• 検索結果がありません。

Operator means and comparison of their norms: general theory and examples(Recent Developments in Linear Operator Theory and its Applications)

N/A
N/A
Protected

Academic year: 2021

シェア "Operator means and comparison of their norms: general theory and examples(Recent Developments in Linear Operator Theory and its Applications)"

Copied!
4
0
0

読み込み中.... (全文を見る)

全文

(1)

34

Operator

means

and

comparison

of their

norms:

general theory and

examples

九大・数理 幸崎 秀樹

Hideki Kosaki (Kyushu University)

The classical Heinz inequality ([4]) states

(1) $||H^{\theta}XK^{1-\theta}+H^{1-\theta}XK^{\theta}||\leq||HX+XK||$ $(0 \leq\theta\leq 1)$

for Hilbert space operators $H$,$K_{7}X$ with $H$,$K\geq 0$. This inequality remains valid

for an arbitrary unitarily invariant

norm

$|||\cdot|||$, and the special

case

$\mathit{7}\mathit{1}=1/2$ of this

generalized version is the “arithmetic-geometric mean” inequalityobtained in [1]:

$|||H^{1/2}XK^{1/2}||| \leq\frac{1}{2}|||HX+XK|||$.

Inrecent years such operator ($\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ matrix)

means

and comparison of their norms

are under active investigation (see [2, 5, 6, 8, 10] for instance). We will briefly

explain the general apparatus (obtained in [7]) to deal with such problems. More

details aswellas amore complete list of referencescan befoundinmy survey article

in “Sugaku” to be published shortly (or in [7]).

1 OPERATOR (MATR1X) MEANS

In this article a scalar (symmetric homogeneous) mean will mean a continuous

function $M(s, t)$ on on $[0, \infty)$ $\mathrm{x}$ $[0, \infty)$ satisfying

(a) $M(s, t)=M(t, s)$,

(b) $M(\alpha s, \alpha t)=\alpha M(s, t)$ for a $\geq 0$,

(c) $M(s, t)$ increasing in each variable,

(d) $\min\{s, t\}\leq M(s, t)\leq\max\{s, t\}$.

Theset of all such means will be denoted by$\mathfrak{M}$. Typical examples are

$(st)^{1/2}$, $(s-t)/$($\log$s-log$t$) $(= \int_{0}^{1}s^{x}t^{1-x}dx)$,

$\frac{s+t}{2}$, $\frac{s^{\theta}t^{1-\theta}+s^{1-\theta}t^{\theta}}{2}$ (with $0\leq\theta\leq 1$).

To each $M(s, t)\in \mathfrak{M}$ a corresponding operator mean (denoted by $M$($H$,$K$)$X$) will

be associated.

To get more intuition on the subject matter, we begin with the matrix case

($H$,$K$,$X\in M_{n}(C)$ and $H$,$K\geq 0$). At first

we

diagonalize $H$,$K$:

$H=U\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(t_{12}t_{2}, \cdots, t_{n})U^{*}$, $K=V\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(s_{1}, s_{2}, \cdots, s_{n})V^{*}$

with unitarymatrices $U$, $V$. For each $M\in \mathfrak{M}$we define

$M(H, K)X=U([M(s_{\dot{\mathrm{z}}}, t_{j})]_{i,j=1,2,\cdot\cdot,n}\circ(U^{*}XV))V^{*}$

(2)

35

with the Schur product $\circ$. If$M(s, t)$ is ofthe form $\sum_{k=1}^{\ell}f_{k}(s)g_{k}(t)$, we simply have

$M(H, K)X= \sum_{k=1}^{\ell}f_{k}(H)Xg_{k}(K)$.

Let us consider the projections $P_{l}=UE_{ii}U^{*}$,$Q_{\mathrm{j}}=VE_{jj}V^{*}$

.

Then, $H=\Sigma_{\mathrm{i}=1}^{n}s_{i}P_{i}$,

$K= \sum_{j=1}^{n}t_{j}Q_{j}$ are the spectral decompositions of $H$,$K$, and we observe that the

above matrixmean $M(H, K)X$can be also expressed as

$M(H, K)X=, \sum_{i_{J}=1}^{n}M(s_{i}, t_{j})P_{i}XQ_{j}$.

We now

move

to the general (operator) case. Let $H,$ $K$be positive operators with

the spectral decompositions

$H= \int_{0}^{||H||}sdE_{\mathit{8}}$, $K= \int_{0}^{||K||}t$$dF_{t}$.

The above expression involving $\sum_{ij}$ suggests that an operator mean $M(H, K)X$

should be something like

$M(H, K)(X)$ $= \int_{0}^{||H||}\int_{0}^{||K||}M(s, t)dE_{s}XdF_{t}$

(at least formally). Of

course

the meaning ofthis double integral hasto bejustified,

however fortunately the well-developed theory of Stieltjes double integral

transfor-mations (see the recent survey article [3]) is at

our

disposal. Also the problem on

(3)

38

The discussion so far is indeed the starting point of the theory of Stieltjes double

transformations by Birmann-Solomjak. For each practical purpose the definition

domain of$\Phi(\cdot)$ shouldbe enlarged

as

much as possible (to$\mathrm{C}_{p}(\mathcal{H})$,$\mathrm{C}_{1}(H)$,$B(\mathcal{H})$, etc.

depending upon available regularityassumption), Various important applications to

many subjects (such as perturbation theory, Volterra operators, Hankel operators

andso on)

are

known.

Definition. $\phi(s,$t) is called a Schur multiplier (more precisely, $\mathrm{C}_{1}$ Schur multiplier

relativeto (H,$K))$ when $\Phi(\mathrm{C}_{1}(H))$ $\subseteq C_{1}(H)$.

Theorem (V.V. Peller’scharacterization, [9])

For $\phi\in L^{\infty}$( [0, $||H||]\mathrm{x}$ $[0,$ $||K||]$;A $\mathrm{x}$

$\mu$) the followingconditions are all equivalent: (i) $\phi$ is a Schur multiplier (relative to ($H$,$K$));

(ii) whenever a measurable function $karrow$ : $[0, ||H||]$ $\mathrm{x}$ $[0, ||K||]arrow \mathrm{C}$ is the kernel

ofa $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class operator $L^{2}([0, ||H||],\cdot\lambda)arrow L^{2}([0, ||K||];\mu)$, so is the product

$\phi(s, t)k(s, t)_{j}$

(iii) one can find a finite measure space $(\Omega, \sigma)$ aaid functions $\alpha\in L^{\infty}([0, ||H||]\mathrm{x}$

$\Omega$;A $\mathrm{x}$ $\sigma$), $\beta\in \mathrm{L}2([0, ||K||]\mathrm{x} \Omega \mathrm{i}\mu \mathrm{x} \sigma)$satisfying

(3) $\phi(s, t)=\int_{\Omega}\alpha(s, x)\beta(t, x)d\sigma(x)$;

(iv) one canfinda measurespace$(\Omega, \sigma)$andmeasurable functions$\alpha$,$\beta$on $[0, ||H||]$$\mathrm{x}$

$\Omega$, $[0, ||K||]$ $\mathrm{x}$ $\Omega$ respectively satisfying (3) and

$|| \int_{\Omega}|\alpha(\cdot, x)|^{2}d\sigma(x)||_{L\infty(\lambda)}||\int_{\Omega}|\beta(\cdot, x)|^{2}d\sigma(x)||_{L(\mu\}}\infty<\infty$.

When$\phi(s, t)$ isaSchur multiplier, $\Phi$ : $\mathrm{C}_{1}(\mathcal{H})arrow \mathrm{C}_{1}(\mathcal{H})$isabounded linear operator

(bythe closed graph theorem) sothatwe have thetranspose ${}^{t}\Phi$ : $B(H)$ $=\mathrm{C}_{1}(\mathcal{H})^{*}arrow$

$B(\mathrm{i})$ $=\mathrm{C}_{1}(H)^{*}$

.

Starting fromthe decomposition (3), one can prove $\int_{0}^{||H|_{1}^{1}}\int_{0}^{||K||}\phi(s, t)$dEsXdFt $= \int_{\Omega}\alpha(H, x)X\beta(K, x)d\sigma(x)$.

3. NORM INEQUALITIES FOR OPERATOR MEANS

When ascalar mean $M(s, t)(\in \mathfrak{M})$ is a Schur multiplier we define

$M(H, K)X= \int_{0}^{||H||}\int_{0}^{||K||}M(s, t)$dEsXdFt $\in B(H)$ (for each $X\in B(\mathcal{H})$).

Theorem (F. Hiai and H. Kosaki, [6, 7])

For $M$,$N\in \mathfrak{M}$ the following conditions

are

all equivalent:

(i) Thereexists asymmetric probabilitymeasure$\nu$ on$\mathrm{R}$with thefollowing

prop-erty: if $N$ is a Schur multiplier relative to $(H, K)$ of non-singular positive

operators, then so is $\mathrm{A}I$ and

(4)

37

(ii) If$N$ isa Schur multiplierrelative to a pair ($H$,$K\rangle$ ofpositive operators, then

so is $M$ and

$|||M(H, K)X|||\leq|||N(H, K)X|||$

for all unitarily invariant normsand all $X\in B(H)$;

(iii) $||M(H, H)X||\leq||N(H, H)X||$ for all$X$ of finite rank and for all $H\geq 0$;

(iv) For each$n$ and $\lambda_{1}$,$\lambda_{2}$, $\cdots$ ,$\lambda_{n}>0$

$\ovalbox{\tt\small REJECT}\frac{\lambda f(\lambda_{i},\lambda_{j})}{N(\lambda_{i},\lambda_{J})}]_{\iota,j=1,2,\cdot\cdot,n}\geq 0,\cdot$

(v) $M\prec N$, i.e., $\frac{\Lambda f(e^{x},1)}{N(e^{x},1)}$ is apositive definite function.

This theorem explains the Heinz inequality (1) as follows: We set

$M(s, t)= \frac{s^{\frac{1+\alpha}{2}}t^{\frac{1-\alpha}{2}}+s^{\frac{1-\alpha}{2}}t^{\frac{1+\alpha}{2}}}{2}$ , $N(s, t)= \frac{s+t}{2}$ (a $\in[0,1]$).

The ratio is

$\frac{M(e^{x},1)}{N(e^{x},1)}=\frac{e^{(\frac{1+\alpha}{2})x}+e^{(\frac{1-\alpha}{2})x}}{\mathrm{e}^{x}+1}=\frac{\cosh(\alpha x/2)}{\cosh(x/2\}}$

whose Fourier transform is givenby

$\int_{-\infty}^{\infty}\frac{\cosh(\alpha x/2)}{\cosh(x/2)}e^{ixy}dx=\frac{4\pi\cosh(\pi y)\cos(\alpha\pi/2)}{\cosh(2\pi y)+\cos(\alpha\pi)}>0$.

Bochner’s theorem thus yields $M\prec N$.

REFERENCES

1. R. Bhatia and C. Davis,Morematrixforms ofthe arithmetic geometricmeaninequality,SIAM

J. Matrix Anal. APPI., 14(1993), 132-136.

2. R. Bhatia and K. R. Parthasarathy, Positive definite functions and operator inequalities, Bull. London Math. Soc, 32 (2000), No 2,214228.

3. M. Sh. Birman and M. Z. Solomyak, Double operator integrals m a Hilbert space Integral EquationsOperator Theory, 47 (2003), 131-168

4. E.Heinz, Beitra’ge zurStorungsiheorie der Spek ralzerlegung,Math.Ann.,123 (1951),415-438.

5. F. Hiai and H. Kosaki,Comparisonofvariousmeansforoperators,J.Funct. Anal., 163 (1999),

300-323.

6. F. Hiai and H.Kosaki, Meansformatrices and comparisonoftheir norms, Indiana Univ. Math. J, 48 (1999), 899-936.

7. F. Hiai and H. Kosaki, Means ofHilbert space operators, Lecture Notes in Math., Vol. 1820, Springer,2003.

8. H. Kosaki, Arithmetic-geometric mean and related inequalitiesfor operators, J. Funct. Anal, 156(1998), 429-451.

9. V. V. Peller, Hanhel operators and differentiability properties offunctions ofself-adjoint (uni-tary) operators, LOMI Preprints E-1-84, USSR Academy of Sciences Steklov Mathematical Institute LeningradDepartment, 1984.

10. X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl., 20 (1998),

参照

関連したドキュメント

Key words: Analytic function; Multivalent function; Linear operator; Convex univalent func- tion; Hadamard product (or convolution); Subordination; Integral operator.... Analytic

In this section we study the Legendre equation (1.1) on the whole real line R and note that, in addition to its singular points at −∞ and +∞, it also has singularities at the

We describe a generalisation of the Fontaine- Wintenberger theory of the “field of norms” functor to local fields with imperfect residue field, generalising work of Abrashkin for

COVERING PROPERTIES OF MEROMORPHIC FUNCTIONS 581 In this section we consider Euclidean triangles ∆ with sides a, b, c and angles α, β, γ opposite to these sides.. Then (57) implies

John Baez, University of California, Riverside: baez@math.ucr.edu Michael Barr, McGill University: barr@triples.math.mcgill.ca Lawrence Breen, Universit´ e de Paris

[2] , Metric and generalized projection operators in Banach spaces: Properties and applica- tions, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type

[2] , Metric and generalized projection operators in Banach spaces: Properties and applica- tions, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type

We see that simple ordered graphs without isolated vertices, with the ordered subgraph relation and with size being measured by the number of edges, form a binary class of