• 検索結果がありません。

3 . , , , ( [13]). , [1] , ). , r 4 K ( r ) , r ( , ? ,Gordon–Luecke[2] , K , , , , . , 3 . , , , .[10] ( [10] ). • (toroidal3-manifold) • (Seifertfibered3-manifold) • (reducible) ) , (GeometrizationConjecture) , ( (Thurston ,[15]). ) , , , ( − 1 K ( r ) .

N/A
N/A
Protected

Academic year: 2021

シェア "3 . , , , ( [13]). , [1] , ). , r 4 K ( r ) , r ( , ? ,Gordon–Luecke[2] , K , , , , . , 3 . , , , .[10] ( [10] ). • (toroidal3-manifold) • (Seifertfibered3-manifold) • (reducible) ) , (GeometrizationConjecture) , ( (Thurston ,[15]). ) , , , ( − 1 K ( r ) ."

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

KLEIN BOTTLAL SURGERY AND GENERA OF KNOTS

,

Abstract. In this article, we study the creation of Klein bottles by surgery on knots in the 3-sphere. We give an upper bound for the slopes yielding Klein bottles in terms of the genera of knots.

1.

, K 3!"$#% S3 &$'()* , + '-,/.$01 (S3−IntN(K)) E(K) 2-34658794;: . E(K) '8</= ∂E(K) > '@?BADC;E (slope) GF ,∂E(K)> '-H

I JKMLONP$Q R

'MSBTVUDW XZY['

5\]2 , /^ '_ 7 , +`a Q∪ {1/0} 2-b/cdfe

hgBi

(j;kMl [11]m$n ). (/)* K 7-o/pq r-r Cs8thu (r-Dehn surgery) F ,∂E(K)

>

'hv w Xyx

r '

LMN\P$Q]R z-{[|

v}

Z~

:€D7 ,E(K) 7 TZ‚fƒ„ U…X †-v

V

ˆŠ‰ ‹Œ

:]$Ž

'

5]2//: . 5y592$F , K 7-o\pMq r-

{

X9‘M’

7p

a”`qM•

_/–

K(r) 2-3y4 .

— i™˜

aš`

:$;€D7 , œ Q (/)V* ( 0\1 zMžhŸ  ¡ –h¢\£/¤ % Q9¥ −1 'šXy¦[

§¨

©yª

4;:

($)* ) 7-o\pMq

{

X8‘M’

2F , «h¬$­h¬h®/¯Z°±Z²$³´Zµ¶· , ¸$qyq )

œ

QhP

•

_/–

z “

a”`;: (Thurston ' œ

Q{

X9‘M’/£h¹

, [15]). ºOq ›/‹» : ¼O½O¾/¿hÀ

(Geometrization Conjecture)

e8`\l , + 'ÂÃ

 \¡9Ä

' j ,

(²$³ÅOr C[s8thu

l`f: ) F ,

ÇZÈ (reducible)

É SÊOË Ì@U • (Seifert fibered 3-manifold)

Í$Î/Ï U…X†-v ÑÐÒ • _/– (toroidal 3-manifold)

'

›Ó

`ÔB

K : (jBkl [10] m$n ).

Õ

ÍhÖ\2F , }O† S ×„ÙØÚUÛÌ 9ÜZÝ

4f:

{

X ‘’

7GÞ

*

4f: . [10] 2ßDàyáaâ`

: _ 7 , ß + ' [€

K{

X\ ‘’

7/9p

aã`q•

_$–

z

}y†]S×„äØUÛÌ

]Ð\åhæ

”4

:\ , +` F->hç

' 3è Y'

›Ó

`Ô/79é

Ó K : . êº

ˆ

, ë/ìí s9îðïÛñ ´-òhóyô õMr Cfs

tOuö

²$³Åy÷øOõ .

2$F , + ' f€

K

}† S[ZØÚUùÌ ÜMÝ

4;:

{

X ‘M’

F , úyê '(/)û* 79ü Ñ , › pMq

› ½ Ä

$:

'

æý

€Ô ? º Ó , Gordon–Luecke [2] 7/Zp , þÿœ

Q

($)û*

K 7 ü D , ß K(r)

z

}†8S  „ Ø UÛÌ

l ,r Fcû › €G5

z ˜

a”`

: (

Õ

a 7 , þœ

Q (

)û*

[

›

€

£ F , þ XÌy()û* 2

K ›

y7

aã`[: ). ºhq , 5 ' r F 4' c

2/$:$5ZßÔ\: ( & [13]). 5Ñ`V ,j , Ï

{

X8‘M’ ' Ä c

'

74f:

( [1]

‰ ‹Œ

:\ , \F , (/)*

z œ Q Ï K

aGl , }†8S[ „ ØÚUùÌ ÜMÝ 4;:

{

X8‘M’ '

°

ö

«M¬$­h¬ 3°2//:$5

z

Ô\: .

1

(2)

ú 2 , }h†GS\;„ ØU Ì ÜZÝ 4[: X\]‘Z’'vw]Xyx

kh: , /F , vwGXOx F$¶

÷ O¶[´ 9õ . j;kMl , (2,3,2n−3)-xh‚yËGÌy(/)û*

7opq 4n-

{

‘M’

F

}†8S[ „ùØ UùÌ ÜMÝ

4;:$5 z ‹

Ô\: . , n≥2 ' , 5Ñ`×a '-(/)* F

œ Q

Ï2//: .

+[592 , ! '8_

K zBI

7

ka”`;: . . }y† S ×„äØÚUÛÌ

8ÜÝ

4f:

{

X\ ‘’

78ü

, + 'hvw8Xxy'!"#%$

4f:5

F& '

K › Ô ?

5Ñ`V Y)(\'

,j;kMl ,  *01 9ÜMÝ 4[: { X ‘M’,+ ,  ˆ ú.- ' j , Ï { X 

‘’\'Mv w Xx'!",#/$O'

, 78üy4f:]úyê

'0Ox\w X,1

Ñ

,2/354]±.6 %7,8hõ9

: z

/: [3, 5]. <; , & 7 ˆ , ! '-(

z “

aã`

q .

=.>

( & [13]). K

z X 8Ìy()6*

2 K i

,K(r)

z

}O†]S6„ Ø U Ì ÑÐÒ

£ 4[: .

• r

z

úyê@?/

}†8S[ „ ØÚUùÌ '9<$=v w8X$xy'

,|r| ≤12g(K)−8,

+׀2

K ›

,|r| ≤8g(K)−4.

5y582 ,g(K) F (/) * K ' èyc 34 .

A,B Khz

a , 5Ñ`×a ' FDC

—

2$F

K ›

ka”`;: . <; , Ehç ' j , (2,3,2n−3)-x

O‚$Ë Ìy(/)*

2$F , v w8Xyx

z

4n, ($)*Ñ' èyc F n 2/ ˆ ,r= 4g(K)

K p

›

: .

ºyq ,

—

iš˜

a”`

:/f€Ñ7 8'Fy(/)V*Ñ' ±4-

{

X[8‘h’

F

}†S[ „ÛØ U Ì -ÜMÝ

4

: . 8'FO(/)*D' èycF 1

K ' 2 , 5 ' G ‰ F ,r=±4g(K)

K p

: . 2. H (

EI

'

y

J

e

, º

ÓKL

4;:

(

F-!$2//: .

=M>

1. K(r)

z

}†8S[ „ Ø UùÌ GÐÒ

K

aGl ,|r| ≤4g(K) +4

z

ÝN

4;: .

5y592 , þr

z

c , Ôê , úyê@? }†8S[ „ Ø UùÌ '8<$=v w8X$x û

› € £ ê

e$: , 5 ' |r| ≤4g(K) + 4 › € F , ›$‹$» : Whiteney–Massey '£M¹ (j;kMl [9]

m$n ) Ô6aPO €Z › €85/

z

, QSRTyú)U\7p VW

Õ `

: .

!7

ka`;:

' F , >Oç ' FDC

—

Ô6

› €

2/: . 5 'X<Y Ý%N 7 ] FZ!

'-(

“

q .

=>

2. K(r)

z

}y† S„ ØÚU Ì ]ÐZ

,|r|= 4g(K) + 4

z

Ý<N

4[:

' F ,K

z

(2, l)-U X

†ZvZ(/)V*

T(2, l) 2 r= 2l+ 2 ' , ºyq$F ,K

z

+M`×a

'[(@\

T(2, m) ] T(2, n)

2 mn >0 Ôê r= 2m+ 2n 'M] 7

¡ : .

5

'-(

Ô6a ,K

z œ Q

Ï2 ,K(r)

z

}†8S[ „ùØ UùÌ GÐÒ

K

aGl ,|r| ≤4g(K)

z Ý

N

4f:$5

z

, ^%_h7Ô\: . Õ a 7 , 5 ' G ‰ ' X<Y Ý<N 7 Ñ F , ! '-( “ q .

=>

3. K z œ Q (/)×* 2 ,K(r) z }†9S[ „ùØ U Ì Ð/Z , ÔMê ,|r|= 4g(K) z ÝN 4

: K

aGl ,r F K

z ~

:D`,abø,ë/ì-í

sdc îðïÛñ

±eMf

?BADC;E

2//: .

E.I

'

C)g2-àOá/q

_ 7 ,Xh |r|= 4g(K)

z

Ý<N

4f:Ñj F ,i,j '

Ik

c g=g(K) 78ü

Ñ

!M"

4;: .

(3)

3. £M¹ ' ' „

5 '

I 2$F , £M¹ '

J '

„

àá;f€ .

º Ó

,

K G ‰

, K

z

X-Ì$()V*Ñ'

OF , U X†ZvM()* 7Zo\pMq

{

Xf9‘M’'

Y , [12] 'f†-SðU (\)×* + 'y;M' è/c ',X@h ,

Õ

a97 , Whiteney–

Massey '-£O¹

K

p J

4;: . <; , £M¹ 2 › , K

z

X-Ì$(/)*

2 , X<Y

|r|= 4g(K) + 4

z

ÝN

4;:

' F , ($)V* K

z

(2, l)-U X†-v(/)* 2 r= 2l+ 2 ' O7

¡

:

›

€85ZßÔ\: .

X 9ÌO() * 2 K › G ‰

'Z£Z¹'

J

'-‘

F ,

Q %

'

‹Bˆ

Ô;a

† MÌ

d !

†hÊ "

Ý

, + ' ! †MÊ #$ 4f:\ › €]ß ' 2$/: . &% ,K 2

K ›

($)*

,K(r)

z

}†8S[ „ ØÚUùÌ GÐÒ

£

4;: . 5 ' , EOà '9_ 7 ,r Fc\2 4' Ñ

—

›

. ºhqh>/Ô6a '

[

q › ' 2 , r6= 0 £ 4;: .

Õ

a 7 , '

L

')( , é+*

K a K ',

-

8p

,r >0 £ 4;: .

º Ó

, ! †OÊM' "Ý;.

J

B€ . £  ˆ ,K(r) F }$†8Sf „ Ø UùÌ 8ÐÒ

z

, + '&/

,

{

X[9‘M’

2 ‡ ˆŠ‰‹

Õ

`B:

T-‚Bƒ „-U X[†-v

V '0 ‹ûˆ

z

C21

' ß '

Pb

,P Pb∩E(K) 23k[aš`;: E(K) &' ?\ }$†9S[ „ Ø UùÌ ;€ . 5 ' , P F E(K) & 2Í/ÎÏ (incompressible Ôhê boundary-incompressible) 2:/5\

z ‹ Ô

: (Lemmas 2.1, 2.2, [13]). ú ,Q⊂E(K) K ' C+1OèycÉ SÊOË Ì@U

Q % 4;: . 5

'

, Q ß E(K) & 2-Í/Î/Ï7

K : . bQ 2 Q '9<$= ∂Q

{f|

v}

24

a”`;:

P

Q

%6ã4f: . 5O582 ,P Q ' ÍÎ05

K6

Ô6a ,|∂P ')7[O(

Ý ∩∂Q|=r 2 ,P∩Q '87

Ý

F , 9 '

Q

%O>/2

H

IGJ

Ñ

— ›

5 z ‹

Ô\: . P∩Q '0: Ý F (|∂P| ×r)/2 Í

/:

z

, 5Ñ`×a ; Ñ ,Qb−IntQ '

{|

v}

(<pMq )=> Ñ ,Qb >\74 5º-`

q!

†OÊ GQ

?"Ý

4;: . @ _ 7 ,Pb >7ß! †OÊ GP

?"Ý

4;: .

552 , P '<=' Ý c |∂P| =p F , 1 > 'A c G

— ›

5-7)B)j46: . ½C

K a , +€š2

K › S3 & 74 5ºZ`qD8dfe ÇE

P/Q

% z

"$Ý

2 û

º€ . ºyq , p= 1 ' ,P F-úyê@? }y†8S[ „ Ø UùÌ 2 ,r FM+ '9<$=v w8X$x

K : .

Õ

, £M¹ 1 '

J

'

ž Ý Õ Œ

. F ,K F X-Ì 2

K › £

Ñh›

:9Ô6a , r Fc . p ,p= 1 ' , £M¹ 1 F Whiteney–Massey '£h¹ Ô6aO € . +׀2

K ›

, êº ˆ p >1 ' , F , ! ' 

z J 2 $: .

G

1. p >1 ' ,r≤4g(K)−4

z

ÝڈPN

ê .

H J

'I . p >1 £ 4[:

H

ê/º

ˆ

p≥3

K : ). 5 '] F ,∂P 'D[y( Ý J (ê

º ˆ

,GP ' =>J ) 7 ,∂E(K)>/20K å 2 › :MLN[7 †OÌ 1,2, . . . , p d[e$: . 5Ñ` 78ü

OVÕ

Œ\

,GQ

' ; 'P

>7ß

† OÌ

¸\p h›6i

. 5 ' ,Pb

z

}†GS[ „ùØ UùÌ

2$/:

5 ,Q ) , ›/‹» : R

|

XS K

Ô6a!

'

5

z

Ô\: .

(a) GQ ' ThÌ@„VUB‚?W

(9 P > '/†hÌ

z X

š›;

) F , qOÔ æ Ô 2è Y (5D` u-;

v-; Ñhg6i ).

(b) u-; v-; F , +`&XZ` , qyÔ æ Ô r/2 Í .

(4)

F , £  ˆ p≥3 ' 2 , /: †?hÌ x6=u, v !M" 4;: . P >/7 †?OÌ x ê › q ;

z$K

4 GQ '-. ! †OÊ

Γx 4;: . 5 ' Γx 79ü

Ñ

,Qb > '

{f|

v} ' %

x-%

Æ . 5 ' , ‘ [4] 7 ˆ , 4$á ' x-% '/ 7 „ U ‚W êe/:$5

z

2$: .

Õ

, (1) ¹ 2 +V€ . êº ˆ ,r≥4g(K) £ D[ i . X x-% ' cV

4;: . Γx

' ; '

cF@_\€

rÍ æ Ô6a , OS[†9X c '

§

7

ˆ

,

1−r+ X

Fix

χ(Fi) = 2−2g(K).

p

,

X≥ X

Fix

χ(Fi) = 1−2g(K) +r .

ú 2 , ¹2' £  ˆ ,r≥4g(K)æ Ô6a , ‰ ‹-Œ :\ ,X ≥r/2 + 1

z “

a”`;: . >

ç '

(a), (b) yá[:\ , 5Ñ`F ,u-; F Ð/Ò

z

v-; F Ð º

K ›

x-% Du ,u-; F Ð º

K ›

z

v-; F ÐÒ x-% Dv ' !M"

Ñh›

: .

ß

, + ' ;€

K

x-% Du, Dv

z

!)"

q6š46:\ , Fh+ ' / 7 , :?

K % (two- cornered face) 7! º`q TOÌ@„ U;‚?W " ê e:5/

z

2: . 5D`a ۼ i$#&% 4f:

, bP  ˆ ß T\-‚fƒ„ U…X†v

V '0 ‹ûˆ

z' K

›

[€

K(

š›

}y†8S Ú„ Ø UÛÌ

êe:$5 z 2

6

ºû€ . Ô , 5Ñ`\Fß_ ýZå , Pb ' ˆ 7 & 4;: .

!7 , £h¹ 2 7-ê ›//æ

z

, 

1  ˆ , p= 1 £ ]

J

4`fl

— ›

.

Õ

, r = 4g(K) + 4 £ 4f: . 

1 *)

K ˆ

, 5 'DG ‰ 7OF ,∂P∩∂Q '87 >/7 ,K ' D h7 ‰\‹

Œ\

,LNf7 †?OÌ 1,2, . . . , r dfe$: .

F ,K F X -Ìy(/)* 2

K › ›

€

£

Ô6a r Fyc\2/ ˆ ,

Õ

a 7 p= 1 £ D

› : ' 2 , <h r≤4g(K) + 4 F Whiteney–Massey '£M¹ Ô6a ^%_O7DO € ' æ

z

, X<Y

ÝN

'

+ "

q ›

5GÔ6a , ! †Ê

pMq J

3k: . º

Ó

, P

z

K ' D8dfe Ç

E/É

SÊOË Ì@U

Q

%$2/$:$5 , Q ) , R

|

XS K

Ô6a!

'

5

z

Ô\: .

ß GQ

z-,/.

;[GÐ å

2 ›

q6a ,r= 4.

ß GQ

z

K ;

e GÐ å 2 › q a ,Q−e '

_[aÑÔ '[(

Ý

7yF GQ '

; F

!M"

K ›

.

5Ñ`×a '21

p

, OS[†9X c ' § 4;:\ ,3Ô/7 ,r≤4g(K) + 4 › €

h z “

a”`;: . Ô ß ,g(K)≥2 2 X<Y ÝN ' hF ,

• GQ

')7

; F H

,

• Qb−GQ F 3 4 '576!8 ,

›

€95\ ºy2 \Ô: . ú , ü

O

4B: GP '

;

J7-ê

›/

, + F ˆ , 

|

XS

Ô a , Pb−GP F 2g 4 '9;ƒ /:<; , 14 ' ƒùÌ 2:<; 7

K p

:$5$

z

Ô: . 5 ' 2g

4

'9;Vƒ

JV Q 2 E(K) >= ˆ 5 i ,E(K) '? È5  ˆ , \F , + '

A ˆ z

3-# – 2

/:5

z

Ô\: . 5Ñ`\F-êº ˆ ,K

z

Ê<@ S/9/XM(/)*

2//:5

j7A Ñh›

: .

(5)

!7 , K Ê<@ S9XO()V*

2:/5GÔ a , E(K) F U X[†Zv Q×[0,1]/(x,1) ∼ (f(x),0) æ Z

K Œ : ‹ e æ z

, + ' ‡ ˆŠ‰ ‹-Œ

-

f á MZ : . º Ó Pb−GP ' 2g

4

'9fƒ

/:;

14 ' ƒùÌ

2:&;

,E(K)' " 7 D þ G` ›

K

7

S;T

U Xx

4f: . + '

2 , 2g 4 '"9fVƒ

2:&;

, 14 ' ƒ Ì

/:&;

Q× {0,1} ') ‹ ˆ

'0:

, +[5 ' f ' Ž % (

Á

3;7hF , + '0: π1(Q)b ' " æ Z

K

,f

z

4f: π1(Q)b

' Ž %

) 4;: . 4;: , ,; ,f ' Ž % 78ü Ñ 2/:yf€

K

Q > '-H

IGJ

Ôê

0/Ï K :

ê e$:y5/

z

2: . 5™`\Fêº ˆ ,E(K) & 7 4 59º9`q-ÍÎ$Ï

0O†

v'!M"

, Zp ,K

z

2 K › ›

€85

ћ

: .

gF , [12] '2[†8S U ()×* ]+ 'h [Z' èc 'X@h , }$†Sf „ùØ U Ì

ÜMÝ

4B:

2 K ›

(/)*

7-o\pMq

{

X8‘h’ '

[14] Ô6a ,K

z

T(2, m)] T(2, n) 2 mn >0 Ôê r= 2m+ 2n

z

ÝڈkN

ê , › €85

z

ÔZ`;: .

C,g7 , £M¹ 3 æ z , 5Ñ` F , £M¹ 1 £M¹ 2,Q ) ,  1 ÔBaPO € . 4. B , ,

£M¹ 2 ÔBa ^%_O7 ÔZ`;:û Ñ ,

1. K

z œ Q

Ï2 ,K(r)

z

}†8S[ „ Ø U Ì GÐÒ

K

aGl ,|r| ≤4g(K)

z

ÝN

4;: .

7 , - *Z01 L(4k,2k−1) F }†8S[ „ ØÚUùÌ GÐÒ ' 2 , 5Ñ`Ô6a ,

2. K

z œ Q

Ï2 ,K(r)

z

- *01

L(4k,2k−1)

K

aÑl ,|r| ≤4g(K)

z

ÝN

4f: .

z “

a”`;: . 5Ñ`\F ,

(‰ R & [3]). K

z œ Q

Ï2 ,K(r)

z

- *M01

K

aGl , |r| ≤4g(K)−1

z

ÝN

4;:

æý

€

78üM4f:

— ›

7 K p

: . A)B

KMz

a ,S3 &h'9($)û*

7o/pZq

{

X  ‘’

2 , + '

f€

K

Z *0\1 z “

a”`B:-Ô

€Ô$F Ô/p

K ›

. <; , ›/‹$» : Berge '6Dv U 7

F , + ' f€

K

-*01

z

ÜMÝ

Õ

`;:ÑjF K ›

.

ú , EI 'h£h¹ 2 £M¹ 3 '

J 7

g›/

, v[w9X$x r

z

úê<?

}/†9Sf „ùØ U

Ì '8<$=v w8X$x

2//:-Ô

€Ô , 2 G ‰ [e [ q . Ô , \F ,K

z

X-Ì(/)*

2

K › G ‰

,K(r)

z

}O†8S[ „ùØ UÛÌ GÐ/Z

, Ôê r

z

úyê@?

}†8S[Ú„ùØ UùÌ '9<=v

w8Xx

2¶ jF

˜

a”`

K ›

.

g

)

!

Á

C)g\7 ,ÍhÖ×GF ^"

'

#[F K › '

24

z

, EI '

ß

[

4[:

' 2 , [6]'

Á Õ

Œ\

= Mº-4 .

2001.2.15–177 %$&('*)

X,+.-Ñv

2 . ‹

`q

/0 ‘Art of Low Dimensional Topology VII’ 7 , 132465785 . &:9 ú,U , ;<>=<

Â?

4@3A%B/U×

'C

@

Ñ

,

Boundary slopes of non-orientable Seifert surfaces for knots (D dfe ÇE/É SÊhË Ì@U

Q %

'9<$=v\w8X$x

)

(6)

› € * 2 3 º q . + '&/ 2 , þ X-Ìy(/)* , 8'FO(/)û* , '(/)* 7 ü ,

úê@?\

}$†8Sf „ùØ U Ì '<=vw8X/x

F-ú)j 2/:û H

º q z

, 5]` F 1

› 2 q . @; , (−2,3,7)-x O‚ Ë Ì(/)* 2$F , v w8X$x 16 20

z

úyê@?

}†8S

„ ØÚUÛÌ '8<=/v w Xx

K p

›

º4 . ºhq , + ' [€

K

2ê ' )

K :

v\w X$x G©Oª

4

:

(/)*

z¡ZÄ

!"

4;:/5ßÔ

ˆ º q . , F[ºO2 êÔ$pMqZj\2Zœ

Q Ï K ' F , 8 'FO(/)* , (−2,3,7)-x O‚ $Ë Ì(/)*

æ

e2Z4 . hi F , [7] m$n

Õ ›

. References

1. I. Agol,Bounds on exceptional Dehn filling, Geom. Topol.4(2000), 431–449.

2. C. McA. Gordon and J. Luecke,Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom.

3(1995), 597–644.

3. H. Goda and M. Teragaito,Dehn surgeries on knots which yield lens spaces and genera of knots, Math.

Proc. Cambridge Philos. Soc.129(2000), no. 3, 501–515.

4. C. Hayashi and K. Motegi,Only single twists on unknots can produce composite knots, Trans. Amer.

Math. Soc.349(1997), 4465–4479.

5. K. Ichihara,Exceptional surgeries and genera of knots, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 4, 66–67.

6. , Boundary slopes of non-orientable Seifert surfaces for knots, ( "!# ,

$&%'&(*)+

,.-/0#21435647*8 ),7*89*: ‘Art of Low Dimensional Topology VII’;<9 (=>?

@BACDEGF

, 2001.2.15–17).

7. K. Ichihara, M. Ohtouge and M. Teragaito, Boundary slopes of non-orientable Seifert surfaces for knots, to appear in Top. Appl. .

8. K. Ichihara and M. Teragaito,Klein bottlal surgery and genera of knots, preprint.

9. S. Kamada,Nonorientable surfaces in 4-space, Osaka J. Math.26(1989), 367–385.

10. J. Luecke, Dehn surgery on knots in the 3-sphere, Proceedings of the International Congress of Math- ematicians, Vol. 1, 2 (Zurich, 1994), 585–594, Birkhauser, Basel, 1995.

11. D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976.

12. H. Schubert,Knoten und Vollringe, Acta Math.90(1953), 131–286

13. M. Teragaito, Creating Klein bottles by surgery on knots, J. Knot Theory Ramifications 10(2001), 781–794.

14. M. Teragaito,Dehn surgeries on composite knots creating Klein bottles, J. Knot Theory Ramifications 8(1999), 391–395.

15. W. P. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1978.

152–8552HIJ2KMLN4OP 2–12–1QRHI&SUTVUWXY&SUG78Z[Y\^]_Z`a"b . Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address:ichihara@is.titech.ac.jp

739–8524cd&ef"g.h 1–1–1,d&e"i`i`VUjk`lmZ[`jk`no . Department of Mathematics and Mathematics Education, Faculty of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-hiroshima 739-8524, Japan

E-mail address:teragai@hiroshima-u.ac.jp

参照

関連したドキュメント

10/8-inequality: Constraint on smooth spin 4-mfds from SW K -theory (originally given by Furuta for closed 4-manifolds) Our “10/8-inequality for knots” detects difference

(The Elliott-Halberstam conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve- ments in Huxley’s results, which for r ≥ 2 are weaker than the result

Therefore, when gravity is switched on, the extended momentum space of a point particle is given by the group manifold SL(2, R ) (to be contrasted with the vector space sl(2, R ) in

“Breuil-M´ezard conjecture and modularity lifting for potentially semistable deformations after

This paper gives a decomposition of the characteristic polynomial of the adjacency matrix of the tree T (d, k, r) , obtained by attaching copies of B(d, k) to the vertices of

The first known examples of small Seifert manifolds arising from Dehn surgery on hyperbolic knots were given by [13]. Berge has a construction which produces families of knots with

We observe that the elevation of the water waves is in the form of traveling solitary waves; it increases in amplitude as the wave number increases k, as shown in Figures 3a–3d,

If we support L-space conjecture, then we can expect any non-trivial Dehn surgery on “most” knots yields a 3-manifold whose π 1 = LO.. A slope r is said to be left-orderable (LO) if π