• 検索結果がありません。

A NOTE ON POSITIVITY IN SYMMETRIC MONOIDS.

N/A
N/A
Protected

Academic year: 2021

シェア "A NOTE ON POSITIVITY IN SYMMETRIC MONOIDS."

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

A㎜EON POSITIVITY IN SYmarRIC IVONOIDS.

   Koidhi. KUWANO 〔Re’ceived May 30, 1980〕 0.PRELIMINAR工ES.     Asynrnetric monoid M is a sirrple algebraic obj ect whidll satisfies the fo11σvting conditiorls;      (a) ryi is a semi−group with unit e.      〔b〕 An involution−like operati㎝★:. M→M is defined and has the fbllow−          ing properties;       (b.1)  (xy〕★=y「k x★  for xsy∈M。       (b.2〕 xkt=x for x∈M. There is a c田1㎝ical functor S fr㎝the category of symmetric monoidS to the・ category of symmletric algebras・ Hence va i ous resuユts related to positivity are induced i 1 the c㎝text of s)rimietric monoids. In this note, we shall deal with c(㎎)1ete POsit ivit y in the eategory of sy田metric monoids・ [0.1] DEFINITION.  Let M be a s)rmaetric monoid. A coMI)1ex−valued fUnction f is said tO be a sy㎜metric character if f satisfies・;      (a〕 f(xy)=f(x)f〔y)  forx,y∈M.       ’      (b〕f(xft)=f辰) fbr x・∈M.

     〔c〕f〔e〕=1.      ・

[0.2] DEFINITION   Let M be a sy㎜etric monoid. Aconlplex−valued . function f on.M is said to be positively sy頂netric if      (・)fb・頗y(λ、,…一,λ。〕・.ψand(・、・ニ…・㌔)・f;        、;jλiちf(x・Xj★)≧°          砲ere n is an a]d)itrary positive integeτ.      (b〕  f〔xft〕 =f〔x)  fOr x∈ M. M“ den・tes the c・as・・f…P・Si・iy・sy・・m・t・i・麺・ti・n…n・M・M’f・ms a ★ − ring wiゼh positive scalar multiplicati《m・

41

(2)

42

K.KUWANO

Acσnrplex−valued fi瓜cti(m f is called a state if f is positively sylmletric with f(e) =1. yOの denotes the convex cone of all states on M. [0.3]DEFINITICN. Suppose that M and l、 are sy㎜etric血Dnoids. A

mapping f:Mr>Lis called a s)㎜etric h㎝㎝Orphism if

     〔a) f(xy) =f〔x) f〔y)      〔b〕 f(x★〕 =f(x)★      〔c〕 f〔e)=el 煽here e and e, denotes. tlle unLits of M and L respectively.      We now recall definitions and some basic facts of symmetric algdbras. A synmetric algebra A is an associative algebra with an血voluti㎝σver the co叫)1ex field.      Alinear fUnctional f:A−≒〉¢is said to be positive if・f◎c xk)≧O fb・x・A. The c。nv・x…e・f・11 P・Sitiv・㎞・ti。聰1・i・d・n・t・d by A’. Astate is a positive fUncti(mal f with f(1)=1. 夕〔A〕denotes the set of all states on A.      Let A+denote.the positive cone of A,i.eつ

. ㌧・{・・A;f(・〕≧0(f・め}.

Suppose that A and B are s)rmmetric algebras. Amappi㎎ψ:. A→B is called positive ifψ〔A+)⊂B+. A⑧Bis also a syl国1etric algebra with an involuti㎝ such that      〔a) (a⑧b〕★=at⑧b★ for a∈A.and b∈. B.      (b)(A㊦B)+・{f・L〔A⑧B,.¢);f(xxつ≧0』〔。。AXB)}. 1. Cc呵)1ete positivity in the categoτy of symetric algebras. [1.1] DEFINITION.  SuppOse that A and B aTe symmetric algd)ras. Let

Mn㈹d・n・t・the a19・bra・f・11 n刈mt・ice・・ver¢・Th・皿it。f叫(¢)

is denoted by ln. Alinear mappingτ:A→Bis said to be c(垣唖)1etely Positive if fbr eadh non−negative integer n,       ・n;τ⑧1n・Mnω→Mn〔B)

i・p・・i輌・・whe・・Mn〔A)=A⑧当〔の鋤d監〔B)=B㊦Mn(の・

[1・2]㎜・ L・tAbea・)・・鵬t・i・・a19・b・a鋤x∈Mn(A)・

Then

     (1・2・a)x・c“ is a sum°f【・i・j “]−t)?・鵬t・エces・砲ere ai・aj・A・      (1・2・b)[ai牢]・M。(A) i・PO・itiv・・砲・・e ai・aj∈A・ 〔i, j = 1,2,一一一一,n〕台

(3)

[1.3] PROPOSITION. Then we have; (1.3.a) 〔1.3.b〕 (1.3.c) (1.3.d) 〔1.3.e) Strppose that A and B are synmetric algebras.

ψis c卿1・t・1y p。・itiv。 ifψ・ゴ.      ’

τ is completely positive if T∈ Hdm.〔A, B).       、 IfπξHom〔A, B), vξ B andエfτis defined byτ〔a}=v★rr(a)v, thenτis carrrpletely positive f Assume thatτ:A−≒>B is co頓pletely pOsitive and that φ:A−一>Bis defined by.φω=τ(・vxvk)fbr a fixea v.q・A. Then φ is co田Pletely POsitive. Assume that    (1)  Kis a Hilbert space and H is a closed sdbSpace of K.    (2)π.∈Hbm〔A,氾〔均)withπ〔1)=1.・    (3)v∈磐(H,.K) Th㎝ifτis defined byτ(x)= vkr(x)v,τis co叩1etely positive. [1. 4] (1.4.a) PROPOSITION. (1.4.b〕 Proof of 〔1.4.a) obviously c(xrrl[)1etely pQsitive and thatτ: negatiVe integer,       (φ・〕n=(φ⑭1n)〔・⑧1n)=φn・パ

Sinceφ

         andτ        are positive, we have the conclusion.        n        t「°°f°f(1・4・b):Fi・・t…b・’・rv・th・t if[・ij]∈叫(E)…d[βij]・M。(F)・・

then

・ ilj ”・j⑧βij∈〔E玄⑧F)・  ’

Where E and F are s)㎜etric algebτas. Now use the c㎝plete positivity ofψand θ to dbtai工l the result.  SymmetTic algd)ras fb㎝.a category with con輻)1etely POsitive 皿aps as morphisms.

Assume that

    〔1) A,B,C and D aTe syロ皿etric algel)ras.     〔2) ψ:A→B and θ:C→D are c(卿1etely positive.

Th㎝

         ψ⑧θ:A⑧C→B.⑧D is positive.    :  Let A be a symmetric algebra. The identity of・Ais       . SUppose that A,B and C a re synmetric algd)ras A→Bandφ:B’→C are c(珊4)1etely positive. Fbr eadl non−        〉 、..

(4)

44

K.KUWANO

[1. 5]  PROPOS工TION.    .Assme that      〔1〕 Ais a sy皿皿etric algebra with unit・      〔2) His a Hilbert space over¢.      〔3) τ:A→田(H)is co㎎)1etely positive withτ〔1〕=1. Then there exists a pair〔K,π〕of a Hi1]bert space l(containing H as a closed sub・pace ・nd・h㎝・m。rPhi・m・…u・;h・th・t咽is a・)rmmet・ic ・19・bra・f c1・・able operators in K with the co㎜)n dense domai皿. Mbreover, we have       τ〔a)=Pπ(a) onH 〔a∈A), 硫ere P is the proj ection of K onto H・ [1.6]㎜(. If A i・a・C・・−a19・bτa, th・n咽i・aut・m・tically in 8〔H) (Steinspring [1])・ 2. Total pos itivity in the category of sy㎜etric monoids.     S(M)      honx)tu)rphism satisfying the following conditions; fbr any symmetric algel)ra A with a s)㎜etric homomo町phismψ:M→A, there exists a symmetric algebra−homomorphismφ:S(M)→A such that the above diagram.co㎜tes and S(M) is generated by ρCM〕. [2.1]皿FINITI〔〕N. L・t M・・nd・L b・・)㎜・t・i・m・・ids・A・m・pPing・f:M→L is called totally positive if S〔f〕 :S〔M)→S〔L) is co1耳pletely positive.        リ     ロ

12.2]PROPOSITION.  Fmctions of the following types are totally posltlve.

     〔2.2.a〕 a sy皿netric dlaracter      〔2.2.b) asymmetric homolno蛸phism between M and L [2.3]DEFINエTI()N. L・t・M・・nd・L・b・ ・ym・t・i・m・n。id・・Th・n th・di・ect P・・du・t M×L・f M・・nd・L f・rm・a・ynm・t・i・m・n・id with㎜1tiplicati・n a・d lt−operation def血ed as fo11㎝s;      (a〕  (X,y) 〔xl,y.) = (XX’,yyt〕      〔b〕〔X,y〕★=〔xft, yft〕 MOI. denotes the symmetric monoid constructed fro皿M>くL. 〆

(5)

    Let M, Mt t L and L’be s)㎜etricロPnoids. Letψ:、 M→1りθ

We obtain a new.map ψOθ:M◎. M.→LOL’defined by

         〔ψOθ〕〔X,X’〕=〔ψ〔X),θ(Xり). :M・→L,. [2. 4] PROPOSITION.      〔2.4.a) S(MOL〕 =S(M).⑭S(L)      〔2.4◆b) S(ψOθ) =S〔ψ〕《8S〔θ)     .(2.4.c)Ifψandθare sy㎜etriゆ㎜mrp垣sms, then so isψOθ.      〔2.4.d) Ifψandθare totally positive, thenψOθis positive. P「°°f・f〔2・4・・〕・S・pPO・e th・t旬・M→S・Pt)・・d %・L→Sa)ar・−can・血・al maps・ We define a sy皿etric hcnTK)morphismρ :MOL→S OyD ⑧S〔L) by

         P(x・y)=㌔〔・〕・⑧・PL〔y)・      ・

Given a s)mnetric algebra A with syロ皿etric homomorphismψ:MOI、→A, the linear mapψ:S〔M)⑧S〔L〕、一一一Acan be《1efined by φ(ρ(x, y)〕=ψ〔x, y〕, that is 〔S(M)⑧S〔1、),ρ)is the corresponding algebra for M O L.      ゴ Proof of 〔2.4.1)〕:   Let ρbe as in the proof of (2.4.a). Define ρ・by          ρ’〔x’syり=P’M・〔xりOO P’L・の・ 工hen we have          (S(ψ) ⑧S(θ)〕ρ = ρ.〔ψ 〇二θ), 砲㎝ce       ・          〔S〔ψ〕 ⑧ S(θ))ρ = ρ,〔ψ Qθ) = S(ψOθ)ρ.

ThUS

         S〔ψ◎ θ〕 = S(ψ〕 ⑧S〔θ).       . Proof of (2.4.c):   obvious.      ’ Proof of (2.4.d):   By 〔2.4.b〕,we have          S(ψO θ) =S〔ψ)⑭S〔θ). Now since S(ψ〕⑧ S(θ〕 is positive by 〔1.4.b), the assertion fbllows. 、 3・ (bmplete positivity in the category of馴匝netric monoi白.     1.et A and B be sy㎜etric algd)τas. Letψ:A−>B be c〈珊{pletely positive and 1・tΦ:Sω→B b・th・h・m…XPhi・m indu・ed・by・tl・u・h th・tψ・ΦpA・ Nbte that ψis c6卿pletely positive if and only if{p is c(卿1etely positive. [3.1】 DEFINITION.  Slrppose that M is a syn皿etric monoid and that A is a ’ s)抽metric algel)ra. Amappingψ:M→A is said to be completely positive if induced honK)morphism{P:S(M)→Ais cq㎎pletely positive.

(6)

46

K.KUWANO

The fb11(痂g Proposition can・..1)e verified by direct calcuユati㎝・ [3. 2] PROPOSITION.    ㎞ctions of the fbllowing’types aエre completely positive.      (3.2.a)  a symmetric dharacter       .      〔3.2.b)  a positive s)rmmetric function       −      〔3・2.c)  a sy㎜∋tric ho瓜)morphisln flr㎝a symmetriC monoid to a syl皿etric       algebra. In particular, the canonical s)㎜metric hormmorphism       ρ:M→SCM)is corrplete工y positive. 13.3] PROPOSITION.  Let M be a symetric lぴonoid and let A be a syrmetric algd)ra. Ifψ:M−一∋レA is totally pOsitive, thenψis c(匝pletely positive. 西゜°f:N°te that if[αi」]∈M。〔Sω)is P・sitive・then

       I[・誇]・・P・・i廊・靱ω

砲ere

      ・・ゴ1・善・6珠……一…i・」…一・・)

by・Pplying the・泌・・fa・t t。 th・㎜t・iX[S(ψ)・ij】∈M。〔S(A)〕鋤鋤the c(㎎)1ete POsitivity of S〔ψ) : S(M)一>S〔A〕,we Obtai皿thatψ is c(m互)1etely positive. [3.4] THEOREM.    Assume that      (1) Mis a s)屹tric monoid and H is a Hilbert space.      〔2〕 Amapτ:M→磐〔H)is corrrpletely positive with τ〔e〕=1. Then there exist a Hilbert space K containing H as a closed sdbspace and a sy㎜etric homomoτphismπ:M__〉π0りsuch that       τ〔x)=Pπ(x〕㎝H〔x∈M), 砲ere p is the orthogonal proj ection of K onto H andπ(M) is a symnetric mDnoid of closable operators in K with the common dense domail1・ We shal1 now introduce an adniss ible condition on M. [3.5] DEFINITION.  Asy㎜etric mDnoid M is said to be poSitively bounded

if

      Strp{ψ(x★x);ψ∈y〔M〕}〈。。 for each x∈M.

(7)

[3. 61  THEOREM●    In addition to the assuロrpticEls in 【3. 4], sqlrp《)se that} Mis positively bo岨ded.「『hen there exists a MlbeTt Space K ccmtaiエ辻ng H as a closed subspace with a sy皿retric hr nonK)rphisinπ :M→〉 $(K)such that        τCx)=Pw(x) onH fOr eaCh x∈μ,砲eTe P denotes the pTojecti㎝of K㎝to H・ Proof:   If (K,π) is the dilatiαn given in Theoren 【3. 4], th㎝the positive bOundedness of M il口plies the contiエ皿ity ofτand the b◎undedness ofπ(ix)fbr eaCh xξM.     Details and so孤e apPlications・will aPpeaヱin fbrth−c《ぬiロ9 Papers・      The author wishes to e)qpress his gratitude to Prof. T. S垣bata fbT his

adViCe and COntinuOqs enCOUragamt・

      REFERENCE [1] W.F. Steinspri㎎, Positive Punctioms on C −Mgel)ras s Proc・Amer・Math・     Soc.  (1955) 211−216. へ.

(8)

参照

関連したドキュメント

We study a refinement of the depth of the external node of rank s, with 0 ≤ s ≤ 2n, where the external nodes are ranked/enumerated from left to right according to an

Actually a similar property shall be first de- rived for a general class of first order systems including the transport equation and Schr¨odinger equations.. Then we shall consider

[1] Feireisl E., Petzeltov´ a H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations 10 (1997), 181–196..

In this note, we consider a second order multivalued iterative equation, and the result on decreasing solutions is given.. Equation (1) has been studied extensively on the

We go on to study canonical reductive monoids associated with the canonical compact- ification of semisimple groups,

We derive their Jacobi opera- tors, and then prove that closed CMC tori of revolution in such spaces are unstable, and finally numerically compute the Morse index of some minimal

· in inter-universal Teichm¨ uller theory, various anabelian and Kummer- theoretic aspects of Galois or arithmetic fundamental groups that act on such monoids play a fundamental

They are a monoidal version of the classical attribute grammars, and have the following advantages: i) we no longer need to stick to set-theoretic representation of attribute