• 検索結果がありません。

A Combinatorial Problem Arising from Polyhedral Homotopies for Solving Polynomial Systems

N/A
N/A
Protected

Academic year: 2021

シェア "A Combinatorial Problem Arising from Polyhedral Homotopies for Solving Polynomial Systems"

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

且−B−1皿 2000年度日本オペレーションズ・リサーチ学会 春季研究発表会

AComb五m如⑬最a且恥①払且℡mÅ『五s五mg蝕①mp①且y肋e動乱且Hのm¢七op陀S O

鮎『S⑬鳳Ⅴ鼠m唱Po且ym①m五a且Sys七ems

02302370 東京工業大学 ♯武田朗子 TÅKEDAAkiko

OllO3520 東京工業大学 小島政和 KOJIMAMa5akはu

且:肋加馴触感血m

Homotopycontinua七ionisusedto丘ndthefu11set

Ofisola七edzerosofapolynomialsystemnumer−

ica11y.Duringthelast七WOdecades,thismethod

hasbeendevelopedintoareliableande凪cien七

numericalalgofithmfor approximatingal1iso− 1a七edzerosofpolynomialsystems.

LetP(c)=Obeasystemofnpoiynomial

eqⅦationsin¶仁unknown5.Denotingタ=bl,…,鋸), WeWant七0findallisolatedsolutions詔=(xl,‥.,Xn) of 恥rthejthtermoftheithequation(say,

dxilx墨2xヂ),Wed申necij≡(cl,C2,C3).Thaiis,

Cll=(1,2,1),疋12=(3,0,1),C13=(0,2,4), ¢14=(0,0,0), C21=(2,4,0),C22=(0,2,2),¢23=(0,0,0), C31=(3,0,0),¢32=(1,2,0),C33=(0,0,0). Le七島≡・(1,‥.,m虚)払ー豆=1,2,…,叫andin tbeaboveca5e,几=3,ml=4,m2=3,m3= 3・Givenrealnumbersuij(i=1,2,・・.,n,Vj∈ Si)chosengen6rically,WeCOnSiderthesystemof linearinequalities:

pl(ご1,…,エ円)=0

}(1)

pn(勘,…,エ托)=0・

Theclassicalhomotopycontinuationmethodfor SOIving(1)istodefinea七rivialsystemQ(ac)= (ql(3),‥.,qn(3))andthenfo1lowthecurvesin therealvariablet whichmake up thesolution

se七Of O=ガ(∬,り=(1−りQ(訂)+ぼ(詔)・

AtypicalchoiceofthestartsystemQ(G)gen−

erates七remendously manyinitialpoinもSforso−

1utionsoftheoriginalproblemP(ac)=0.How− ever,in七helas七fewyears,a,neW七echniquefor COnStruCtingQ(aG)hasemerged,Whichprovides amuchtighterboundforthenumberofisolated

ZerOSOfP(au)・Thesocal1edpolyhedralhomo−

topyisthenestablishedforthenewme七hodand

thehomotopypathssoproducedismuchfewer. Accordingtotherecentarticle[2】,Wedescribe

aprobleminvoIvedinthecons七ruc七ionofanew

polynomialsystemQ(x). 2 『の『mⅦ且a也五om Letuslookatthefo1lowlngeXampleofasystem Ofpolynomialequations: ∈ 叫竹 ≦町 ﹀ ● α︰ 旬A ′ll、l 一二 瓜∵い Wherea,β∈Rn,andformulateourprQblemas 恥①b且em2。皿Findall(α,β)whichsatisfies(2) Withexac七Iytwoequalitiesforeachi=1,2,…,n. BysoIvingProblem2.1,WeCanCOnStruCtaStart SyStemQ(c)whoseqi(38),i=1,2,…,nCOnSists

Ofexactlytwoterms・Wbcanalgebraicallysolve

SuChasystemofpolynomialequa七ions(seerl]). 3 つⅣams餌『maも五①皿 Definebi∈R(i=1,2,…,n)andd∈Rnarbi−

trari1y)andconsiderthelinearprogram:

れ∑畠針い

P: maX むiA

+〈d,α〉

∈ 叫Ⅵ ≦町 ﹀ ● α︰ 旬,2 ︵ l 一ニ − 38− © 日本オペレーションズ・リサーチ学会. 無断複写・複製・転載を禁ず.

(2)

Notethat theset ofconstraintlinearinequali− tiesinPcoincideswiththesystem(2)oflinear inequalities・ Let ア =(ダ=(旦,為,…,凡): 彗⊂扶,腫≦2(宜=1,2,…,れ)). FbreachF=(Fl,為,.・.,凡)∈7,WeCOnSider asubproblemP(F)ofP: †l

P(ダ)‥ maX ∑摘+〈d,α〉

i=1 1exicographicalorder,1.e.,

エ(鋸=((1,2),(1,3),.‥,(叫−1,叫)),

Wherel,2,・・・,mi∈Si・Forevery彗=(p,q)in thelistL(Si),WPdefinesucc(彗;L(Si))= anやIetsucc(¢;L(Si))=the丘rstelementinthe listム(扶). Algorithm4.1

StepO:LetF=(¢,0,…,¢)∈FO,島=

筑(豆=1,2,‥.,乃)andた=1. Stepl‥Ifk=Othenterminate.Otherwise, 1et 12 ︰ ︰りl <一ニ ﹀ ﹀ α α l ’− 句句 く ︵ 一一 S.t. A 瓜∵り =1,2,.‥,几, り1■∈扶\彗,Ⅵ2∈月)・ Define7■as 〈 ∫∈ア: 晒=2(壷=1,2,…,れ), P(F)isfeasible 〈 彗 ifl<盲<た−1, succ(瑞,エ(㌫))汀壷=た, ¢ 打た+1<壷<軋 彗= Thus,finding allsolutions ofProblem2・1ha5

beenreducedtocomputingoptimalsolutionsof P(ア)bra11ダ∈ア*・ InordertoenumerateallP(F)(F∈F’),We introduceatreestructureintothesubproblems (P(F):F∈7)・Fbreveryk=0,1,2,…,n, defineFk主 Step2:IfFk主¢,thenlet範=Sk,k=k−1 andgotoStepl.Otherwise,gOtOStep3.

Step3:岳01veD(F)tocomputeabasicop−

timalsolution or detect the unbounded_

nessofD(F)・IfD(F)isunbounded,gO toStepl・Otherwise,gOtOStep4. Step4‥・Ifk=n,thenoutput theoptimal SOlutioムofP(F).Otherwiseletk=k+1. GotoStepl.

5 NumericalResults

Inthistalk,Wealsopresentournumericalresults

Onthewidelyconsideredbenchmarksystem・

References

【1】M.Gr6tschel,L.。VaSZandA.Sch,uV。,,G。− Ometricalgorithmsandcombinatorialopti− mization(Springer,NewYbrk,1988). [2】Tien−YienLi,“SoIving , OfMathematics,3,251−279. 〈 ダ∈ア‥ ■ , =た+1,た+2,…,几)

NowweregardeachsubproblemP(ア)(F∈Fk)

as a node at the kthlevelofthe tree which we

OnStru云t・AnodeP(Fl)atthe(k+1)thlevel

lSaChildnodeofanodeP(F)at thekthlevel

ifandonlyif雪=E;(j=1,2,・・・,k)・Wthow applythedepth−firstsearchtothetree.Ifanode P(F)at thekthlevelofthetreeisinfeaBible, thenallofitsdescendantsareinfeasible.Hence

weterminatethenodeP(F)atthekthlevelin

thiscase.Forpracticalcomputationale伍ciency,

wewillprbposetodealwiththedualsD(F)of

P(ア)(ア∈ア)・

4 Implementation

Wbconsiderallpossibledistinctpairs(p,占)of

SiWithl≦p<q≦miandarrangetheminthe

一 39 − © 日本オペレーションズ・リサーチ学会. 無断複写・複製・転載を禁ず.

参照

関連したドキュメント

In this paper, we use the reproducing kernel Hilbert space method (RKHSM) for solving a boundary value problem for the second order Bratu’s differential equation.. Convergence

In fact, previous to this, discrete series representations for homogeneous spaces of reductive type have been studied only in the cases of group manifolds, reductive symmetric

Kirchheim in [14] pointed out that using a classical result in function theory (Theorem 17) then the proof of Dacorogna–Marcellini was still valid without the extra hypothesis on E..

Note that the derivation in [7] relies on a formula of Fomin and Greene, which gives a combinatorial interpretation for the coefficients in the expansion of stable Schubert

In this paper, we introduce a new combinatorial formula for this Hilbert series when µ is a hook shape which can be calculated by summing terms over only the standard Young tableaux

For arbitrary 1 < p < ∞ , but again in the starlike case, we obtain a global convergence proof for a particular analytical trial free boundary method for the

This paper presents new results on the bifurcation of medium and small limit cycles from the periodic orbits surrounding a cubic center or from the cubic center that have a

The techniques used for studying the limit cycles that can bifurcate from the periodic orbits of a center are: Poincaré return map [2], Abelian integrals or Melnikov integrals