠬߪ੕޿ߦ⁛┙ߥ࡟ࠗ

࡝࡯ࡈࠚ࡯ࠫࡦࠣ㧘޽ࠆ޿ߪ㧘࡜ࠗࠬࡈࠚ࡯ࠫࡦ

ࠣߣߔࠆ㧚߹ߚ㧘ᦨᄢ࠼࠶ࡊ࡜࡯๟ᵄᢙߩᮡḰ୯ ࠍ

10Hz

ߣߔࠆ߇㧘ߎࠇࠍᄌൻߐߖࠆ႐วߦߟ޿ߡ

߽ᬌ⸛ߔࠆ㧚

ࡄࠤ࠶࠻᭴ᚑߣ࠲ࠗࡓ࠴ࡖ࡯࠻ߪ

Fig. 5

ߦ␜ߔ߽

ߩࠍᗐቯߔࠆ㧚

Fig. 5

߅ࠃ߮

Table 1

ߦ␜ߔࠃ߁ߦ㧘 ㅍାߔࠆࡄࠤ࠶࠻ߪࡄࠤ࠶࠻㐳߇

400Ps

ߢ㧘ߘࠇߙ

1ms

㑆㓒ߢㅍฃାࠍⴕ߁߽ߩߣߔࠆ㧚ฦࡄࠤ࠶࠻

ߪ㧘ࠪࡦࡏ࡞๟ᦼ߇

4Ps

ߩ

OFDM

ࠪࡦࡏ࡞ߢ㧘ࡄ

ࠗࡠ࠶࠻ࠪࡦࡏ࡞

20

ࠪࡦࡏ࡞

(80Ps)

ߣ㧘

80

ࠪࡦ ࡏ࡞ߩ࠺࡯࠲ࠪࡦࡏ࡞ (320Ps) ߆ࠄ᭴ᚑߐࠇࠆߣ ߔࠆ㧚߹ߚ㧘ߘࠇߙࠇߩዪߢ᷹ቯ↪ାภߩㅍฃାࠍ ⴕߞߚᓟ㧘 ᣇߩ࡙࡯ࠩߢ᷹ቯᤨ㑆Ꮕࠍ⵬ఘߔࠆߚ

߼ߩ⵬㑆↪ߩࡄࠤ࠶࠻ߩㅍฃାࠍⴕ߁㧚ߎߩ⵬㑆↪

ߩࡄࠤ࠶࠻ࠍฃାߒߚ࡙࡯ࠩߪ㧘ᦨೋߦฃାߒߚࡄ ࠤ࠶࠻ߣ⵬㑆↪ߩࡄࠤ࠶࠻ࠍ↪޿ߡ✢ᒻ⵬㑆ࠍⴕ

޿㧘᷹ቯᤨ㑆Ꮕߩᓇ㗀ࠍᛥ߃ࠆ㧚

᷹ቯ↪ାภ߅ࠃ߮⵬㑆↪ࡄࠤ࠶࠻ߩㅍฃା߅ࠃ

߮વ៝〝․ᕈ᷹ቯಣℂߪT 㑆㓒ߢ

138

࿁➅ࠅ㄰ߒ ⴕ޿㧘ᱜⷙዪߢߘࠇߙࠇ

138

୘ߩᡆૃࡆ࠶࠻⺋ࠅ₸

♽೉ࠍᓧࠆ㧚ߎߩᡆૃࡆ࠶࠻⺋ࠅ₸♽೉ߩਛᄩ୯ࠍ 㑣୯ߣߒߡ

2

୯ൻಣℂࠍⴕ޿㧘⒁ኒ㎛୥⵬ࠍ↢ᚑߔ ࠆ㧚↢ᚑߒߚ㎛୥⵬♽೉ߩ߁ߜ㧘㑣୯ઃㄭߩᡆૃࡆ

࠶࠻⺋ࠅ₸ࠍ

2

୯ൻߒߚࡆ࠶࠻ߦߪ㧘Ყセ⊛ᄙߊߩ

㎛ਇ৻⥌߇⊒↢ߔࠆ㧚ߘߎߢ㧘㑣୯ઃㄭߦ⹥ᒰߔࠆ ࡆ࠶࠻ࠍ

10

ࡆ࠶࠻ขࠅ㒰߈㧘ᦨ⚳⊛ߦ

128

ࡆ࠶࠻

ߩ㎛ࠍ↢ᚑߔࠆ㧚

Table 1. Simulation parameters.

Modulation

OFDM

QPSK (Q

uadrature

P

hase

S

hift

K

eying

) Number of subcarriers: 48

Interval of OFDM symbol: 4ȝs Guard Interval: 0.8ȝs

Channel model

3-path Rayleigh model Independent Rayleigh fading Delay time difference : 0.1ȝs Relative power: 0dB, -5dB, -10dB Maximum Doppler frequency: 10Hz

(nominal value) 3-path Rice model

Independent Rice fading (rice factor: 10dB)

Delay time difference : 0.1ȝs Relative power: 0dB, -5dB, -10dB Maximum Doppler frequency: 10Hz

(nominal value)

Packet format

Length of a packet: 400ȝs Interval of a pair of packet: 2.8ms Measurement time difference: 1.4ms

(Correction by linear interpolation using compensation packet) Generation of key Binary digitization

by threshold of median value Correction of key

disagreement

Error correction within 5 bits by algebraic decoding method Fig. 5. Timing diagram and configuration of data

packet.

T

(1) (2) (3) (137) (138)

3.2ms

400ȝs

Interval of pair of packets 2.8ms

1ms 1ms

Interpolation by 2 packets

GI PILOT DATA DATA

Pilot symbol 20 symbol (80ȝs)

Data symbol 80 symbol (320ȝs) Data packet

(400ȝs) Authorized

User A Authorized User B

time time

time time

OFDM symbols

GI GI

400ȝs

400ȝs

(6)

ᡆૃࡆ࠶࠻⺋ࠅ₸ߣ⒁ኒ㎛ߩ↢ᚑ

ߎߎߢߪ㧘ᡆૃࡆ࠶࠻⺋ࠅߩ․ᕈߣ㧘ᡆૃࡆ࠶࠻

⺋ࠅ߆ࠄ↢ᚑߒߚ⒁ኒ㎛ߩ৻଀ࠍ␜ߔ㧚

߹ߕ㧘㔀㖸߇⊒↢ߒߥ޿ⅣႺߦ߅޿ߡ㧘᷹ቯ↪ା

ภߩㅍฃାࠍⴕ߁ߎߣࠍᗐቯߔࠆ㧚᷹ቯ↪ାภࠍฃ

ାߒߚᱜⷙዪߪ㧘ฃାାภߦᡆૃࡆ࠶࠻⺋ࠅࠍ⊒↢

ߐߖ㧘ࡄࠤ࠶࠻ߏߣᡆૃࡆ࠶࠻⺋ࠅ₸ࠍ⸘▚ߒ㧘ߘ ߩ♽೉߆ࠄ㎛୥⵬ࠍ↢ᚑߔࠆ㧚ᡆૃࡆ࠶࠻⺋ࠅߩ⊒

↢ߦ߅޿ߡ㧘1ࡄࠤ࠶࠻޽ߚࠅߩᡆૃࡆ࠶࠻⺋ࠅ₸

0.1

඙ಾࠅߢಽ㘃ߒ㧘ߘࠇߙࠇߩ㗔ၞߩ⊒↢⏕₸

ࠍ᳞߼ߚಽᏓ․ᕈࠍ

Fig. 6 ߦ␜ߔ㧚Fig. 6

ࠃࠅ㧘1 ࡄࠤ࠶࠻޽ߚࠅߩᡆૃࡆ࠶࠻⺋ࠅ₸߇

0

0.1

ߢ޽

ࠆ႐ว߇ᦨ߽ᄙߊ⊒↢ߒߡ߅ࠅ㧘

0.35

⒟ᐲߢ޽ࠆߎ ߣ߇ࠊ߆ࠆ㧚ߒ߆ߒ㧘

0.1

એ਄ߩᡆૃࡆ࠶࠻⺋ࠅ₸

߽

0.65

⒟ᐲ⊒↢ߒߡ޿ࠆߎߣ߆ࠄ㧘♽೉ߪ

2

୯ൻ ಣℂ߇น⢻ߢ޽ࠆ㧚

ᰴߦ㧘⊒↢ߒߚ⺋ࠅ₸߆ࠄ㎛ࠍ↢ᚑߔࠆ৻଀ࠍ␜

ߔ㧚ࡄࠤ࠶࠻ߏߣߩᡆૃࡆ࠶࠻⺋ࠅ₸ߩᄌേࠍ

Fig. 7

ߦ␜ߔ㧚

Fig. 7 ߩᡆૃࡆ࠶࠻⺋ࠅ₸♽೉ߦኻ

ߒߡ㑣୯㧔♽೉ߩਛᄩ୯㧕એ਄ߣ㑣୯એਅߢ

2

୯ൻ ಣℂࠍⴕ޿㧘㎛୥⵬♽೉ࠍ↢ᚑߔࠆ㧚

⒁ኒ㎛ߩ↢ᚑᤨ㑆ߣ⒁ኒ㎛ߩ቟ోᕈ

Fig. 5

ߦ␜ߔTߩ୯ᰴ╙ߢߪ㧘㎛ߩ↢ᚑߦ⩨ᄢߥ

ᤨ㑆߇߆߆ࠅ㧘⒁ኒ㎛ߩ↢ᚑല₸߇ૐਅߔࠆ㧚৻ᣇ㧘 Tߩ୯ࠍㆊᐲߦዊߐߊ⸳ቯߔࠆߣ㧘ߘࠇߙࠇߩࡆ࠶

࠻⺋ࠅ₸ߦ⋧㑐㑐ଥ߇↢ߓ㧘↢ᚑߒߚ⒁ኒ㎛ߩࡆ࠶

࠻ߩ࡜ࡦ࠳ࡓᕈ߇ૐਅߔࠆน⢻ᕈ߇޽ࠆ㧚ߘߎߢ㧘

↢ᚑߒߚ⒁ኒ㎛ࠍኻ⽎ߣߒߡ㧘ߘߩ㎛ߩ⥄Ꮖ⋧㑐ࠍ

᳞߼㧘Tߩ⸳ቯ୯ߦߟ޿ߡᬌ⸛ߔࠆ㧚

Fig. 8

ߦ㧘Tߩ୯ࠍᄌൻߐߖߡ↢ᚑߒߚ㎛♽೉ߦ

ኻߒߡ㧘㎛♽೉ࠍࡆ࠶࠻ߏߣࠬ࡜ࠗ࠼ߐߖߚ߽ߩߣ ߩ⥄Ꮖ⋧㑐ࠍ⸘▚ߒߚ႐วߩ․ᕈࠍ␜ߔ㧚T ߇

30

ms㨪90ms

ߩ㑆ߪ㧘⥄Ꮖ⋧㑐․ᕈߦ޽߹ࠅᄌൻ߇ߺ

ࠄࠇߥ޿㧚৻ᣇ㧘T

20 ms

એਅߦ⸳ቯߔࠆߣ㧘

1

ࡆ࠶࠻⒖േߐߖߚ႐วߦ⥄Ꮖ⋧㑐߇

0.2

એ਄ߦ ߥࠅ㧘㎛♽೉ߦ⥄Ꮖ⋧㑐߇޽ࠆߎߣ߇⏕⹺ߢ߈ࠆ㧚

㎛♽೉ߦ⥄Ꮖ⋧㑐߇޽ࠆ႐วߪ㧘⥄Ꮖ⋧㑐߇ߥ޿႐ วߦᲧߴߡ㧘⋑⡬ዪߦ߅ߌࠆ⒁ኒ㎛ߩ✚ᒰߚࠅߦࠃ ࠆ⸃⺒߇ኈᤃߦߥࠆน⢻ᕈ߇޽ࠅ㧘⒁ኒ㎛ߣߒߡᦨ ㆡߢߪߥ޿㧚ߘߎߢᧄ⺰ᢥߦ߅ߌࠆ㧘એ㒠ߩᬌ⸛ߪ

⥄Ꮖ⋧㑐․ᕈߦᏅ߇ߺࠄࠇߥ޿T = 30 msࠍ↪޿ࠆ㧚

㔀㖸ߦኻߔࠆ․ᕈ

㔀㖸߇ឭ᩺ᣇᑼࠍ↪޿ߡ↢ᚑߒߚ⒁ኒ㎛ߩ౒᦭

ߦ෸߷ߔᓇ㗀ߦߟ޿ߡ⺞ߴࠆߚ߼㧘㔀㖸ⅣႺࠍᗐቯ ߒ㧘ࠪࡒࡘ࡟࡯࡚ࠪࡦࠍⴕ߁㧚Fig. 9 ߦ㧘࡟ࠗ࡝࡯

Fig. 7. An example of pseudo BER sequence.

Fig.6. Occurrence distribution of BER.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0

0.1 0.2 0.3 0.4 0.5

Pseudo BER

Occurrence ratio

0 20 40 60 80 100 120

0 0.2 0.4 0.6 0.8 1

Number of packet

Pseudo BER

Threshold

Fig. 8. Auto correlation of key sequence.

0 1 2 3 4 5 6 7 8 9

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Delay [bit]

Correlation

T=10ms T=20ms T=30ms T=90ms

(7)

ࡈࠚ࡯ࠫࡦࠣⅣႺ㧘߅ࠃ߮㧘࡜ࠗࠬࡈࠚ࡯ࠫࡦࠣⅣ Ⴚߦ߅ߌࠆ㧘ㅍାାภ㔚ജኻ㔀㖸㔚ജᲧ㧔SN Ყ㧕 ߦኻߔࠆ⒁ኒ㎛৻⥌₸․ᕈࠍ␜ߔ㧚ߥ߅㧘⒁ኒ㎛৻

⥌₸ߪ㧘↢ᚑߒߚ

128

ࡆ࠶࠻ߩ⒁ኒ㎛߇ᱜⷙዪ㑆ߢ ቢోߦ৻⥌ߔࠆഀว㧘ߟ߹ࠅ㧘⒁ኒ㎛ࠍ౒᦭ߢ߈ࠆ

⏕₸ߢ޽ࠆ㧚߹ߚ㧘Fig. 9 ߦߪ㧘ߘࠇߙࠇߩⅣႺߢ

⺋ࠅ⸓ᱜࠍㆡ↪ߔࠆ೨ߣㆡ↪ߒߚᓟߩ․ᕈࠍ␜ߒ ߡ޿ࠆ㧚ߎߎߢߩ⺋ࠅ⸓ᱜߪ㧘5bitએౝߩ⺋ࠅ㧔㎛

ਇ৻⥌㧕ߥࠄ⏕ታߦ⸓ᱜߢ߈ࠆߣ޿߁㧘ℂᗐ⊛ߥ⸓

ᱜࠍⴕ߁߽ߩߣߔࠆ㧚

Fig. 9

ߩ࡟ࠗ࡝࡯ࡈࠚ࡯ࠫࡦࠣⅣႺߣ࡜ࠗࠬࡈ

ࠚ࡯ࠫࡦࠣⅣႺߩ⚿ᨐࠃࠅ㧘⺋ࠅ⸓ᱜࠍⴕ߁೨ߩ⁁

ᘒߢߪ㧘↢ᚑߒߚ⒁ኒ㎛߇ᔅߕߒ߽৻⥌ߒߥ޿น⢻

ᕈ߇޽ࠆߎߣ߇⏕⹺ߢ߈ࠆ㧚ߒ߆ߒ㧘SN Ყ߇⚂

15dB

એ਄ߩⅣႺߢߪ㧘⺋ࠅ⸓ᱜࠍⴕ߁ߎߣߢ⒁ኒ

㎛ߩ౒᦭߇น⢻ߢ޽ࠆߎߣࠍ␜ߒߡ޿ࠆ㧚

ࡈࠚ࡯ࠫࡦࠣᄌേߦኻߔࠆ․ᕈ

᷹ቯାภߩㅍฃା㑆㓒ߦኻߒߡࡈࠚ࡯ࠫࡦࠣᄌ

േߩ๟ᦼ߇⍴޿႐ว㧘᷹ቯ↪ାภߩㅍฃାߩㆊ⒟ߢ વ៝〝․ᕈ߇ᄌേߒߡߒ߹߁ߚ߼㧘ਔዪߩᡆૃࡆ࠶

࠻⺋ࠅ₸߇⇣ߥࠅ⒁ኒ㎛ߩ౒᦭߇࿎㔍ߦߥࠆߣ⠨

߃ࠄࠇࠆ㧚ߘߎߢࡈࠚ࡯ࠫࡦࠣᄌേߩ๟ᦼ߇⒁ኒ㎛

ߩ౒᦭ߦਈ߃ࠆᓇ㗀ߦߟ޿ߡᬌ⸛ߔࠆ㧚SN Ყ߇

20dB

ߩⅣႺࠍᗐቯߒ㧘ߘߩⅣႺਅߢߩᦨᄢ࠼࠶ࡊ

࡜࡯๟ᵄᢙߏߣߩ㎛৻⥌₸․ᕈࠍ

Fig. 10

ߦ␜ߔ㧚 ห࿑ࠃࠅ㧘࡟ࠗ࡝࡯ࡈࠚ࡯ࠫࡦࠣ㧘࡜ࠗࠬࡈࠚ࡯

ࠫࡦࠣߩਔᣇߩࡈࠚ࡯ࠫࡦࠣⅣႺߢ㧘ᦨᄢ࠼࠶ࡊ࡜

࡯๟ᵄᢙ߇

40 Hz

એਅߩ႐วߦ㧘↢ᚑߒߚ⒁ኒ㎛߇

৻⥌ߔࠆߎߣ߇ࠊ߆ࠆ㧚

2.4GHz

Ꮺߩή✢

LAN

ࠍᗐ

(a) Rayleigh fading environment.

Fig. 9. Key agreement performance when SN ratio is changed.

(b) Rice fading environment.

-10 -50 0 5 10 15 20 25 30 35 40 10

20 30 40 50 60 70 80 90 100

SN ratio [dB]

Key agreement rate [%]

Maximum Doppler frequency:

10Hz

w/o correction w correction

-10 -50 0 5 10 15 20 25 30 35 40 10

20 30 40 50 60 70 80 90 100

SN ratio [dB]

Key agreement rate [%]

Maximum Doppler frequency:

10Hz

w/o correction w correction

Fig. 10. Key agreement performance when maximum Doppler frequency is changed.

(a) Rayleigh fading environment.

(b) Rice fading environment.

100 101 102 103

0 10 20 30 40 50 60 70 80 90 100

Maximum Doppler frequency [Hz]

Key agreement rate [%]

w/o correction

w correction

SN ratio: 20dB

100 101 102 103

0 10 20 30 40 50 60 70 80 90 100

Maximum Doppler frequency [Hz]

Key agreement rate [%]

w/o correction

w correction

SN ratio: 20dB

(8)

ቯߔࠆ႐วߦ㧘ᦨᄢ࠼࠶ࡊ࡜࡯๟ᵄᢙ߇

40 Hz

ߣߥ ࠆߩߪ㧘┵ᧃߥߤߩ⒖േㅦᐲ߇⚂

5 m/s

ߩ႐วߢ޽

ࠆ㧚ή✢

LAN

ߢߪ㧘┵ᧃߩ⒖േㅦᐲ߇

5 m/s

ߣߥ ࠆߎߣࠍᗐቯߒߚ⸳⸘߇ߥߐࠇߡ޿ߥ޿ߚ߼㧘ឭ᩺

ᣇᑼߦࠃࠆ⒁ኒ㎛౒᦭ߪ᦭ലߢ޽ࠆߣ޿߃ࠆ㧚

߹ߣ߼

ᧄ⺰ᢥߢߪ㧘㔚ᵄࠍ↪޿ߚ⒁ኒ㎛౒᦭ᣇᑼߦ߅޿

ߡ㧘ੱὑ⊛ߦᡆૃࡆ࠶࠻⺋ࠅࠍ⊒↢ߐߖ㧘ߘߩᡆૃ

ࡆ࠶࠻⺋ࠅ₸ࠍ↪޿ߡ⒁ኒ㎛ࠍ↢ᚑߒ౒᦭ߔࠆᣇ ᑼࠍឭ᩺ߒߚ㧚

ᧄ⺰ᢥߢߪ㧘߹ߕ⒁ኒ㎛↢ᚑ߇น⢻ߣߥࠆᡆૃࡆ

࠶࠻⺋ࠅߩ⊒↢ᣇᴺߦߟ޿ߡᬌ⸛ߒߚ㧚ᡆૃࡆ࠶࠻

⺋ࠅࠍ⒁ኒ㎛౒᦭ᣇᑼߦㆡ↪ߔࠆߦߪ㧘㔀㖸ߦࠃࠆ ഠൻએᄖߩഠൻⷐ࿃ࠍᡆૃࡆ࠶࠻⺋ࠅߦ෻ᤋߐߖ ࠆߎߣ߇ᔅⷐߢ޽ࠆ㧚ߘߎߢᧄ⺰ᢥߢߪ㧘

OFDM

વ ㅍߦ߅޿ߡ㧘ਛᔃ๟ᵄᢙߩࠨࡉࠠࡖ࡝ࠕߩࡄࠗࡠ࠶

࠻ࠪࡦࡏ࡞ࠍ↪޿ߡ㧘ઁߩࠨࡉࠠࡖ࡝ࠕߩᱡߺ⵬ఘ ࠍⴕ߁ᣇᴺࠍណ↪ߒߚ㧚

ឭ᩺ᣇᑼߦߟ޿ߡ㧘ή✢

LAN

ⅣႺࠍᗐቯߒߚࠪ

ࡒࡘ࡟࡯࡚ࠪࡦࠍⴕߞߚߣߎࠈ㧘࡟ࠗ࡝࡯ࡈࠚ࡯ࠫ

ࡦࠣ㧘߅ࠃ߮㧘࡜ࠗࠬࡈࠚ࡯ࠫࡦࠣⅣႺਅߢ

SN

߇

15 dB

એਅ㧘ᦨᄢ࠼࠶ࡊ࡜࡯๟ᵄᢙ߇

40Hz

એਅ

ߣ޿߁ⅣႺߦ߅޿ߡ⒁ኒ㎛౒᦭߇น⢻ߢ޽ࠆߎߣ ࠍ␜ߒߚ㧚

ෳ⠨ᢥ₂

1) ═ේᱜ㓶, Ⴚ㓉৻㧘ᥧภ㧘㧔౒┙಴ 㧘᧲੩㧘2000 2) ጟᧄ㦖᣿㧘ጊᧄඳ⾗㧘⃻ઍᥧภ㧘㧔↥ᬺ࿑ᦠ㧘᧲੩㧘

1979

3) J. E. Hershey, A. A. Hassan and R. Yarlagadda,

“Unconventional cryptographic keying variable management,” IEEE Trans. Commun., vol. 43, pp. 1-6 (1995).

4) A. Hassan, W. E. Stark, J. E. Hershey and S.

Chennakeshu, “Cryptographic key agreement for mobile radio,” Digital Signal Processing, vol. 6, pp. 207-212 (1996).

5) ጤ੗⺈ੱ㧘╣ጟ⑲৻㧘̌㔚ᵄવ៝․ᕈࠍᵴ↪ߒߚ⒁ ኒᖱႎߩવㅍ࡮౒᦭ᛛⴚ㧘̍ାቇ⺰(B)vol.J90-B no.9pp.770-783 (2007)

6) ർᶆ᣿ੱ㧘╣ጟ⑲৻㧘̌㒽਄⒖േㅢାߦ߅ߌࠆOFDM ߩવㅍ〝․ᕈߦၮߠߊ⒁ኒ㎛౒᦭ᣇᑼ㧘̍ାቇ⺰

(A) 㧘vol. J87-A㧘no.10㧘pp.1320-1328 (2004) 7) T. Aono, K. Higuchi, T. Ohira, B. Komiyama, and H.

Sasaoka, “Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels,” IEEE Trans. Antennas Propag., vol. 53, No.

11, pp. 3776-3784 (2005).

8) W.C. Jakes, Microwave mobile communications, John Wiley & Sons (1974).

9) ໊ᴛᅢ↵㧘࠺ࠖࠫ࠲࡞⒖േㅢାߩ㔚ᵄવ៝ၮ␆㧘㧔ࠦ

ࡠ࠽␠㧘᧲੩㧘2003㧕

10) ᄢᐔቁ㧘㘵⨲ᕶ৻㧘̌㔚ሶ⿛ᩏዉᵄེࠕ࡟࡯ࠕࡦ࠹

࠽̍㧘ାቇ⺰(C)㧘Vol.J87-C㧘no.1㧘pp.12-31 (2004)㧚 11) ᷡ᳓ፏਯ㧘ጤ੗⺈ੱ㧘╣ጟ⑲৻㧘̌ࠛࠬࡄࠕࡦ࠹࠽

ࠍ↪޿ߚ⒁ኒ㎛౒᦭ᣇᑼߦ߅ߌࠆ⋑⡬⠴ᕈะ਄ߩ ᬌ⸛㧘̍ାቇᛛႎ㧘AP2008-43㧘pp.41-46 (2008)㧚 12) Ꮉ᧛ବ৻㧘ᷡ᳓ፏਯ㧘ጤ੗⺈ੱ㧘╣ጟ⑲৻㧘̌ࠛࠬ

ࡄࠕࡦ࠹࠽ࠍ↪޿ߚ⒁ኒ㎛౒᦭ᣇᑼߦ߅ߌࠆ⋑⡬

⠴ᕈะ਄ߩᬌ⸛㧘̍ାቇᛛႎ㧘RCS2009-34㧘pp.37-42 (2009)㧚

13) T. Kitano, A. Kitaura, H. Iwai, H. Sasaoka, “A Private key agreement scheme based on fluctuations of BER in wireless communications,” Proc. ICACT 2007, 8B, pp.1495-1499 (2007).

14) D. J. Gooding, “Performance monitor techniques for digital receivers based on extrapolation of error rate,”

IEEE Trans. Commun. Technol., vol.COM-16, pp.380-387 (1968).

15) S. Takenaka, T. Katoh, “Bit error monitor for four phase PSK system,” ICC'80 Conference record, pp.251-256 (1980).

16) E. A. Newcombe, S. Pasupathy, “Error rate monitoring for digital communication,” Proceedings of IEEE, vol.70, no.8, pp.805-828 (1982).

17) I. M. Kostiü, “Pseudo error rate of a PSK system with hardware imperfections, noise and cochannel interference,” IEE Proceedings, vol.136, Pt. I , no.5, pp.333-338 (1989) .

18) J. M. Keelty, “On-line pseudo-error monitors for digital transmission systems,” IEEE Trans. Commun., vol.26, no.8, pp.1275-1282 (1978).

19) ጤ੗⺈ੱ㧘ᷰㆻ⾆ᔒ㧘㜞੗ାੱ㧘╣ጟ⑲৻㧘̌ᡆૃ

⺋ࠅߦၮߠߊࡆ࠶࠻⺋ࠅ₸ߩផቯᴺ㧘̍ାቇᛛႎ㧘 AP2006-15㧘pp.35-40 (2006)㧚

20) ⍹ፒବテ㧘ጤ੗⺈ੱ㧘╣ጟ⑲৻㧘̌ᡆૃ⺋ࠅߦၮߠ ߊࡆ࠶࠻⺋ࠅ₸ផቯᴺߩ㜞♖ᐲൻߦ㑐ߔࠆᬌ⸛㧘̍

หᔒ␠ᄢቇℂᎿቇ⎇ⓥႎ๔㧘49㧘pp. 100-107 (2008)㧚 21) દਤ⺈㧘OFDM ᄌ⺞ᛛⴚ㧘㧔࠻࡝ࠤ࠶ࡊࠬ㧘᧲੩㧘

2000㧕

参照

関連したドキュメント

We consider the problem of finding the shortest path connecting two given points of the Euclidian plane which has given initial and final tangent angles and initial and

In the previous section we have established a sample-path large deviation principle on a finite time grid; this LDP provides us with logarithmic asymptotics of the probability that

Key words and phrases: Linear system, transfer function, frequency re- sponse, operational calculus, behavior, AR-model, state model, controllabil- ity,

In this section, we establish some uniform-in-time energy estimates of the solu- tion under the condition α − F 3 c 0 > 0, based on which the exponential decay rate of the

A monotone iteration scheme for traveling waves based on ordered upper and lower solutions is derived for a class of nonlocal dispersal system with delay.. Such system can be used

It is natural to conjecture that, as δ → 0, the scaling limit of the discrete λ 0 -exploration path converges in distribution to a continuous path, and further that this continuum λ

Some new Gronwall-Bellman-type delay integral inequalities in two independent variables on time scales are established, which provide a handy tool in the research of qualitative

In this paper, we study the chains of paths from a given arbitrary (binary) path P to the maximum path having only small intervals.. More precisely, we obtain and use several