• 検索結果がありません。

Remarks on Sakaguchi Functions

N/A
N/A
Protected

Academic year: 2021

シェア "Remarks on Sakaguchi Functions"

Copied!
4
0
0

読み込み中.... (全文を見る)

全文

(1)

184

Remarks

on

Sakaguchi Functions

Rikuo Yamakawa (芝浦工大工 山川陸夫)

1.

Introduction

Let $A$ denote the class of functions $f$ which

are

analytic in

the

un

$itdi$

sc

$D=\{z: |z|<1\}$ , $wi$th

(1. 1) $f(O)=0$ and $f’(0)=1$.

We denote

some

subclasses of $A$

as

$f$ol lows:

(1. 2) $S^{x}= \{f\in A:{\rm Re}\frac{zf’(z)}{f(z)}>0$, $z\in D\}$,

(1. 3) $S=\{f\in A:{\rm Re}\frac{zf’(z)}{f(z)-f(-z)}>0$, $z\in D\}$

and

(1.4) $R(a)= \{f\in A:Re\frac{f(z)}{z}>a$ , $z\in D\}$

where OSa$<1$.

$S^{x}$ is the usual class of $s$tarl $i$ke $f$unct$i$

ons

, and $S$ is the

class of Sakaguchi functions introduced by Sakaguchi in [2]. For

relations between these two classes only the fol lowing result is known.

数理解析研究所講究録 第 881 巻 1994 年 184-187

(2)

185

Theorem A (Sakaguchi [2]). $f(z)\in S$ if and only if

(1. 5) $\frac{f(z)-f(-z)}{2}\in s^{x}$.

For $R(a)$, Wu posed the fol lowing conjecture in [3].

Conjecture

I$f$ $f(z)\in S$ , then $f(z) \in R(\frac{1}{2})$ .

And the present author in [4] showed by the $counter\cdot example$

(1.6) $f(z)=z+ \frac{3}{5}z^{2}+\frac{1}{15}z^{3}$

that the conjecture is not true.

In this short paper

we

give two examples which show that

(1.7) $S^{x}\not\in S$

and

(1.8) $S\not\in S^{x}$.

2.

Examples

Example

1.

An example which shows the relation (1. 7).

(2. 1) $f(z)=z+ \frac{4}{5}z^{2}+\frac{1}{5}z^{3}$.

If

we

let

$\frac{zf’(z)}{f(z)}=\frac{5+8z+3z^{2}}{5+4z+z}=\frac{u+iv}{s+it}2$

and $z=\gamma e^{i\theta}$, then

we

have

(3)

186

$u=5+8r\cos\theta+3r^{2}\cos 2\theta$, $v=8\gamma\sin\theta+3r^{2}\sin 2\theta$.

and $it$ $is$

ev

$i$dent that ${\rm Re}[zf’/f]>$ $if$ and onl$y$ $if$

$su+tv>0$

.

Since

we

easily deduce

$su+tv=40r^{2}\cos^{2}\theta+20r(3+\gamma^{2})\cos\theta+25+12r^{2}+3r^{4}$

$\geqq 25-60r+52r^{2}-20r^{3}+3r^{4}$ $(\cos\theta=-1)$

$=(1-r)(25-35r+17r^{2}-3r^{3})$,

where

25-35

$r+17r^{2}-3r^{3}>0$ $(0\leqq r<1)$.

we

deduce

$su+tv>0$

, wh$i$ch shows that $f\in S^{x}$.

On the other hand, if

we

put $z_{0}= \frac{3}{5}+\frac{4}{5}i$ , then

we

have

${\rm Re} \frac{z_{0}f’(z_{o})}{f(z_{0})-f(-z_{0})}<0$,

wh$i$ch shows that $f\not\in S$ .

Exanple

2.

An example $f$

or

the relat$i$

on

(1. 8).

(2. 2) $f(z)= \frac{1}{2}z+z^{2}+\log\frac{2+z}{2}$

To show that the above function $f$ belongs to $S$ ,

we use

the

following theorem due to Mi 1 ler and Mocanu.

Theorem $B$ (Miller and Mocanu [1]). If $f(z)\in A$ satisfies

(2.3) $| \frac{zf’’(z)}{f’(z)}|<2$ $(z\in D)$

(4)

187

If

we

let

$g(z)= \frac{f(z)-f(-z)}{2}$,

then

we

obtain

$| \frac{zg’’(z)}{g’(z)}|=|\frac{8z^{2}}{(4-z^{2})(8-z^{2})}|<\frac{8|z|^{2}}{(4-|z|^{2})(8-|z|^{2})}<\frac{8}{21}$ $(z\in D)$.

Hence from Theorem $B$,

we

deduce $g(z)\in S^{x}$ . Therefore, by using

Theorem $A$,

we

have $f(z)\in$S.

On the other hand, if

we

put $z_{0}=-5/8\in D$ , then

we

have

${\rm Re} \frac{z_{0}f’(z_{0})}{f(z_{0})}=-0.047\cdots\cdots<0$,

which yields $f\not\in S^{x}$.

References

[1] S. S. $Mi$ ller and P. T. Mocanu, On

some

class of $fi$rst order $diff$erent$i$al

subord$i$nat$i$ons, $Mici$gan Math. J. ,

32

(1985),

185-195.

[2] K. Sakaguchi, On

a

certain univalent mapping, J. Math. Soc. Japan 11(1959),

72-75.

[3] $Z$. Wu, On classes of Sakaguchi functions and Hadamard products, Sci. Sinica

30(1987),

128-135.

参照

関連したドキュメント

&amp;BSCT. Let C, S and K be the classes of convex, starlike and close-to-convex functions respectively. Its basic properties, its relationship with other subclasses of S,

The main purpose of this paper is to establish new inequalities like those given in Theorems A, B and C, but now for the classes of m-convex functions (Section 2) and (α,

Specializing the members of Chebyshev systems, several applications and ex- amples are presented for concrete Hermite–Hadamard-type inequalities in both the cases of

Thus, if we color red the preimage by ζ of the negative real half axis and let black the preimage of the positive real half axis, then all the components of the preimage of the

This paper is a part of a project, the aim of which is to build on locally convex spaces of functions, especially on the space of real analytic functions, a theory of concrete

In this paper, we establish the boundedness of Littlewood- Paley g-functions on Lebesgue spaces, BMO-type spaces, and Hardy spaces over non-homogeneous metric measure spaces

This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.. Keywords: Colombeau algebra,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. CHANDRA, A note on the degree of approximation of continuous functions,