88
Two
Generalizations of the
Projected Gradient
Method
for
Convexly
Constrained
Inverse
Problems
–Hybrid
steepest
descent method, Adaptive projected subgradient
method
山田功 (IsaoYamada)\dagger 小倉信彦 (NobuhikoOgura ) $\mathrm{f}$
\dagger Dept. ofCommunications& Integrated Systems, Tokyo InstituteofTechnology \ddagger Precision and Intelligence Laboratory, Tokyo Institute ofTechnology
Abstract Inthispaper,wepresent abrief reviewonthe centralresults of two generalizations
ofa classicalconvex optimizationtechniquenamed the projected gradient method$[1, 2]$. Thc 1st
generalizationhasbeen made byextendingtheconvexprojection operator, usedinthe projected
gradient method,to the (quasi-)nonexpansive mappingin areal Hilbert space. By this
general-ization,wededucethe hybrid steepest descent method[3-10] (see also [11]) thatcanminimize the
convex cost functionoverthefixedpoint setof nonexpansive mapping [3-9, 11] (theseresults can
also be interpreted as generalizations offixed point iterations found for example in [12-15]$)$ or,
more generally, over the fixed point set ofquasi-nonexpansive mapping [10]. Since (i) the
solu-tion set ofwiderange of convexly constrained inverse problems, for example in signal processing
and image reconstruction, can be characterized as the fixed point set of certain nonexpansive
mapping [5,6, 9,16-18], and (ii) subgradient projection operator and its variations are typical
examples of quasi-nonexpansive mapping $[10_{i}19]$, the hybrid steepest descent method has rich
applications in broad rangeof mathematical sciences and engineerings. The 2nd generalization
has beenmade forthe Polyak ’s subgradient algorithm[20] thatwas originally developedas a
ver-sion, of the projected gradient method, for unsmooth convex optimization problemwith a fixed
target value. By extending the Polyak ’s subgradient algorithm to thecasewhere theconvex cost
functionitself keeps changing in thewholeprocess, wededuce the adaptive projected subgradient
method [21-23] thatcan minimize asymptotically the sequence of unsmooth nonnegativeconvex
cost functions. The adaptive projectedsubgradientmethodcanserve as aunifiedguiding principle
ofawide rangeofset theore$tic$ adaptive filteringschemes [24-30] fornonstationary random
pr0-cesses. Thegreat flexibilities in thechoiceof$(\mathrm{q}\iota \mathrm{l}\mathrm{a}\mathrm{s}\mathrm{i}-)\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{v}\mathrm{e}$mappingaswell asunsmooth
convex cost functions in the oposed methods yield naturally inherently parallel structures (in
the senseof [31]$)$.
1
Preliminaries
Let $H$ be
a
real Hilbert space equipped with aninner product $\langle$.,
$\cdot\rangle$ and its inducednorm
$||$ $||$. For a continuous
convex
function $\Phi$ : $H$ $arrow \mathbb{R}$, the $s\prime ubdiffer\cdot ential$ of $\Phi$ at $\forall y\in?\{$,the set ofall subgradients of$\Phi$at $y:\partial\Phi(y):=\{g\in \mathrm{H} | \langle x-y, g\rangle+\Phi(y)\leq\Phi(x), \forall x\in H\}$
is nonempty. The
convex
function $\Phi$ : $\mathcal{H}arrow \mathbb{R}$ has a unique subgradient at $y\in \mathcal{H}$ if$\Phi$ is Gateaux differentiate at
$y$. This unique subgradient is nothing but the Gateaux
differential $\mathrm{D}’(\mathrm{y})$. A
fixed
point ofa
mapping $T$ : $\mathcal{H}$ ” $\mathcal{H}$ is a point $x\in$ it such that$T(x)=x.$
Fix{T)
$:=\{x\in \mathrm{H} |T(x)=x\}$ denotes the fixed point set of$T$.
A mapping$T:itarrow 7?$ iscalled (i) strictly contractive if $||$$7$ $(x)-7$$(y)||\leq\kappa||x-y||$ for
some
$\kappa$ $\in(0,1)$and all $x$,$y\in$ ? [The Banach-Picard
fixed
point theorem guarantees theunique existenceof the fixed point, say $x$
.
$\in$ Fix(T), of$T$ and the strong convergence of $(T^{n}(x_{0}))_{n\geq 0}$ to tThis workwassupported inpart byJSPS grants-in-Aid (C15500129).$\epsilon\epsilon$
$x$
.
for any $x_{0}\in \mathcal{H}$.] ;(ii) nonexpansive if $||7(x)$ -T(y)$||\leq||x-y||$, $\forall x$,$y\in$ ?t; (iii) firmly
nonexpansiveif $||7(x)-T(y)||^{2}\leq\langle x-y, T(x)-T(y)\rangle$, $1x$,$y\in$ $\mathrm{H}[32]$; and (iv) attracting
nonexpansiveif$T$isnonexpansive with Fix(Tl) $\neq\emptyset$and $||7$$(x)-7$$\mathrm{K}$ $||x-f||$,$\forall f\in$ Fix(T)
and $\forall x$ $\not\in$ Fix(T) [32]. Given a nonempty closed convex set $C\subset \mathcal{H}$, the mapping that
assigns every point in $H$ to its unique nearest point in $C$ is called the metric projection
or convex projection onto $C$ and is denoted by $\Gamma_{C}^{J}$; i.e., $||$” $-P_{C}(x)||=d(x, C)$, where
$d(x, C):= \inf_{y\in C}||x-y||$. $P_{c}$ is firmly nonexpansive with $Fix(P_{C})=C[32]$. A mapping
$T$ . $\mathcal{H}arrow$ ?l is called quasi-nonexpansive if $||$$7$$(x)$-7$(\mathrm{j})||\leq||x$$-f||$,$\forall(x, f)$ $\in H$$\cross$Fix(T).
In this paper, for simplicity, amapping 7: $\mathcal{H}arrow 7${ is called attracting quasi-nonexpansive
if Fix$(T)\neq\emptyset$ and $||$$7(x)$ –
$f||<|1$
$f||$, $\forall(x, 7)$ $\in Fix$$(T)c\cross$ Fix(T). Moreover, amapping $T$ : $Pt$ $arrow H$ is called $\alpha$-averaged quasi-nonexpansive if there exists a
$\in(0,1)$
and a quasi-nonexpansive mapping
A:
$H$ $arrow$ $7\mathrm{f}$ such that $T=(1-\alpha)I+\alpha N$ (Note:Fix(T) $=Fix$($\Lambda\gamma$ holds automatically). In particular, 1/2-averaged quasi-nonexpansive
mapping, which we specially call firmly quasi-nonexpansive mapping. Suppose that a
continuous
convex
function $\mathrm{D}$:it $arrow$ $\mathrm{R}$ satisfies
$1\mathrm{e}\mathrm{v}_{\leq 0}\Phi:=$
{
$x\in$ ?l $|\Phi(x)\leq 0$}
$\neq \mathit{1}\mathit{1}.$ Thenamapping $T_{\epsilon p(\Phi)}$ : 7{ $” \mathrm{p}$$\mathcal{H}$ defined by
$T_{sp(\Phi)}$ : $x\mapsto\{$ $xx- \frac{\Phi(x)}{||g(x)||^{2}}g(x)$ if $\Phi(x)>0$ (1)
if$\Phi(x)\leq 0,$
where $g$ is a selection of the subdifferential $\partial\Phi$, is called a subgradient projection
rela-tive to (! [32].The mapping $7\mathrm{g}_{p(\Phi)}$ : $Pl$ $arrow \mathcal{H}$ is $fi$ rmly quasi-nonexpansive and satisfies
$F^{l}ix(T_{sp(\Phi)})=\mathrm{l}\mathrm{e}\mathrm{v}\leq 0\Phi$ (see for example [19]).
Figure 1: Subgradient projection relative to (!)
Amapping $\mathrm{i}$ : $\mathrm{h}$ $arrow$ h is called (i) monotoneover $5\subset?t$if
$\langle$$\mathcal{F}(u)-F$(v),$u-v\rangle$ $\geq 0,$
$lu$,$v\in S.$ In particular,
a
mapping 7 which is monotoneover
$S\subset$ ?t is called (ii) $par\cdot arnonotone$over
$S$ if $\langle \mathcal{F}(u)- \mathrm{F}(\mathrm{T}) u-v\rangle$ $=0\Leftrightarrow \mathrm{F}(u)$ $=F$(v), Vu,$v\in S[34]$;(iii) uniformly monotone
over
$S$ if there exists a strictly monotone increasingcontinu-ous
function $a$ : $[0, \infty)arrow p$ $[0, \infty)$, with $a(0)=0$ and $a(t)arrow$poo
$\mathrm{o}\langle$$\mathcal{F}(u\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{K}-\mathrm{i}\mathrm{f}$
Fth
$(_{\mathrm{V}),u-v\rangle\geq a(||u-v||\mathrm{t}_{1}^{1}\mathrm{j}_{\mathrm{a}\mathrm{t}\langle \mathcal{F}(u)-\mathcal{F}(v),u-v}^{u-\tau||\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}11u,v\in_{\mathrm{t}}9}}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}\eta>0\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}’)[38]\geq$,$\cdot\eta\}$
[38].
as
$tarrow\infty$, satisfying$\mathrm{i}\mathrm{v})\eta$-strongly
monotone
$|u-v||^{2}$ for all $u$,$v\in S$
The variational inequality problem$VIP(\mathcal{F}, C)$ is defined
as
follows: given $\mathrm{F}$ $:Itarrow 7($which is monotone
over a
nonempty closedconvex
set $C\subset??$, find $u^{*}\in C$ such thatso
convex set $C$and G\^ateaux differentiate with derivative $\mathrm{O}-$, over an open set
$U\supset C,$ then
$\Theta’$ is paramonotone over $C$. For such a $\Theta$, the set $\Gamma:=\{u\in C|\Theta(u)=\inf\Theta(C)\}$ is
nothing but the solution set of $VIP(\Theta’, C)[33]$. Given $\mathrm{r}$ : $H$ $arrow H$ which is monotone
over a nonempty closed convex set $C$, $\prime u^{*}\in C$ is a solution of $I\mathrm{I}\mathrm{P}$(F,$C$) if and only if
$u^{*}\in Fix$$(P_{C}(I-\mu \mathcal{F}))$ foranarbitrarilyfixed$\mu>0$ (Forrelated mathematical discussion
in this section, the readers should consult, e.g., [6, 9, 19, 31-38]$)$.
2
Hybrid
Steepest
Descent Method
Theorem 1 (Strong convergence for nonexpansive mapping [6, 9]) Let 7: $\mathrm{H}$ ”
$H$ beanonexpansivemappingwithFix$(T)\neq\emptyset$. Suppose that a mapping $\mathrm{r}$ : $H$ $arrow \mathcal{H}$is
ts-Lipschitzian and$\eta$-strongly’monotone over$T(H)$. Then, by usingany sequence $(\lambda_{n})_{n\geq 1}\subset$
$[0, \infty)$ satisfying (Wl) $\lim_{narrow+\infty}\lambda_{n}=0$, (W2) $\sum_{n\geq 1}\lambda_{n}=+\mathrm{o}\mathrm{o}$, $(W \mathit{3})\sum_{n>1}|$A
$n$
- $\mathrm{X}n+1|<$
$+\mathrm{o}\mathrm{o}$ [or $(\lambda_{n})_{n\geq 1}\subset(0, \infty)$ satisfying (W1) $\lim_{narrow+\infty}\lambda_{n}=0$, (W2) $\sum_{n\geq 1}\overline{\lambda}_{n}=+\mathrm{o}\mathrm{o}$, (L3)
$\lim_{narrow\infty}(\lambda_{n}-\lambda_{n+1})\lambda_{n+1}^{-\Delta}.=0]$, the sequence $(u_{n})_{n\geq 0}$ generated, with arbitrary$u_{0}\in \mathcal{H}$, by
$u_{n+1}:=T(u_{n})-\lambda_{n+1}\mathcal{F}(T(u_{n}))$ (2)
converges strongly to the uniquely existing solution of the $VIP$: find $u^{*}\in$ Fix(T) such
that $\langle v-u^{*}, \mathcal{F}(u^{*})\rangle\geq 0$, $/v$ $\in$ Fix(T). (Note: The condition (L3)
was
relaxed recently to $\lim_{narrow\infty}\lambda_{n}\lambda \mathit{3}=1[11].)$ $\square$Theorem 1 isageneralizationofa fixedpointiteration [12-15]
so
called the anchor method:$u_{n+1}:=\lambda_{n+1}a+$ $(1-\lambda_{n+1})T(u_{n})$,
which converges strongly to $P_{Fix(T)}(a)$.
The hybrid steepest descent method (2) can be applied to
more
genaral monotoneop-erators $[7, 8]$ if$\dim(H)<\infty$. Moreover, by the use of slowly changing sequence of
nonex-pansivemappings having
same
fixed point sets, avariation ofthe hybrid steepest descentmethod is gifted with notable robustness to the numerical
errors
possibly unavoidable inthe iterative computations [9].
Thenext theorem showsthat thehybrid steepest descent methodcanalsobeappliedto
thevariational inequality problem
over
thefixedpointset ofquasi-nonexpansive mappings.Definition 2 (Quasi-shrinking mapping[10]) Suppose that $T:itarrow 7?$ is quasi-
non-expansive vvith Fix(T)$)\cap C\neq\emptyset$ for
some
closedconvex
set $C\subset$ it. Then 7: $?\{arrow$ ?t iscalled quasi-shrinking on $C(\subset \mathcal{H})$ if
$D$ : $r\in[0, \infty)\mapsto\{$
inf $d$($u$,Fix(T))-d(T(u), Fix(T))
$u\in\triangleright(F\cdot x(T),r)\cap C$
$if\triangleright$($\Gamma\sqrt$ix(T),
$r$) $\cap C\neq\emptyset$
oo otherwise
satisfies
$D(\prime r)=0$a
$r$. $=0,$ where $\triangleright$ Fix(T) $r)$ $:=${
$x\in$ $\mathrm{H}$ $|\mathrm{d}(\mathrm{x}$, Fix(T) $\geq r$}.
$\square$Proposition 3 [10] Supposethat a continuousconvex function $\Phi$ : $\#?arrow \mathbb{R}$has$lev_{\leq 0}\neq\emptyset$
and bounded subdiferential $\partial\Phi$ : $?t$ $arrow 2^{?t}$, i.e., $\partial\Phi$ maps bounded sets
to
bounded sets.Define $T_{\alpha}:=(1-\alpha)I+\alpha T_{\epsilon p}(\Phi)$ for
a
$\in(0,2)$ [hence Fix(T\mbox{\boldmath $\alpha$}) $=lev_{\leq 0}\Phi$:see
(1) for thedefinition
of$T_{sp(\Phi)}$]. Then,we
have the followings:(a) Ifa selection of subgradient of$\Phi$, say$\Phi’$ : $\mathrm{H}$ $arrow H,$ is uniformlymonotone
over
$?t$,then $T_{\alpha}$ is quasi-shrinkingon any nonempty bounded closed convex set $C$satisfying
91
(b) Assume $\dim(?t)<$ $\mathrm{c}\mathrm{x})$
.
Then$T_{\alpha}$ is quasi-shrinking on anynonemptybounded closedconvex
set $C(\subset \mathrm{h})$ satisfying $C\cap$lev\leq 0$\Phi\neq\emptyset$. $\square$Theorem 4 (Strong
convergence
for quasi-shrinking mapping $[10]\mathrm{J}$ Suppose that7: $\mathcal{H}arrow$ $7\mathrm{f}$ is a quasi-nonexpansive mapping with
Fix{T)
$\neq\emptyset$. Let $\mathrm{F}$ : $H$ $arrow H$ be$\kappa-$
Lipschitzian and $\eta$-strongly monotone over$T(\mathit{7})$ [Hence $VIP$($\mathcal{F}$, Fix(T)) has its unique
solution$u^{*}\in Fix(T)]$. Suppose also that there exists$SOl\mathit{1}\mathit{1}\mathit{6}$ $( \int, u_{0})\in Fix(T)\cross H$for which
$T$is quasi-shrinking on
$C_{f}(u_{0}):=\{x\in \mathcal{H}|||x-f1$ $\leq R_{f}:=\max(||u_{0}-f||,$$\frac{||\mu \mathcal{F}(f)||}{1-\sqrt{1-\mu(2\eta-\mu\kappa^{2})}})\}$
Then for any$\mu\in(0, \frac{2\eta}{\kappa^{2}})$ andany$(\lambda_{n})_{n\geq 1}\subset[0,1]$ satisfying(Hl) $\lim_{narrow\infty}\lambda_{n}=0,$ and (H2)
$\mathrm{p}_{n\geq 1}$ $\lambda_{n}=\infty$, the sequence $(u_{n})_{n\geq 0}$, generated by
$u_{n+1}:=T(u_{n})-\lambda_{n+1}\mu \mathcal{F}(T(u_{n}))$,
converges strongiy to $u’$
.
$\square$If$\dim(H)<$ $\mathrm{c}\mathrm{x})$ in away similar tothe discussions in [7-9], we can generalizeTheorem
4 for application to more genaral monotone operators [10].
3
Adaptive Projected Subgradient
Method
Theorem 5 (Adaptive Projected Subgradient Method [21,22]) Let$\Theta_{n}$ : $Pt$ $arrow[0, \infty)$
(in $\in$ N) be a sequence of continuous convex functions and $K\subset H$ a nonempty closed convex set. For an arbitrarily given $u_{0}\in K,$ the adaptive projected subgradient method
produces a sequence $(u_{n})_{n\in \mathrm{N}}^{\}\subset K$ by
$u_{n+1}:=\{$
$P_{K}(u_{n}- \lambda_{n},\frac{\Theta_{n}(u_{n})}{||\Theta_{n}(u_{n})||^{2}}\Theta_{n}’(u_{n}))$ $if\ominus_{n}’(u_{n})\neq 0,$
$u_{n}$ othenvise,
where $\Theta_{n}’(u_{n})\in\partial\Theta_{n}(u_{n})$ and 0 $\leq\lambda_{n}\leq$ 2. Then the sequence $(u_{n})_{n\in \mathrm{N}}$
satisfies
thefollowings.
(a) (Monotone approximation) Suppose that
$u_{n}\not\in\Omega_{n}:=\{u\in K|\Theta_{n}(u)=\Theta_{n}^{*}\}\neq\emptyset$ ,
where$\Theta_{n}^{*}:=\inf_{u\in K}\Theta_{n}(u)$. 1 Then, by using VAn $\in(0,2$
(
$1- \frac{\mathrm{e}*}{\mathrm{e}_{n}(u_{n})}$)),
wehave$\forall u^{*(n)}\in\Omega_{n}$, $||$$1\mathrm{j}n11-u’ 1(n)$ $<||un-u" n)$$||$.
(b) (Boundedness, Asymptoticoptimality) Suppose
$\exists N_{0}\in \mathrm{N}s.t$. $\{$
$\ominus_{n}*=0,$ $in\geq N_{0}$ and
$\Omega:=\bigcap_{n\geq N_{0}}\Omega_{n}\neq\emptyset$. (3)
Then $(u_{n})_{n\in \mathrm{N}}$ is bounded. Moreover if
we
speciallyuse
$\forall\lambda_{n}\in[\epsilon_{1},2-\epsilon_{2}]\subset(0,2)$,$\underline{we}$
have$n \lim_{arrow\infty}\Theta_{n}(u_{n})=0$ provided that $(\Theta_{n}’(u_{n}))_{n\in \mathrm{N}}$ is bounded.92
(c) (Strong convergence)Assume(3) and$\Omega$hassomerelative interior$w.r.t$. a hyperplane
$\Pi(\subset H)$, $i.e.$, there exist$ii$ $\in\Pi\cap\Omega$ alldEe $>0$ satisfying
{
$v\in$ II $|||v-\tilde{u}||\leq\epsilon$}
$\subset\Omega$.Then, by using$\forall\lambda_{n}\in[\epsilon_{1},2-\epsilon_{2}]\subset$ $(0, 2)$, $(u_{n})_{n\in \mathrm{N}}$ convergesstronglyto
some
$ii$$\in K,$$\mathrm{i}.\mathrm{e}.,\lim_{narrow\infty}||u_{n}-\hat{u}||=0.$ Moreover$\lim_{narrow\varpi}\Theta_{n}(\hat{\prime u})=0$ if(i) $(\Theta_{n}’(u_{n}))_{n\in \mathrm{N}}$ is bounded and
(ii) there exists bounded $(\Theta_{n}’(\hat{u}))_{n\in \mathrm{N}}$ where $\Theta_{n}’(\hat{u})\in\partial\ominus_{n}(\hat{u}),\forall n$ $\in$N.
(d) (A characterization of $ii$) Assume the existence of
some
interior $i$ of$\Omega$, $i$.
$e.$, thereexists $\rho>0$ satisfying $\{v\in 11|||v-\tilde{u}||\leq\rho\}\subset\Omega$. In addition to the conditions (i)
and (ii) in (c), assume that thereexists $\delta>0$ satisfying
$in\geq N_{0}$, lu $\in\Gamma\backslash (1\mathrm{e}\mathrm{v}_{\leq 0}\Theta_{n}),\exists\Theta_{n}’(u)\in\partial\Theta_{n}(u),||\mathrm{e}$
;
$(u)||\geq\delta$,where$\Gamma:=$
{
(1-s)ii+s\^u\in Pt $|s\in(0,1)$}.
Then, by$using\forall\lambda_{n}\in[\epsilon_{1},2-\epsilon_{2}]\subset(0,2)$,$\lim_{narrow\infty}u_{n}=:\hat{u}\in\overline{\lim_{narrow}\inf_{\infty}\Omega_{n}}$, where $\overline{\lim_{narrow}\inf_{\infty}\Omega_{n}}$ stands for the closure of $\lim_{narrow}\inf_{\infty}$$\Omega_{n}:=$
$\bigcup_{n\geq 0}\bigcap_{k\geq n}\Omega_{k}$. $\square$
4
Concluding
Remarks
In this paper, webriefly present central results on the hybrid steepest descent method and
the adaptive projected subgradient method recently developed by our research group. For
detailed mathematical discussions of the methods arrd their applications to inverse
prob-lems and signal processing problems, see [3-10,16,17,21-23, 30] and references therein.
References
[1] A.A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc. 70
(1964)
709-710.
[2] E.S. Levitin and B.T. Polyak, Constrained Minimization Method, USSR
Computa-tional Mathematics and Mathematical Physics 6 (1966)
1-50.
[3] I. Yamada, N. Ogura, Y. Yamashita and K. Sakaniwa, Quadratic optimization of
fixedpointsofnonexpansive mappings in Hilbertspace, Numer. Funct. Anal. Optim.
19 (1998) 165-190 (see also Technical Report
of
IEICE,DSP96-106
(1996) 63-70).[4] F.Deutschand I. Yamada, Minimizing certainconvex functions over theintersection
of the fixed point sets ofnonexpansive mappings, Numer. Funct. Anal. Optim. 19
(1998) 33-56.
[5] I. Yamada, Convex projection algorithm from POCS to Hybrid steepest descent
method (in Japanese), Journal
of
the IEICE, 83 (2000) 616-623.[6] I. Yamada, The hybrid steepest descent method for the variational inequality
prob-lem
over
the intersection offixedpoint setsofnonexpansive mappings, in InherentlyParallel Algorithm
for
Feasibility and Optimization and Their Applications, (D.But-nariu, Y. Censor, and
S.
Reich, Eds.) Elsevier, (2001)473-504.
[7] N. Ogura and I. Yamada, Non-strictly
convex
minimizationover
the fixed point setof the asymptotically shrinkingnonexpansive mapping, Numer. Funct. Anal. Optim.
23 (2002) 113-137.
[8] N. Ogura and I. Yamada, Non-strictly
convex
minimizationover the bounded fixed83
[9] I. Yamada, N. Ogura and N. Shirakawa, A numerically robust hybrid steepest
de-scent method for the convexly constrained generalized inverse problems, in Inverse
Problems, Image Analysis, andMedical Imaging, (Z. Nashed and O. Scherzer, Eds.)
Contemporary Mathematics, 313 Amcr. Math. Soc., (2002) 269-305.
[10] I. Yamada and N. Ogura, Hybrid steepest descent method for the variational
in-equality problem over the fixed point sets ofcertain quasi-nonexpansive mappings,
Victoria International
Conference
2004, Wellington, (to be presented) Feb., (2004).[11] H.K. Xu and T.H. Kim, Convergence ofhybrid steepest descent methods for
varia-tional inequalities, Journal
of
Optimization Theorry and Applications, vo1.119, no.1,(2003) 185-201.
[12] B. Halpern, Fixedpoints of nonexpanding maps, Bull Amer. Math. Soc. 73 (1967)
957-961.
[13] P.L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris
S\‘erie A-B 284 (1977)
1357-1359.
[14] R.Wittmann, Approximation offixedpointsofnonexpansivemappings, Arch. Math.
58 (1992) 486-491.
[15] H.H. Bauschke, The approximation offixedpoints of compositions ofnonexpansive
mappings in Hilbert space, J. Math. Anal Appi 202 (1996) 150-159.
[16] I. Yamada, Approximation ofconvexlyconstrained pseudoinverse by Hybrid Steepest
Descent Method, Proc.
of
IEEEISCAS
\prime gg, Florida, May (1999).[17] K. Slavakis, I.YamadaandK. Sakaniwa, Computation of symmetricpositivedefinite
Toeplitz matrices by the Hybrid Steepest Descent Method, Signal Processing 83
(2003)
1135-1140.
[18] C. Byrn, A unified treatment of some iterative algorithms in signal processing and
image reconstruction, Inverse Problems, 20 (2004) 103-120.
[19] H.H. Bauschke and P.L. Combettes, A weak-t0-strong convergence principle for
Fej\’er-monotone methods in Hilbert space, Math. Oper. Res., 26 (2001) 248-264.
[20] B. T. Polyak, “Minimizationofunsmooth functionals,” USSR Co omput. Math. Phys.
v01.9, (1969) 14-29.
[21] I. Yamada, Adaptive projected subgradient method –A unified view ofprojection
based adaptive algorithms (in Japanese), Journal
of
the IEICE, 86 (2003)654-658.
[22] I. Yamada and N. Ogura, Adaptive projected subgradient method and its
applica-tions to set theoretic adaptive filtering, Proc.
of
the 37th AsilomarConference
on
Signals, Systems and Computers, California, Nov., (2003).
[23] I. Yamada, N. Ogura and M. Yukawa, Adaptive projected subgradient method and
its acceleration techniques,
Proc.
of
IFAC
Workshopon
Adaptation and Learning inControl and Signal Processing (ALCOSP 04) Yokohama, (to be presented) August, (2004).
[24] J. Nagumo and J. Noda, “Alearning methodforsystem identification,” IEEE Trans.
84
[25]
A.
E. Albert and L. S. Gardner, Jr Stochastic approximation and nonlinear regres-sion MIT Press,1967.
[26] T. Hinamoto and S. Maekawa, Extended theory of learning identification (in
Japanese), Trans. IEE Japan, $\mathrm{v}\mathrm{o}\mathrm{l}.95- \mathrm{C}$, no.10, (1975) 227-234.
[27] K. Ozeki and T. Umeda, Anadaptivefiltering algorithm using anorthogonal
projec-tion to an affinesubspace and its properties (in Japanese), IEICE Trans., $\mathrm{v}\mathrm{o}\mathrm{l}.67- \mathrm{A}$,
n0.5, (1984) 126-132.
[28] S. Gollamudi, S. Nagaraj, S. Kapoor and Y. H. Huang, Set-membership filtering
and aset-membership normalizedLMS algorithm with an adaptive step size, IEEE
SignalProcessing Lett, vo1.5, n0.5, (1998) 111-114.
[29] L. Guo, A. Ekpenyong and Y. H. Huang, Frequency-domain adaptive filtering –
A set-membership approach, Proc.
of
the 37th AsilomarConference
on
Signals,Systems and Computers, California, Nov., (2003).
[30] I. Yamada, K. Slavakis and K. Yamada, An efficient robust adaptive filtering
alg0-rithm based on parallel subgradient projection techniques, IEEE Trans. on Signal
Processing, vo1.50, n0.5, (2002) 1091-1101.
[31] Y. Censor andS.A Zenios, Parallel Optimization: Theory, Algorithm, and
Optimiza-tion (Oxford University Press, 1997).
[32] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex
fea-sibility problems, SIAM Review 38 (1996)
367-426.
[33] I.
Ekeland
and R. Themam,Convex
Analysis and Variational Problems ,Classics
in Applied Mathematics 28 (SIAM, 1999).
[34] Y. Censor, A.N. Iusem and S.A. Zenios, An interior point method with Bregman
functionsfor thevariationalinequality problemwithparamonotone operators, Math. Programming 81 (1998)
373-400.
[35] D. Butnariu and A.N. Iusem, Totally Convex Functions
for
fixed
point computationand
infinite
dimensional optimization (Kluwer Academic Publishers, 2000).[36] K. Goebel and S. Reich,
Uniform
Convexity, Hyperbolic Geometry, andNonexpan-sive Mappings (Dekker, New York and Basel, 1984).
[37] W. Takahashi, Nonlinear Functional Analysis– Fixed Point Theorry and its
Appli-cations (YokohamaPublishers, 2000).
[38] E. Zeidler, Nonlinear Functional Analysis and its Applications, $II/B$ . Nonlinear