• 検索結果がありません。

Analysis of the mechanism of blood-brain barrier dysfunction induced by sera from patients with neuromyelitis optica

N/A
N/A
Protected

Academic year: 2021

シェア "Analysis of the mechanism of blood-brain barrier dysfunction induced by sera from patients with neuromyelitis optica"

Copied!
25
0
0

読み込み中.... (全文を見る)

全文

(1)

Analysis of the mechanism of blood-brain barrier

dysfunction induced by sera from patients with

Neuromyelitis optica

(

)

(2)

1

1

2

1

3

2

4

3

5

6

6

17

7

19

8

20

9

20

(3)

Neuromyelitis optica spectrum disorder(NMOSD) (Blood-brain barrier, BBB)

NMOSD BBB

claudin-5 matrix-metallo proteinases (MMPs)-2/9 vascular cell adhesion protein-1(VCAM-1) aquaporin 4(AQP4)

NMOSD (multiple sclerosis, MS)

BBB (human brain microvascular

endothelial cells, BMECs) NMOSD immunoglobulin G (IgG) claudin-5 VCAM-1

NMOSD BMECs BBB MMP GM6001 BMECs MMP-2/9 NMOSD NMOSD MMP-2/9 BMECs VCAM-1 NMOSD IgG BBB MMP-2/9 BMECs VCAM-1 AQP4 VCAM-1 NMOSD IgG BMECs autocrine MMP-2/9 BBB NMOSD IgG AQP4 BBB VCAM 2. NMOSD 1894 Devic SS-A

(4)

2004

NMOSD-IgG 2005

NMOSD-IgG Aquaporin 4

(AQP4) 2) NMOSD Aquaporin

4 1) NMOSD 3-10) AQP4 AQP4 11-13) NMOSD BBB 5) AQP4

AQP4 tight junction BBB

NMOSD 9,10) AQP4 BBB NMOSD BBB AQP4 NMOSD 14,15) NMOSD BBB 3. MS NMOSD MMP-9 16,17) Matrix-metallo proteinases (MMPs)-2/9 BBB MS18) (EAE)19) MMP-2/9 NMOSD BBB NMOSD MMP-2/9 BBB

(5)

4. (1)

1996

NMO spectrum disorders (NMOSD) 10 (

52 ) AQP4 6) AQP4 NMOSD 20,21) 7 typical NMOSD( 1,2,4,6,7,9,10) 3 NMOSD( 3,5,8) 25 ( 13.2 (SD=5.4) ) 10 1 6 NMOSD ( 5, 8,9,10) 4 10 NMOSD 7 ( 2, 4,5,6,8,9,10) (BMEC) 3 ( 1, 3,7) (Fig. 1)15) Figure 1 15)

(6)

McDonald 22) (multiple sclerosis, MS) 10 ( 4 6 35.7 ) 10 MS 28 6 ( 2,3,4,8,9,10) 4 ( 1,5,6,7) 10 MS 6 10 1 BMECs -80 56 30 (2)

(human astrocyte; hAST)

T (hAST )

AQP4 cDNA hAST

AQP4 hAST (hAST-AQP4) 24)

T TY0823) FH-BNBs25) 10% 10% (fetal bovine serum, FBS) 37 5% CO2/air 1 mRNA 2 10%FBS(Sigma) Figure 2 15)

(7)

(Dulbecco’s modified Eagle’s medium, DMEM) (Sigma, St Louis, Missouri, USA)

23) MMP-9 ( ) MMP-2 ( )

actin ( ) (vascular endothelial growth factor, VEGF) ( ) Santa Cruz(Santa Cruz, California, USA)

claudin-5 ( ) Invitrogen(Carlsbad, California, USA) vascular cell adhesion molecule-1(VCAM-1) ( ) R&D systems(Minneapolis, Minnesota, USA) GM6001

Chemicon(Temecula, California, USA) MMP-2 MMP-9 Santa Cruz

RT-PCR PBS total RNA 40ng

total RNA 1 cDNA MMP-2 MMP-9 G3PDH 26) Stratagene Mx3005P (STRATAGENE, Cedar Greek, Texas, USA)

PCR

R =RGene/RGAPDH

(10-20 g) 23) 10%

polyvinylidene difluoride (Amersham, Chalfont, UK) PBS-T

5% (100 ) 2

(2000 ) 1

(ECL-prime, Amersham, UK) Quantity One software program (Bio-Rad, Hercules, California, USA)

23) Millicell electrical resistance apparatus (Endohm-6 and EVOM, World Precision Instruments, Sarasota, Florida, USA)

BMECs 1 106 ( 10% ) 24 BMECs NaF 27) 24 NaF(10 g/ml; 400kDa) 500 l NaF MX3000P (Stratagene)

(8)

MMP-2 MMP-9 GM6001 MMP-2 MMP-9 25 M GM6001 5 M MMP-2 5 M MMP-9 12h 37 NMOSD MS MMP 56 MMP-2 MMP-9 ELISA (R&D systems) 3

5 BMEC 5 immunoglobulin G (IgG)

Melon Gel IgG Spine Purification Kit (Thermo Scientific, Rockford, Illionois, USA)

FBS(Sigma) NMOSD

IgG( 400 g/mL)

AQP4 15) 2

NMOSD (NMOSD1 NMOSD2) hAST-AQP4 150

AQP4 150 50% (NMOSD1 1:8 150 1:4 NMOSD2 1:2048 150 1:512 )15) (3) ( Student t ) p<0.05 5.

Figure 3 typical NMOSD 3 NMOSD

BBB BBB

NMOSD

BMECs claudin-5 MS

(figure3A-D) NMOSD MS BMECs VCAM-1

(9)

BMECs NaF

MS (figure

3H,I) BBB typical NMOSD

(10)

Figure 3

typical NMOSD7 ( 1,2,4,6,7,9,10) LETM NMOSD3 ( 3,5,8)

NMOSD MS BMECs

claudin-5 VCAM-1 (A-C)

( SEM, n=10) BMECs NMOSD claudin-5 MS

BMECs VCAM-1 NMOSD MS (D,E) BMECs claudin-5 VCAM-1 definite NMO

(F,G) NMOSD BMECs BMECs NaF

MS NaF

(H,I) control 20%FBS DMEM NMOSD: 10%FBS DMEM NMOSD 10% MS: 10%FBS DMEM MS

10% normal: 10%FBS DMEM 10% LETM: 10%FBS DMEM NMOSD 10%

typical NMOSD: 10%FBS DMEM typical NMOSD 10%

Figure4 NMOSD BBB MMP-2/9 NMOSD MMP GM6001 BMECs NMOSD BMECs GM6001 claudin-5 (figure 4A,D) MS GM6001 claudin-5 (figure 4B,C,E,F) GM6001 NMOSD GM6001 BMECs NaF (figure 4G,H) MS GM6001 NaF

(11)

MMP-9 MMP-2

(12)

Figure 4

BMECs NMOSD 10 claudin-5 MMP

GM6001 (A-C) GM6001 NMOSD

GM6001 NMOSD claudin-5

( SEM, NMOSD n=10, MS n=5, normal n=5, *p<0.01)(D-F) GM6001

(13)

( SEM, NMOSD n=10, MS n=5, normal n=5, *p<0.01) (G,H)

MMP-2 MMP-9 NMOSD BMECs claudin-5 MMP-2 MMP-9

BMECs claudin-5

(I) (

SEM, n=5, MMP-2: p<0.05, MMP-9: p<0.05)(J) MMP-2 MMP-9 claudin-5 MMP-2 MMP-9

NMOSD BMECs ( SEM, n=5,

MMP-2: p<0.05, MMP-9: p<0.01)(K) MMP-2 MMP-9

BMECs NMOSD: 10%FBS DMEM NMOSD 10% NMOSD+GM6001: 10%FBS DMEM GM6001

NMOSD 10% MS: 10%FBS DMEM MS 10% MS+GM6001: 10%FBS DMEM GM6001 MS

10% normal: 10%FBS DMEM 10%

normal+GM6001: 10%FBS DMEM GM6001 10% NMOSD+MMP-2 inhibitor: 10%FBS DMEM MMP-2

NMOSD 10% NMOSD+MMP-9 inhibitor: 10%FBS DMEM MMP-9 NMOSD 10%

Figure5 NMOSD BMECs MMP-2/9

MMP-2/MMP-9 NMO MS

3 (figure 5A,B) NMO

TY10 MMP-2/MMP-9 mRNA

MS / (Figure 5

C-I) BMECs BMECs MMP-2/9

(figure 5J,K) NMOSD BMECs claudin-5

MMP-2 MMP-9 (figure 5L,M).

(14)
(15)
(16)

Figure 5

MMP-2/9 NMOSD MS

(A,B) NMOSD BMECs MMP-2/9 PCR BMECs MMP-2 MMP-9

(17)

( SEM, n=10, *p<0.001) NMOSD

BMECs MMP-2 MMP-9 NMOSD

MMP-2 MMP-9 ( SEM,

n=10)(E) MS ( SEM, n=10,

*p<0.01)(F,G) ( SEM,

n=10, MMP-2: p<0.01, MMP-9: p<0.05)(H,I) BMECs BMECs MMP-2 MMP-9 (J,K) NMOSD ( 5,8,9,10)

BMECs claudin-5 MMP-2 MMP-9 (L) ( SEM, n=4)(M) claudin-5 MMP-2 MMP-9 NMOSD

(N) ( SEM,

n=10)(O) control: DMEM FBS 20% NMOSD: 10%FBS DMEM NMOSD 10% MS: 10%FBS DMEM MS 10% normal: 10%FBS DMEM 10%

NMOSD with anti-BMECs Ab: 10%FBS DMEM BMECs

NMOSD 10% NMOSD without anti-BMECs Ab: 10%FBS

DMEM BMECs NMOSD 10% stable

NMOSD: 0%FBS DMEM NMOSD 10%

Figure 6A-E NMOSD IgG BBB

5 NMOSD ( 2,4,5,6,9; 4

typical NMOSD 1 NMOSD)

G(NMO-IgG) NMO-IgG TY10 VCAM-1 claudin-5, MMP-2, MMP-9

IgG TY10 NMO-IgG hAST-AQP4

AQP4 TY10 VCAM-1 (Figure 6E,

(18)

Figure 6

(19)

BMECs NMOSD IgG BMECs VCAM-1 claudin-5 (A) NMOSD IgG BMECs VCAM-1

IgG NMOSD BMECs

claudin-5 MMP-2/9 VEGF

( SEM, n=5, *p<0.05)(B) BMECs NaF

NMOSD IgG (C,D) AQP4

BMECs VCAM-1 (E)

( SEM, n=3)(F) control-IgG: FBS IgG NMOSD:NMOSD IgG normal-IgG:

IgG NMOSD: 10%FBS DMEM NMOSD 10% NMOSD after AST incubation: AQP4

150 NMOSD 10%

6.

NMOSD AQP4

6,28) AQP4 NMO

IgG (NMO-IgG) NMO

BBB MBP T

(experimental autoimmune encephalomyelitis, EAE)

NMO-IgG NMO 10) 29) Saadoun NMOSD IgG NMOSD 30) AQP4 BBB NMO BBB NMO IgG / VCAM 31) NMO BBB

(20)

(1) NMOSD BBB TJ claudin-5 (TEER) (2) MMP-2/9 NMOSD BBB claudin-5 TEER BBB (3) NMOSD BBB MMP-2/9 (4) NMOSD IgG BBB

VCAM-1 (5) NMOSD AQP4

BBB BBB (claudin-5, VCAM-1 ) NMOSD BBB NMOSD AQP4 BBB autocrine MMP-2/9 BBB AQP4 BBB BBB VCAM-1 BBB NMOSD BBB MMP-2 MMP-9 MS (Experimental autoimmune

encephalomyelitis: EAE) MMP-2/MMP-9 tight junction

BBB NMO MS MMP-9 / MMP-2/MMP-9 source autocrine MMP-2/MMP-9 BBB MMP-2/MMP-9 NMO BBB AQP4 NMO MMP GM6001 NMOSD BBB GM6001 EAE BBB EAE

(21)

32) MMP MMP 33) MMP-2/9 VCAM-1 1 VLA-4 BBB 34) VCAM-1 IL-1 TNF-35) NMO-IgG BBB VCAM-1 NMO-IgG NMO VLA-4 4-integrin 4-integrins VCAM-1 BBB 36)37) MS BBB VLA-4/VCAM-1 NMOSD NMO 38)-40) NMO T B B AQP4 NMO NMO MS VCAM-1 NMO 7. NMOSD BBB

(22)

NMOSD BBB AQP4 BBB

8.

AQP4

9.

1) Jarius S, Wildemann B. The history of neuromyelitis optica. J Neuroinflammation 2013;10:8.

2) Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;264:2106– 12.

3) Hinson SR, Pittock SJ, Lucchinetti CF, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology

2007;69:2221–31.

4) Jarius S, Wildemann B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 2010;6:383–92.

5) Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 2007;130:1224–34.

6) Takahashi T, Fujihara K, Nakashima I, et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 2007;130:1235–43. 7) Jacob A, McKeon A, Nakashima I, et al. Current concept of neuromyelitis optica

(NMO) and NMO spectrum disorders. J Neurol Neurosurg Psychiatry 2013;84:922–30.

(23)

Neurol 2012;11:535–44.

9) Sharma R, Fischer MT, Bauer J, et al. Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 2010;120:223–36.

10) Bradl M, Misu T, Takahashi T, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009;66:630–43.

11) Jarius S, Aboul-Enein F, Waters P, et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 2008;131:3072–80.

12) Kim W, Lee JE, Li XF, et al. Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4. Mult Scler 2012;18:578–86.

13) Uzawa A, Mori M, Masuda S, et al. CSF high-mobility group box 1 is associated with intrathecal inflammation and astrocytic damage in neuromyelitis optica. J Neurol Neurosurg Psychiatry 2013;84:517–22.

14) Vincent T, Saikali P, Cayrol R, et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and

granulocyte recruitment. J Immunol 2008;181:5730–37.

15) Shimizu F, Sano Y, Takahashi T, et al. Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J Neurol Neurosurg Psychiatry 2012;83:288–97. 16) Hosokawa T, Nakajima H, Doi Y, et al. Increased serum matrix

metalloproteinase-9 in neuromyelitis optica: implication of disruption of blood-brain barrier.J Neuroimmunol 2011;236:81–6.

17) Uzawa A, Mori M, Masuda S, et al. Markedly elevated soluble intercellular adhesion molecule 1, soluble vascular cell adhesion molecule 1 levels, and

blood-brain barrier breakdown in neuromyelitis optica. Arch Neurol 2011;68:913– 17.

18) Leppert D, Ford J, Stabler G, et al. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain 1998;121:2327–34.

19) Murphy G, Knäuper V. Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol 1997;15:511–18.

(24)

21) Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol 2007;6:805–15.

22) Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302. 23) Sano Y, Shimizu F, Abe M, et al. Establishment of a new conditionally

immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol 2010;225:519–28.

24) Haruki H, Sano Y, Shimizu F, et al. NMO sera down-regulate AQP4 in human astrocyte and induce cytotoxicity independent of complement. J Neurol Sci 2013;331:136–44.

25) Abe M, Sano Y, Maeda T, et al. Establishment and characterization of human peripheral nerve microvascular endothelial cell lines: a new in vitro blood-nerve barrier (BNB) model. Cell Struct Funct 2012;37:89–100.

26) Saito K, Shimizu F, Koga M, et al. Blood-brain barrier destruction determines Fisher/ Bickerstaff clinical phenotypes: an in vitro study. J Neurol Neurosurg Psychiatry 2013;84:756–65.

27) Shimizu F, Sano Y, Tominaga O, et al. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging 2013;34:1902–12.

28) Jarius S, Franciotta D, Paul F, et al. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. J Neuroinflammation 2010;7:52.

29) Kinoshita M, Nakatsuji Y, Kimura T, et al. Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun 2010;394:205–10.

30) Saadoun S, Waters P, Bell BA, et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 2010;133:349–61.

31) Jarius S, Paul F, Franciotta D, et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 2011;306:82–90.

(25)

encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteinases. J Clin Invest 1994;94:2177–82.

33) Augé F, Hornebeck W, Decarme M, et al. Improved gelatinase a selectivity by novel zinc binding groups containing galardin derivatives. Bioorg Med Chem Lett 2003;13:1783–6.

34) Engelhardt B. T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol 2010;1:79–93.

35) Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev 2012;248: 228– 39.

36) Engelhardt B, Kappos L. Natalizumab: targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis 2008;5:16–22.

37) Miller DH, Soon D, Fernando KT, et al. AFFIRM Investigators. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology

2007;68:1390–401.

38) Barnett MH, Prineas JW, Buckland ME, et al. Massive astrocyte destruction in neuromyelitis optica despite natalizumab therapy. Mult Scler 2012;18:108–12. 39) Kleiter I, Hellwig K, Berthele A, et al. Failure of natalizumab to prevent relapses

in neuromyelitis optica. Arch Neurol 2012;69:239–45.

40) Jacob A, Hutchinson M, Elsone L, et al. Does natalizumab therapy worsen neuromyelitis optica? Neurology 2012;79:1065–6.

41) Shimizu F, Kanda T. Disruption of the Blood-Brain Barrier in Inflammatory Neurological Diseases. BRAIN and NERVE 2013; 65: 165-176.

42) Shimizu F, Nishihara H, Sano Y, et al. Markedly Increased IP-10 Production by Blood-Brain Barrier in Neuromyelitis Optica. PLOS ONE 2015; 10: e0122000. 43) Dean W, Brenda B, Jeffrey B, et al. International consensuss diagnostic criteria

参照

関連したドキュメント

We measured blood levels of adiponectin in SeP knockout mice fed a high sucrose, high fat diet to examine whether SeP was related to the development of hypoadiponectinemia induced

Unfortunately, the method fails if someone tries to use it for proving the left hand side of the Hermite–Hadamard- type inequality for a generalized 4-convex function since, by the

In the third step, for obtaining high-order approximate solutions, we proceed with a regularization approach using the asymptotic performance of the unknown solutions that allows us

Sreenadh; Existence and multiplicity results for Brezis-Nirenberg type fractional Choquard equation, NoDEA Nonlinear Differential Equations Applications Nodea., 24 (6) (2016), 63..

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

In order to be able to apply the Cartan–K¨ ahler theorem to prove existence of solutions in the real-analytic category, one needs a stronger result than Proposition 2.3; one needs

This paper presents an investigation into the mechanics of this specific problem and develops an analytical approach that accounts for the effects of geometrical and material data on

While conducting an experiment regarding fetal move- ments as a result of Pulsed Wave Doppler (PWD) ultrasound, [8] we encountered the severe artifacts in the acquired image2.