• 検索結果がありません。

THE TWO-SAMPLE KUIPER TEST

N/A
N/A
Protected

Academic year: 2021

シェア "THE TWO-SAMPLE KUIPER TEST"

Copied!
20
0
0

読み込み中.... (全文を見る)

全文

(1)

THE TWO−SAMPLE KUIPER TEST

      BY

KosABuRo HIRAKAWA’

  1・ Introduction・ Let X=(Xl, X,,… ,.Ylm)and ]r=(}コ, 】夕,… , }「h) be two in− dependent samples of sizes m and n of independent observations from two popula. tions with continuous c.d.f.’s取x)and F,(Y)respectively. When one wish to test 寸he nu皿hypothesis        H・:F・(x)≡F・(x)        (1) against the alternative       1五(1):・F,(x)≠1『』(大),      ・     (2) the Kolmogorov−S㎡ヒnov(K−S)test is often used. Many results of the study about it have been published. While Kuiper[9]proposed an adaptation of the K−S statis− tic and・derived its limiting distribution in the case〃1=n. Abrahamson[1]explored the Bahadur relative e伍ciency of the Kuiper test with respect to the K−S test based ◆nthe limiting. distributions and Raghavachari[11]recently derived the㎞血lg distributions of the K−S statistic and of the Kuiper statistic under the alternative.   In this paper we give tables fbr the twぴsample Kuiper test fbr m=〃=2(1)100 and investigate the powers of the test based on samples with practical siZes. Also, the powers of the Wilcoxon[12]test equivalent to Mann−Whitney[10] test and of ’the正laga [6] test suitable to test、石陥(1) against       H・②:F・(x)≡F・(x・rθ) (θ≠q)    ’ (3) and the powers of the Ansari−Bradley(A−B)[2]test and of the Kamat[8]test suitable against       .      」H,(3): F,(x一θ)≡F,(e(x一θ))   (c≠0, 1)       (4) 二are investigated in order to compare with those of the Kuiper test. The powerS are cst㎞ated by the Monte Carlo method.   2.Tables fbr the Kuiper test. Letτl be the Kuipet statistic defined in(13)and 苦(α)be the smallest value of integer瓦’s satisfying        ’Pr{T,≧kl五lb}≦α,      (5) that is, T,(α)be the critical value of theα一level Kulper test. For the use of the Kuiper test we first compute the values of Pr{T,=k}f()rん=1,2,…, n and sam− .ple sizes〃1=n=2(1)100. The number of all ways from O(0,0)to M(h, n)without ・the restriction’by any sloped丘ne in Fig.1is(2n)!/(h!)2..Let、Fiゴbe the number ◎fways from O to M exceeding neither straight lines g:γ=x−i nor乃:y=x十プ, t [99]

(2)

、 100

K.HIRAKAWA

G,∫be the number of ways from O to M which attain both g and h,克(α,β)be the number of ways from O to、alattice point P(α,β)under. the restriction by g and h. If we putん(α,β)=O fbr apoint P(a,β)outside the belt among g and h, then we have      ・

{鞭::蕊1−1)’(、)

provided Fo, o=O and民i=O江ガく0・‘@Summmg up      Fig.1 G《」’sSatisfying the equatio皿ま十ノ== k and dividing by the totality bf ways, we obtain the wallted probability, i.e. .        Pr{T,・=k}=(n!)2ΣG‘∫/(2n)!・   ・    (7)    「      お’=鳶 In TablC l values of Pr{Tl=k}equal to or more than O.0001’are given onIy fbr n』10,20,30,50,100,and in Table 2 values of the upPer tail probabilities Pr{Tl≧k} equal to or less than O.2 are given f()r same〆s・       Table l Ptobabilities for t血e KUiper statistic ゐ  M(4n) y  π         .﹂ 9 P(α,β) 0(o,o) ‘’      ロ   エ

m=n

10 20 30 50 100 kand P忙{Tl=k} 2 .0111 8 .0127 3 .1416 9 ..OO17 4 .3228 10 .0001 5 .2962 6 .1584 7 .0554 3 .0033 9 ;0995 15 .0001 4 .0440 10 .0491 5 .1483 11  .0204・ 6 .2304 12 .0071 7 .2274 13 .0021 8 .1677 14 .0005 3 .0001 9 .1780 15 .0056 4 .0034 10 .1359 16 .0021 5 .0305 11 .0901 17 .0007

62nδ・11

.0974 .0529 ..0002 7 .1669 13 .0278 19 .0001 8 .1953 14 .0131 5 .0007 11 .1501 17 .0222 23 .0003 6 .0077 12  .「1349 18 .0127 24 .0001 7 .0324 13 .1095 19 .0069 25 .0001

840

 12

.0755 .0817 .0035  9 .1196 15 .0566 ’21 .0017 10 .1465 16 .0366 22 .0008

73951

 1123

.0001 .・O828 .0740 .0127 .0008

84062

 1223

.0013 .0987 ..0600 .0085 .0004

95173

 1223

.0061 .1063 .0470 .0056 .0002

0628411223

.0180 .1058 .0355 .0035 .’nOOI 11 17

23

29

・35 .0374 .0988 .0260 .0022 .0001 12 .0608 18 .0875 24 .0185 ・30 .0013 Kuiper[9]provided an asymptotic fbrmula fbr the、distribution of∨/7 Vs,語with

レ∼,。・・ Trln as   。c        .。

P・・’・{’・f’iiT・V・・.・n≦・}−1一Σ・(・j…−1)〆・’+、:(1+Σノ・e・(2j…一・)・一・“・’)+・(n−・)・

.       ∫=1   tt’. ・ゴ=1        (8)

(3)

101

THE TWO−SAMPLE K:UIPER TEST

一80. ミ ︹80. .ミ ひ80. °。へ N80. °o、 δ8.°。へ 800. ◎。∼ 88. S、 、O⇔O. N、 一δO. トOOO

88

800

NO8. 800. ひ80 N80.

δ8

ト、ト、ト、ト、N h、A、 hr hr⇔H

℃wo℃℃

hrNh鴫hr

一80. hへ ︹08. h、 自OO. 鵠8. 卜一8. N80. ◎0

W﹃

゜〇 黶Z〇.

N3﹃

卜8﹃ 寸OOO. N80.

809

800

N80

δ8

NOOO 一80. ℃N◎wo℃℃ hr」rhr」rN

hhユ(hh

」rNhrhrhr

eqN卜vvv

hr hrへ」s」s 司 ゜o 曹盾W. °0W0. 一80. ト80. ②NOO. ◎0W0. ︹寸OO. ◎o窒n. °◎テO. =OO. 卜NOO. ②80 ぴOOO 寸80

N80

88.

N80

800.

NO8

吟吟hい、h

h鴫h叫hr hr hr NトvNトt卜∀

Nhr」r」HN

Ntheq哨c吟

Nhrhr⇔rhr

hrNNN

hrNhrhr

9NO. ②こO. ◎o_O. 卜90. O◎oOO. 卜②8. いNδ. 一ひ8. 寸80. 等OO. ㊤8. 遷OO. 一寸OO. ∩NOO. ⑳80. 箇80. ②︼OO

88

◎o

k8

800. 、トVNトNトV

NhrhrNN

th th eq吟th

hrNNhrN

⇔qNNNN

NhrhrhrN

Qc》NNN

,NNNhr』r

88. ミ

寸08  0 卜︵寸O. ・寸︼寸O. O寸8. 寸↑NO. 雲NO. 寸N寸O. 累8. O●NO. ぬ90. N寸δ.

88.

9NO. 肩δ. ooミOO. °omNO. 嶋寸δ. 寸◎。8. 等OO. 寸=O. 拾8. oo z8. ◎80. N80. eq〔∩eq th M

hrhrN」rN

NNNNへ

h鴫A鴫」Hh吋hr

⊆)NNNN

hr」rNh∨N

q◎NくbQ⇔

  一r』rh、 o◎Oo or ON9. い゜o°。O. 寸いトO. ひ$O. 否NいO. ◎o「ひO. ◎oS卜O. 一沿O. 9ぬO. 8マO. まトO. °o№n. ぬ②寸O. 寸m8. 8卜O.

88.

ぴひ8. ぴONO. 寸ひ寸O. O⑳NO. ぬ寸8. ]°◎8

NO8

守8

0雲O

eqNNNN

NNhrh叫N

NhrN⇔叫N

hrNNNN

◎ND(∋く)o  hrh、hrh鴫 COCo◎Nq◎s ℃ト、ト、ト、Co 卜Nひ一. ②︼↑︹. N︼沿. こ雲. N口︼. ひぶご 崎卜②︼. 9寸[. 8N︼. ひ゜oひO. ひ゜◎卜﹃ め◎o寸一. OON一. ひまO. Nぴト[. 一一寸︼. N②9. 鴇S. N↑い︹. NO︼一. ひ$O.. m↑い一. ぬ寸⑳O. ぴ等O. $=.

NNNhrN

Nhrh鴫hrN

く)Qeeく) hr hr、」吋hr

C◎qO、qq

t\NOoo◎◎o

h℃℃℃N

S8. h

等一︹. 、 ︷心州⋮已︸﹄向℃口邸鵡 K◎←oo◎、 o

NNNNぐη

宇rNぐ向’守い

NNNNN

②卜oo◎No

F司一〔←鴫N 一Nぐり寸ぬ ▼−1?「←「←一《目 Mつトcoひ〇

    一

Neη寸吟

o一一・力唱ロ一㊤﹄●島一目堵㊥︼凸ロ田?o≧⇔o晶一﹄o一〇りぷ工口台頃昌o﹄島=句一h●負島h戸 No一卓司﹄い

(4)

⑰08.舞

ひ只る. Nへ ト⇔͡る. へへ ●只る. へへ

=8.ぺ

一白O. トεO. ㊨80. ぺ ∼へ ぺ ☆8.

SOO

ひ80 ぺ ⇔N ⇔へ 需8. Oへ

次8.爲

OO8. 込 ②゜。8. 込 柏ト8. 込 ◎一8.ミ 8NO. 句へ トト一〇. ◎9、 寸い呂. °◎へ Oひ白. °。へ ◎o 揩OW. N、 い寸8. ︵へ 88. Sへ ’ 寸守O. トへ 寸O卜O. トロO. ℃へ ミ ひト8.﹀、 一皇δ. 娩↑S. 一80. oonN一. 一§. 2︹一. δ8. りδ一.

hvhNトhNトN◎

Nへ」¶へhrN⇔鴫 鍵8. 9ひ一. ひ80. 需ひ一. 800. ▽N°。︼. NO8. ②S一..

v[、[v enhXF

へへ、へ」rNNN

K.HIRAKAWA

⑰只る. ぺへ 88. へへ ひ80 NOOO NN ヘペ 寸皇さ. ぺ ひ80. ぺ NOOO N80. ︼80 δ8. 、へ

NhrN

Npaeq

一日O. へN 台8. ∼へ ト◎90. ぺ 吟80. 、へ 一】 W. 烏 ひ08. ON 卜08. 800. マOOO

88.

Oへ Qく)Q

NNN

トN8 Oへ N白O. ⇔N o。ツO. Oへ 寸一8. ⇔へ ゜o窒n. 込 自8. ミ ooW0. 込 寸δ⇔. 一δO. oo

n8

◎sq◎s

hrhrN

N◎8 一い8 qへ O、 ∩寸OO. O、 いひ8. ぼ ト②8. い80 ゜o

A

句、 Q8. ◎oへ 鴇8. o。

m8

NNOO o◎◎oo◎

tSNN

98. °。へ 雲8. °。∼ ②ひ8. °。へ Ooo8. 句へ ひ寸8. 卜∼ めNε

C

8δ. ︵、 ②◎08. 一SO. ↑いOO

トstUN

hrNhr

゜oANO. Sへ 寸自O. 柏ONO ト、 ︵へ 寸ト一〇. 込 ひ08. ミ ト②NO. ミ ⑳NNO. ミ 寸舎O ひO;. ぬ雲O N◎℃s◎

」rNN

ひ一8. ミ トめ寸O. 逗 寸9己 ⑰め柏O ︹80. ︼ひ8. 8寸O め9る ひ寸ひO. °◎ミNO ℃、 ℃、 ぼ hへ h、

hhh

NNh∨

一80. 苫 いNひO hへ oo gh 盾盾n. hへ 寸めS. 込 ●トOO. h∼ ま2. ミ oo 汲盾ミO. ミ めoo°oO. ◎o 揩叙 mO. ②$O.

98.

ミ NトN卜v

NNh鴫

ひ②め一. 一80 ぬ寸薯 一〇8 寸N雲 [80 00O自 ︼80 ◎o揩盾処 一(驍n 巴こ.

800

ひ②拾 ︼08 ②N寸︹ 卜oo9 冶晒=

RペミRミRXRミ・R

[[[へ[へehN

へ、」rNヘへhrへ

N只冶. ⇔へ 一80. Oへ δ8. Oへ δ8. ⇔へ ②80. 寸O只ワ

800

白8

一〇〇〇

◎sqq◎sq

Nhr⇔rNN

卜一〇〇. 画δO ひ08. 卜08.

88.

o◎Ooo◎Ooo◎

Nhrh∨Nh∨

い寸8. め80 卜NOO O白O いεO ト、ト、卜、ト、ト、 hr N hr、hr 一一δ O台O ︼SO 噂いOO 等8. N◎N◎s◎℃b

hrhrhrhrN

NいNO

gNO

∩↑8 0寸︼O. N一δ い、n(吟吟い}

hrNNhrhr

⑳90. めい寸O O◎。8 寸N8. ひ②NO. NトNトNトN卜v

Nhr、」HN

o。宙黶D SひO まトO ↑◎o②O oo 盾盾

W

eqththMeq

hrNhrNhr

ε8. .η。o。一. ト●②︼. ま寸︼. 9m一. い↑︼三

NNぺNNN

NNNNNN

︷ぺ川川に︸一幽匂口d遥 ひ∨ ◎o

卜寸 等 め寸 寸寸 守 N寸 ︼寸 等 ㊤ ②ト◎o

m否e西

▼−Nぐ町寸嶋 thぐ百翰c◎柏 102 ︵唱心ロロロロ◎O︶ o口・6一一儒一瞼﹄●画一ロ旨ぷ些目頃oり−oき一〇畠●﹄⇔一・60一一︹一一口“晶o﹄“濡頃一﹄Φ●亀O  No一工口↑

(5)

103

THE TWO・SAMPLE KUIPER TEST

ON8. R

゜。

z8.目

め一8. ぼ

口8. R

二8. hへ ON8. 苫 ゜。 黷W. 苫 ぬ一8.苫 柏一8.苫 一︼8. 苫

88.苫

゜。W0. 苫 寸一8.鶏

98.災

98. 鵠

◎。W0. 鶏 ト皇る. 鶏 O寸8. 苫 い否8. 苫 ︼80. 苫 トNOO. 苫 マN8. 苫 Nマ8. 鶏

鴇8. R

N80. ぶ 卜N8. 鶏 寸N8. 鵠

ON8.鶏

↑↑8. 鶏

一80.ぺ

卜N8. ぺ          、 箇N8. Nへ

98. ぺ

◎一8.ぺ ↑卜8. 鶏 $8. 鶏 ⑦8. 舞 寸ぬ8. [へ ゜o}OO. [へ Noo8. NN N↑8. Nへ 寸80. 災 冶8. ぺ ひ寸8. ぺ N寸8. ぺ ト80. へへ め②8.、へ トぬ8. ぺ 等8. ぺ N寸8. へへ ぬひ8. ぺ

守δ.ぺ

゜omε. ぺ ぬ一δ.ぺ 8︹O. ぺ Nひ8. ぺ 寸ぬ8. ぺ ゜o_O. へへ 自8. ぺ O一5. ぺ トひ8. ぺ ②o。OO ぬト8. ぺ ぺ Oひε. Oへ 寸=O. R

8δ. R

卜◎◎8. Oぺ いト8. ⇔N 病NO. ひNNO. ぺ ぺ 8白. ぺ ひ゜。一〇. 、へ ︹卜8. ぺ ゜。gNO. ⇔へ Nい白. ON ゜。ゥO. 烏 8NO. ミ い゜〇一〇. Oへ 始●δ. Oへ Sε. Oへ

等NO.ミ

O自O. ミ ま一〇. ミ ひトε. 込 Nいδ. 亀 ︹80. 合 自寸O. 烏

δ8.合

ま8. R

一〇8. 合 寸◎8. R 蕊8. ミ い08 ︼80. 一〇。マO [只δ N等O o、c◎◎、 Oo⇔

A鴫NNNN

い等O.ミ

$8.亀

②ひ8. 込 寸08. ミ 寸卜NO.込 ぬマ寸O. °。へ 寸Oさ. °。、 葛8. °。、 ゜。 m8. °。、 毯NO. 句、 N80. °。へ 8↑O. ぼ NO8. °。へ ◎ぬ8.ミ ︼80. 9●O

δ8

$S

88

NN8

NOOO ひひトO

NO8

N寸卜O δ8. 卜゜。8 一80 娩画8

日8

寸゜。8

58

培ぬ〇 一80 ひoo寸O 一80. °o恂m0

800

◎OトO

δ8

等◎O o◎NOONCE coo 9eCN(co

NNhrN一晴へN eq一IN

o◎Noo N◎ONOONO◎卜 」NNhH pa、NNNtN“NN NN◎ト、℃トb

Npa」¶NhrN

ひ゜。8. N、 寸柏8. ミ

88.

寸一︼一. 寸08. 卜寸〇一.

88.

NooひO.

88.

OぶO. N§. ひ嶋ooO. 寸80. NトN[. 寸80. 寸ひ=. 800. ト一=

NO8

等〇一. NOOO ︹卜台

N80

8台

︼80 留゜oO ■宮る. N②9. NOOO. 寸↑一一. NO8. oo 汲盾n一. 一§. 8自. 一80. ②袋O. c◎ト」Ooト、

、NNeq

N℃Nb句AOoト◎ON

hrい竜」鴫N・一¶N一¶へ、N

ト℃ト℃入℃NQN℃

へいQ、NN{NlへNNN

bb℃hbh℃b℃h

一leqへへ、NN、ヘへN

98.冷

ぶり︼. Nへ ゜。W0. 、へ めS[. ≒ 卜08

9雲

②OOO 嶋柏寸︼ い80 ひい口

080

ひま︹ ◎。

O8

卜■oo一. トOOO. ↑否こ

88

00謇_ い80 一寸沿 寸08 ゆ寸寸一

88

面恰一

88.

ぬS一. の80. oo「o。一. 寸08. 寸寸ト︹. 否80. 一¢一. 800. 自い一.

℃h℃吟入、N℃N℃

hrヘへへNN』rNへへ

℃吟℃h℃h℃h℃吟

、NへNへNへN」Nへ

hV吟、吟、吟XbhV

、へ、¶へx弓へNNN pa

娩80.鵠

画一8.ぺ 080. 、へ ぬ②8. Oへ 否恰O. 込 SNO. °。へ 面゜。苫.N、 ︼80. R 含゜。O. ℃、 NO8. 、へ 工寸︼.ぼ 卜② ◎② ぬ● 寸② 柏● N② 這

8

ひ嶋 oo トい ◎め 鴇 寸吟 需 Nぬ ↑ぬ ’ Oい

(6)

めひ8. Nへ

N8﹃ ぺ

ひN8. NN 寸08. 冷 oo 「8. 冷 口8. ℃N

N︼8.弍

ひO︹O・.  hN 寸ひOO. hN ︼宕6. ㈱ ひoo一〇. 、へ いト一⇔. 、N N●一〇. 、へ 一只る. ︼一8 一§ まNO ︼80 一トNO R司 R零 R崇 800. 卜⑳⑰O

NO8

卜寺O NOOO ooミ寸O・ N∼rへ1へへ、

NeqNtheq[

88.

⑳◎卜O 寸80 ◎om卜9 寸OOO ◎◎ 掾B閧n・ ぺ烏ぺ晶ぺ烏 O︼8’. 寸崎= ︵O︹る ⑳⑳〇一 ゜0

W0

ぬ⑰O戸 〈〉◎N⇔◎tく)q

NへNへ1へeq

98.

卜↑雲 卜一8 °。W︹ めεO ㊤冶一゜

R烏R網込R

K.HIRAKAWA

◎N8. Nへ 雷8. トへ ⑳80. Qへ め80. 濤 一ひ8℃ 濤 ◎o窒n. ℃へ いN8. 鴇 NN8. ℃へ 900. 冷 トδO. ℃N o。ツO. “へ 等OO. 汽 ︼トOO. hN $8. hへ oo゚8. 吟へ 柏80. hへ 卜寸OO. hへ N寸8. hへ ◎0W0. hへ 寸ひ8. 吟へ O◎oOO. hへ o。rO. 冷 ②Nδ. 、へ い一8. 、ぺ 85. 、へ ま8. 苫 ト゜◎OO. 、へ ひト8. 苫 一ト8。 苫 守②8. 、へ ひ寸8. 、へ トひδ. 苫 ︼80. N[ ②一8. [N ひσ一〇. 鶏 面◎oδ. [へ o。怦黶Z. 門N マいδ. [N 守一〇. [N ゜om一﹃ ぶ ト︼一〇. [へ δOO. 一嶋NO 日OO 需白

88

トぬ8 ︹皇冶

留8

一〇〇〇 〇〇8 ︼§. ●ooNO 一80 いWNO

88

寸寸NO eq N N」、へ、thへ[へ

N[N吟へ[NChNCh

N、へ\N」r

eq吟へMへth

寸☆O. へへ ②ONO. へへ NOOO. 自寸O 一〇〇〇 ∩°◎8

88

寸卜8 NOOO °o

ロ8

NOOO 寸08 NO8. 一卜寸O 一80 ㊤寸O ︼08. oon寸O. へ80. ひト8. δ8. 一恰O. 」rQNζ》h., C)へ、Nへ

へthN[へ[へ[ぺ[

一鴫e」HeNQ、くb」re

へ門へ[へ吟ぺ鯛Ntb

箇OOO、 ◎。。②O、 800. O一◎O. 800. 一⑳゜◎O. い80. N寸ooO. 寸80. 寸ひS. ∩80. oo。卜0

800

∩Oト0

88

⑳30 NOOO ト一②O

NO8

トト8 自i吾自合烏合ぺ烏ぺ晶

eqDOt(bCEoqeCh

NNへNヘペNへへへ

卜OOO. まひ0

88

︼寸︵O 一︹8 00ロ雲 ひOOO ㊦卜自 ◎o

n8

0畏︼ 卜QOO ooO一. ◎08 卜゜09

88

◎o

m9

いOOO OトひO 寸80 寸宗O eN Oo(詠句qOo g CNく⊃ON ヘペ、へNpa{Xl eq Nへ eN Oo QN co軌句(x◎o eN co

へへ邑hrN」HNhrNhrN

寸δO 一卜寸︼. 自OO 寸O菖 一NOO N寸9 ◎o 黶Z〇 ︼◎°◎一 ②一8 00。≧ 寸昌O δト一. 門80 箇N雲 一δO 寺沿 〇一8 ︼卜寸︼ °onOO ま雲 OONOONO◎N(詠 coq句

、NへへhrぺhrへN pa

OONaONqo一ト、◎ON◎oト、

NNへN、N」sNh., N

080. Sへ ②NOO. 吟へ 畏8. 吟へ ト嶋OO. 苫 一めOO. 、N い寸OO. 、N

88. 鶏

めひ8. [N ◎o。8. 鯛N ゜o 求B 黶Z. へへ Nト8. ぺ ②いδ. NN 一〇〇〇 寸N8.

日8

◎oSNO ぺ烏ぺ烏 寸卜白. ぺ N80. 卜訳O 呂OO

88

一皇︶O ¢苫 e◎sくこ)qeq へqへN¢N←、qへ、 柏80. ひ嶋゜oO

800

8°。O

N80

⑰めトO ◎No◎qOo◎LOo

hrいqNNNN

↑OOO 柏N雲 ②80 課塁 ぬ08. N°o= o◎t\OONO◎ト、 、へ∼へ、へ め80 Nま一. ■80. 一ト゜o一. 一δO. 一◎oト一. トい◎ト、∼◎ト、℃ 」rへ一¶eq⇔¶N ︷ぺ州9︸占廿頃ロペ 104 ひoo N°o 一〇〇 O°o ひト ◎o

g

トト ②卜 娩卜 寸ト ひト N↑ 一↑ O↑ $ oo

A

︵冨ロ日着oo︶ ⇔一湯ロ50りさ●冒靖●言日口oり・oき一●ξ㊤a・6の吉一一苫目ρ2亀一一5緬●島品D Nヱ台口自

(7)

、 105

THE TWO−SAMPLE KUIPER TEST

N80. 軌N ゜o

。8.qへ

等8. qへ ︼苫O. qへ 葛8. ◎oへ ひ80. °oN 硲め8. °oへ Oぬ8. ooN 写8. °。へ N寸8. °oN 080. °。N 恰8. 民

98. 烏

Nめ8. NN ト⑰8. トN ト゜。OO. °oへ ︼oo8. °oへ いト8. °oN O卜OO. °oへ o◎X0. トへ 8δ. Nへ まOO. SN 鳴゜。OO. Nへ Oo。8. NN 面↑8.合 ooA8. NN N80. 合 卜白O. kぺ 宗8. ℃へ 市o。8. ℃N

ε8

m寸δ. 一〇8 需8. ︼只る. めN8.

ミ鵠s鵠ぶ鵠

②一8. 合 ︼80. 冷 トト一〇. ℃へ

88.

い●︼O. 3︵る. 寸ぬ8. 800. 享δ.

網R冷冷RR

寸竺O. 、へ 寸90. Qへ 崎一8. ℃へ トO︼O. ℃N ◎oミ8. ℃N 需5. 民 守ξ. hN 一臼︾◎. 誇 09mNO. bへ ︼OOO. 寸一NO. ︼80° ︼ONO ︼80. ひ◎oδ. N皇︶◎. NooNO. δOO. 鴇NO. 一〇8 ひ寸NO. 一只る ∨ひNO.

88.

9NO. ︹80. めONO ︹象る 一90. 800. oogδ.     .

88

800. 訳NO

h、℃噴、h℃h

N[へ[NCh N Ch

R嵩R嵩R嵩RぷR菜

、ト門hXトhXh hXb

へ[eq hへ[N馬

一80. [[ 鴇NO 、N

88.

鴇8. N80. ◎柏8. NOOO. ト︼8. NOOO ひ自O. ∩80 00凾n.

88.

雲寸O. ひ80. Nひ8.

XRR講R嵩RなR嵩

Nトeq Mth N thN[ NO8. [[ O卜8. 苫 NOOO [[ °◎。8. 、へ NO8  [[ °om8.

N80

◎on8. 一〇〇〇. ひ゜oNO.     ● ︹80 0卜NO N§. 寸O寸O. 『ぺv th xト[le th

へ[へthへ[へ[

NO︷δ. N[ O°。8  [へ

白8

98

寸OOO. ト゜o寸O 寸08. 隈寺O ◎§ $8.     ● O寸8. 、ぺ 800 [[

88.

一遷O. めOOO. ひひいO.

災餌苫㈱N鵠x篭

MN MN

N句NM

寸80. N[ ひ②白. [へ 寸8◎. へ[ ㊤沿. 鶏 寸80. N門 一〔

W.鶏

ひ只る. ∩o。一る. m80. めぬ寸O. NO8. ひN寸O. 寸只る. トN●O. N hHぜhN!b Ngr)N

へ門N爪へ吟へ門

寸§. へ[ 象8. ぺN ぴ80 寸②卜O ◎on8. 9トO. 卜OOO. ②$O. N︼8. 卜SO     ● 8°oO. 自8. ︼30. 恰ひ0

900

ま◎oO. oo

W0

N︼°◎O SOO. 寸↑卜O.     ・     ■ NめooO. ひ象δ. へ一噂[NehN[いミth N

NCh Nenへ[へ㌻へ吟

ぺ㍉N鳶N号ぺ㍉Rぺ

◎80. 、[ 況トO. へN ぬ08. 、[ ひひ●O. へへ 88. へ[ ∩②②O. へへ ◎onOO. ②まO. ↑OOO. OOひO. N《こ》NQ

pa[Nth

寸δO 寸②9 口8.

ON9

一N8 ;守一. ト80. ぺ いぬ一一. へへ ②80. へ[ ひ9一 へへ     .     ・ 900. 卜蕊一. ト一8. 寸ON︹. ψ︼8. N寸N一. 寸δO. 09一. 否一8. ㊤一].

N80

0ひ自. 〇一8 守9. ぴOOO. 毯ぴO. ②δO. い゜◎柏一. 寸δO. ℃N否一.

」seN、へ」r

N爪へoehへth

trH e N⇔NC)N“NO

NChi}eq e>へ[CN門へ門

R合Rkぺ烏ぺRぺ需

080. 需 いN◎一. ∼へ ゜oヨOO. °o揩ハ一. いNOO. N︼h一. 吉OO. ②等一. 」r〈〉」rく)へo

へMへ[へ[

↑否8.合 ぬ崎ひ一. Oへ ⑰80. ⑳◎ooo︼.

冨8

自o◎︹. ひN8 00゚↑︼ .●§ 寸⑳②︼.

自合R合R合R合

寸N8  軌N 一$一.烏 一NOO. ◎o揄_. 900. ●O沿 卜δO ぬ寸寸一. ひN8 .②ま︼ ◎NOO. ま゜o︼ q◎o軌◎oQC)N⇔《>oq

」1ぺNtNへINへN NN

面寸OO. Nへ ㊤8. ︵へ ●卜8. 潟 OトOO. ℃へ 一口O. hへ ︼N一〇. 吟へ 一2る. ONNO. ︹§. 寸08. 苫鶏苫零 N80. ▽ぬ8. ︼08

需8

thN[へ

PtひNth

88.

O②いO.

88

00

m8

NNN、

N[へ1eq SOO. ●いooO. ②80. N一゜。O. 」鴫eNく⊃

へ[へM

コ8. °o揩X. =8. 9N一. ぐ)◎、く)◎、

NNNへ

寸NOO ON◎o一 一N8. oo

。C

qOo◎No◎

NN、N

OO︼ ㊤ ゜o

S

トひ ②ひ いぴ 寸ひ ひひ Nひ 宗 ま ひoo ◎o揩 ↑oo ②゜。 、 めoo 葛

(8)

106      K.HIRAKAWA

Can we obtain good approXimations to exact probab盗ties by the use of this fbr− mula?For compad㎎with exact values of Pr{Tl≧k}given in Table 2, we com− pute the丘rst term and the total of        の      co        Σ・②・b・−1)・−js・2+、:(1+Σノ…②…一・)・一・2・2) (・)        ∫=1       ∫=1 substituting k/∼/7 into c and show them in Table 3.        丁油1e 3 Comparison of apProximations鋤d exact冊1ues of Pr{T・≧k} 40 60 80 100

克①②③

〃①②③

ん①②③

た①②③

 11 .4183 .4907 .4871  12 .2779 .3389 .3346  13 .1716 .2179 .2134  14 .0988 .1311 .1265  15 .0531 .0739 .0694  16 .0267 .0392 .0348  17 .0125 .0196 .0153  18 .0055 .0092 .0050  15 .2579 .3058 .3029  16    17 .1737   .1117 .2114   .1398 ’.2083    .1367  18 .0687 .0885 .0855  19 .0405 .0538 .0508 20 .0228 .0314 .0285 21 .0123 .0176 .0147   22 .0064 .0095 ’.0067  18 .2107 .2474 .2452  19 .1471 .1761 .1738 20 .0993 .1213 .1190  21 .0648 .0809 .0787 22 .0410 .D523 .0501  23 .0251 0.32’9 .0307

24

.0149 .0200 .0178  25 0.086 .0118 .0097 21 .1625 .1901 .1883 22    23 .1155  .0800 .1373    .0966 .1354   .0948  24 .0540 .0663 0.645  25 .0355 .0444 0.426 26 .0228 .0290 .0273 27 .0143 .0185 .0168  28 .0087. .Ol16 .oo99   Notes:①Exact value.②Approximation by the f辻st terln of(9).③Approx血atlon      −by(9). If we compute using c=(k−0.5)/ン可with continuity correction O.5, those approxi− mations will more increase.. 3.C…i蜘町・f th・K・ip・・t・・t・L・t恥)・nd・F・(x)・be c・ntinu・u・c可’・・f populations π1 and π2 respectively,81,楊(x)and 32,外α)be emp血…ical c4r’s obtained 血om samples described in the introduction. De丘ne the two−sample Kuiper statistic

by

       Vlm,”=sup{s1,m(x)−S2,”α)}−inf{S1,勿(x)−5「2,蕗ぴ)}        x       ズ ・nd・d・pt th・・司・・h・・w・・ejec・H・・兄ぴ)≡F・(・)・if・Vm,・−Vm,・(・);・・h・rwi・r・㏄・p・ 王lo, where、 Vm,ヵ(α)is theα一1evel critical value, i.e.        Vm,外(α)=inf[{んlPr(V.,蕗≧k)≦α}∩{k.1丘is possible value ofレ三,ち}]. Then, this test is consistent.   The proof is as fbllows:It is known[13],[5]that        sup l 51,m(x)−F1α)1→0 ・with probabiHty 1.       (1旬

(9)

THE TWO−SAMP工E KUIPER TEST

107 (10)implies that fbr arbitraryε>0,       血nPr{sup lS1,励(x)−F1(x)1<ε}=L       (11)       堺→m       ∫ Samely,       ㎞Pr{sup IS2,”(x)−F2(x)1<ε}=1.       (12)       錫→oo      夕 Using notationsδ+,δ一andδde丘ned by       δ+−sup{F、ω一・F,(x)},δ一一inf{F・(x)−F・(x)},δ一δ+一δ一

we have

   Pr{lV.,”一δ1<ε}=Pr{lsup{(S1,頒(x)−F1(x))一(S2,”(x)−F』(x))十F,(X)−F2(x)}       s        −inf{(Si,91(x)−F1(x))一(S2,籏(x)一・F2(x))十Fl(x)一」F2(x)}        一(δ+一δ一)1<ε}        ≧・・{・e・1・ ω一F・(・)1<号・nd・e・1・2…(・)−F2(・)1<号}・ Since two samples are mutually independent, it fbnows that ・・{IVm,一・1<・}≧m・・国・e・1・い(・)−F・(・)1<号}…{・e・1・…ω一F・(・)1<号}]・ Sinceδ=O under H』andδ>O under」酊1ω, using(11)and(12)we have        血nPr{V.,刊くεlHo}=1,        鴬二

and

       ㎞Pr{昨.。一δ1<εIH・(・)}−1 withδ>0・        τニニ Usingδ/2 as a value ofε, it follows that        恕・・ト<』凪}−1・        ”−づco        ㌍・・{Vm,・〉』昂…}−1・        外→oo Vm,外(a)<δ/2 fbr su丘iciently large m, n and fixedα. Therefbre, we obtain        血mPr{v,。,.>Vm,。(α)}=1・        =: This implies that the test is consistent.   4. Alternati▼e tests for comparing with the Kuiper test. The powers of the test statisticsち∼T6 written in(14)∼(18)below, are going to compared with that of the Kuiper test. Let}伊‘=1, xF 1,γ輌=O if the輌一th smanest observation in the combilled sample of size IV=〃十πbelongs to X, and let w‘=−1, xi=0,γ‘=1if it belongs to ヱ We denote the smaUest and the Iargest of integers j’s satisfying xi=1 by a and b respectively, those of integers satisfying y‘=1 by c and d respectively. We deal with fbnowing statistics.       t      ハ        T,=maxΣ}v‘−minΣ}v‘,      (Kuiper)   (13)       1≦1≦N《=1 1≦‘≦N‘=1 \

(10)

108

K.HIRAKAWA

        1 T2=max 1ΣWi 1,    1≦1≦Ni=1     N       N T』一・1ΣiXi−E(ΣiXi)1,     i=1      i=1 T)= T, 一 1ΣiXi+ T6= Ic−1−1V+dl

c−1十1V−b

a−1十N−d

la−−1−N+bl Nt2    N        Σ ‘=1      《=N’2十1

c−1十N−d

lc−1−1V+bl

la−1−N+dl

a−1十1V−b

江XlXN =・1 if xlYN=1 if XNツ1=・1 if y、γN=1,          N’2 (K−S) (Wilcoxon) (Haga) (N−i+1)x‘−E{Σix,+ Σ(N−i+1)Xi}1        ’=1      ‘=N’2+1 Ts and Ts are Bradley, s statistics respectively. if xlXN =・1 if XIYN=1 if XNY1==1 ifγ、γN=1. (Kamat) (A−B) (14) (15) (16) (17) (18) the deviations from the means of the original Wilcoxon’s and Ansari一

O…○×**…*×○…0

1     c ○…○×**…*○×…× 1     コ ゆロ ○×*        ×…×○**…*×○…0     4    N        l    a        ば    ハ「        ×…×○**…*○×…×      め    N         l     a        め    ハr Obseτvation belonging to X Observation belonging to γ Observation belong血g to either X or r        Fig.2   It is known that the test T, is co皿sistent against all altematives H1ω, T3 is con− 、iSt。nt・if・P,α’〈(〉)Y’1H。)≠1/2 P・・vid・d th・t X’andγ’・・e i・d・卿d・nt・and°m       ■        variables from the populationsπ1 andπ2 respectively, and Ts is conslstent agalnst H,{3}. 5.S叩P1.m。。鍋・al・d・ti…f・・iti・al仙臼・L・t T・(a・) and R・(⑳)be the critical value and the critical region of theα一1evel test based on Ti・i・e・        Ti(α、)−nf[{kl・Pr(Ti≧k)≦α・}∩{姫i・th・p・ssib1・val…f瑚・        R‘(αi)一{’1’≧Ti(α1)}・ 1。。,d。, t。。。mp。,e th・p・w・…fth・t・・t・w・wi・h t・…Ti(α・)f・・同・2・’”・ 6;αF1.0,炉0.2,α、−0.1,α、−0.05,α・−0・02・α・−0・01;・−10・20・30・50・The n㏄d。d va1。。、。f T,(α1)訂。 f。。nd i・T・bleS 2−1∼2−3・T2(⑳)’・ar・aU av姐・b1・

丘。m血。 p。輿[4コ孤d」SA T・bles[7コ. We ca輌d曲…fT・(α・)and TKα・)

in[7コf。,1≧3. V・1・…fT,(α・)are・9i・・n・nly・f・・〃≦20・∫≧3 in[12コ・[7コ紐d T、(a、).ar。9i。。n f…−10,’≧3・in[2コ・We ca1・㎡・t・th・lack・f曲・・and 9ive 血。m i。 T。bles 4.a,牛b孤d牛c ad・㎞9伽・・f・・〃−40・Since・it・h…bee・・h㏄k・d by硬記1。。、 th・t th・di・垣b頭・…f・T・ and T・・an be・PPt・Xim・t・d by n°mal di,垣b。d。n,, we ca1。u1。t・d T,(α)・nd Ts(α)f…−20,30・40・50・・i・gth・n・ma1

(11)

THE TWOSAMPIE KUIPER TEST

109 apProximation with cont血uity correction and counting fractions as one.       Table 4−a  Ti(.20) and Pr{Ti≧Ti(・20)}  (i=4,6) 4(Haga)

6(KamaO

10 5 .15049 5 .10346 20 5 .16355 5 .14133 30 5 .16802 5 .15352 40 5 .17028 5 .15952 50 63 O9 1つ﹂ 7.ノ0

11

.  ● ξ﹂ま﹂ Table 4−b Approximate percentage poin鶴of the Wilcoxon statistic

m=n

10

20

30

ヨ50

α .20     18   *18 t.19032 48 88 134 187 .10     23   °*23 t.08921   62 °*62 112 172 240 .05     27   °*27 ★.04326   73 °*73 134 205 285 .02     32  °*31 t.01854   87 °*86 158 243 338 .01     35   °*34 t.00893   96 °*95 175 269 375

一Mean

n(2n十1)/2 105 410 915 1620 2525 Varjance n2(th+1)112 175 1366.67 4575 10800 21041.67 Notes:*Exact critical value. ★Exact probability. °Value fbund血[12]and l7]. Table 4∼c Approximate percen血ge poiロt80f the A−B s包tistic

m=n

10 20 R0

ヨ50

 Mean

n(n+1)/2

9

    12  °*12 ★.08062     14     16   °*14    °*16 ★.03831   ★.01602     18   °*17 t.00978 55

万糾68舛

31 57 86 120

7σ7’今33

3604

  11

  1 

4802270

1 49 88 135 188 210 465 820 1275 Variance n2(n2−1)1  12(2n−1) 43.42 341.03 1142.80 2698.73 5258.84 Notes:*Exact critical value. ★Exact probabhity. °Vahle fbund口1[2].   6.Compari80ns of powers. Using the Monte Carlo method two samples with equal s泣es are generated from two populations under altemative hypotheses. The ◎ombinations of the]吐st populationπ1 from which sarnple(Xl, x2,… , Xn) iS drawn and the second populationπ2丘om which sample Oコ, Y2,…,}㌦)is drawn are shown in Table 5. U(a,ク)denotes the unifbm distributio皿on an interval[a,坦 and C(ッ)denotes the chi−square distribution with d.f」〃. C’(6)is the dist亘bution of†Z62 whereズ62 is the chi−square random variable with d.£6.

(12)

110         Table s Combinations of pop皿lations π1 π2 N(0,1) N(1,1) m(0,0.52) n1(0.5,0.52) {1(0,1) σ(0.4,1.4) ミ(0.16,0.84) ミ(0.3,L1) C(2) C(4) C(3) C’(6)

K.㎜KAWA

and those probabMties for i=1,2,… ,6are not equal for丘xed l. E[f‘(α釧1五]are shown in Table 6. we give in Tables 7−1∼7−80bserved values of fi(α1)for 1≧3 under」ff the graphs of fi(α1)for n=20,50 ill Figs.3−1∼3−8. shOws that there one has not Ti(αJ)satisfシingα1≦Pr{Ti≧Ti(   We observed fbnowing aspects.   The procedure for generating samples of sizes n=10,20,30,50are repeated 500 t㎞es fbr each case. 1潟t f‘(α’)be the frequency that Ti fe皿 on Ri(α1)then the power Pr{Ti∈・R‘(α釧H1}can be es・ timated by fi(αt)/m, where m is a reptition number of the pro㏄dure. Since in our research m=500, Var(f‘(α‘))=50qρ(1−p)when the tme power is p. We wish to observe f‘(αt)(輌=1,2,…,《9 under the common condition Pr{Ti∈Ri(α1)岡=α for a皿i,s. However, we can not find in genera1, the value of Ti(α1) satisfying the equation Pr{Ti≧ Ti(αi)IHo}=αfbr givenα, because Ti is discrete variable. Thus Pr{Ti∈R《(αt)1」Ho}<αl in general       The values of    For the purpose of comparing of the powers        land show       The bar−in the、αt−column       al)}<α↓一、. 1° The case when昂(2}is tme.   (1)π、:N(0,1)andπ2:N(1,1)    (a) It is observed that        ノ)(α1)>f2(α‘)〉ノ1(α‘)>f4(α‘)〉ノ)(α1)〉」f5(α‘) for 1=3,4,5,6;n==50.    (b) The Kuiper test T, is somewhat inferior to T2 but it hold the power close      to O.7 forα=0.05, n=30 and O.9 forα=0.05, n=50.   (2) π1:U(0,1)andπ2:σ(0.4,1.4)      The relation betw㏄n these populations is similar to that between N(0,1)and    ]V(1,1)ill the viewpoint也at the value of sup{F1(x)−F,(x)}−inf{F1(x)−F2(x)}       x       ご    are nearly equal for both combinations. But the asp㏄t of tails is different    from the case(1)above.    (a)We observe that        ノ≧(⑳)≧ノ)(α1)≧f2(α1)≧ノ1(α1)>f6(αi)≧f5(⑳) for 1=3,4,5,6;        n=10,20,30,50.    (b) The Kuiper test is somewhat inferior to T. 2° The case when H,(3)is血e.   (1) π1:N(0,1)andπ2:1V(0,0.52)    (a)  In this case        f5(αJ)〉ノ三(α1)〉ノ1(α」)〉ノ》(∠吻)〉ノ)(α1)〉ノ)(ai) for 1=3,4,5,6;n=50.    (b) The power of T, seems to be much smaller than that of Tl. /

(13)

THE TWOぶAMPLE KUIPER TEST

111 Table 6 Va1ロes of①Ti(a)and②E[ノi(α)] 10 20 30 50

乃答乃

乃乃乃㍗.恥恥

五克冗九

乃孔㌫冗九

0.10 0.05 ① ② ① ②

7636︵∠

  2 

噌1 ∩VOO∩∠10イー10

㊨1 6 ︹3

∩V2107’10

111  く∨

 1

16 13 240  6 120  6 35.0 26.2 44.6 40.9 40.3 39.7 40.5 50.0 46.2 50.0 36.6 35.4 50.0 48.1 50.0 41.7 42.4 ・ 33.9 50.0 49.7 50.0 45.9

一一

一一

27  21.6 7  21.4 14  19.2 6  21.6 11  15.1 9  16.8 73  25.0 8  13.6 37  25.0 7  17.8 13  24.9 11  17.3 134  25.0 8  14.6 67  25.0 7  21.7 17  24.1 14  19.6 285  25.0 8  15.5 143  25.0 7  24.9 0.02 ① ②

007101107

  3 

’−

0100/4818 

4 12 158  9 80  9 19 16 338  9 170  9 7.3 6.2 9.3 5.5 8.0 7.6 6.1 10.0 7.1 10.0 8.2 7.8 10.0 7.8 10.0 ・5.2 6.7 5.8 10.0 8.4 10.0 6.8 0.01 ① ②

0/84.078

  今﹂11

21一う09Q’

110/414

15 13 175 10 88 10 20 17 375 10 188 10 .9 1.0 4.4 2.8 4.9 2.2 4.9 2.0 5.0 3.7 5.0 3.5 4.4 3.3 5.0 4.1 5.0 2.4 3.2 2.9 5.0 4.5 5.0 3.4 Note:−shows the lack of value by the reason of discreteness. (2) π1: U(0,1)andπ2:σ(0.16,0.84).  (a) Tbe orders of fi(α;)are as fbllows:     f6(αハ)>fi(α1)>f5(α1)>f2(α1)>f4(α‘)〉ノ)(α,) f()r 1=3,4;n=50    alld     ノ)(α1)>f5(α1)〉ノ1(α1)>f2(α1)〉ノ)(dVl)>f3(at) fbr 1=5,6;n=50.  (b) The esth皿ate of the power of T2 is moderately small even fbr n=50.  (c)The estimates of the powers of T,, T, and T』are much sma皿er than those    of T,, T』and Tl fbr 1=3,4,5,6; n=20,30,50. 3° The case when H,(1}is true, but th②and H,(3}are not true.    The orders of義(α1)fbr fbur cases are as fbllows:.  (1) π1:ハ∼(0,1) andπ2:N(0.5,0.52). .

(14)

112

K.HIRAKAWA

Table

7−1 Values of諺(al)in the case      of IV〔0, 1) and IV(0, 1) fi・(α) 500 0.10 0.05 0.02   0.01 10 20 30 50

売莞莞恥三乃芸玉莞莞莞一莞緩莞

133 一 47 9 219 一 116 34 302 232 180 118 277 228 126 93 12 7 4 3 一 25 11 5 297 207 一 127 417 364 275 193 456 . 434 379 327 354 281’ 247 218 22 9 2 1 115 72 46 23 一 343 一 190 457 428 381 326 487 470 435 406 386 315 279 242 22 9 3 2 139 109 49 35 474 453 403 368 494 489 471 447 500

499

496 490 419 366 328 295 15 8 1 1 166 132 74 60 400 300 200 100 ・一,一一氏=≠Q0

一π=50

0_010.02    0●05         0.10 Grap血s of f‘(a)in the case of IV(0, 1) and N(1, 1)         Fig.3−1 α

Table

7−2 Values of fi(ai)in the case      ofσ(0,1).and こノ(0・4,1●4) fi(α) 500 0.10 0.05 0.02   0.01 10 20 30 50 克 克 聡 乃 既 九 欠1 乃 冗 九 先 既 τ1 処 乃 九 先 恥 τ1 乃 答 処 跣 九 199 316 405 463   9 395 480 497 500 13 39 498 499 500   8 75 500 500 500 500   8 117

魏55袈鑑2⑲援鑑罎錺魏4翫

19483 290 320   2   2 394 474 500   1 10 75

K00116

4.415

一認魏o舶

19 W1

iω12

  22

14 po〃 T3 po〃

P5

2244

獅携珊09霧魏0茄

400 300 200 100 0 ・一一一一氏≠Q0

一力=50

0.01 0◆02    0.05         0.10 Graphs ①f j6(a)in t血e case Of σ(0, 1) and σ(0・4, 1.4)         Fig.3−2 α

(15)

THE TWO−SAMPLE KUIPER TEST

i113 Table 7−3 Values of fi(ai)in the caSC       of ハ1{0, 1) and ハ「i(0, 0.52) fi・(α) 500 io

20

30 50 乃 先 聡 乃 既 鑑 万 乃 冗 乃 鑑 石一 τ1 乃 冗 ㍗ 鑑 恥 欠1 乃 .7る 九 既 恥 0.01 0.05 0.02     0.01 136 42 co 31 185 279 117 53 61 347 360 162 61 79 433 438 473 272 61 121 490 485

⑲16器讐召裂㌃3630叢撰”59揚

7391043

41  

67

25 12   3 206 224   50   16   16 ’316 306 394   83   16   42 450 423 11

Q6351⑳2146346106⑳512砂57%554291994

1

11

2 2︵∠ 3

413

400 300 200 100 0 :一一一一一n= 20 −/n=50 0.010.02    0.05         0.10 Graphs ofノ}(α)in the caSe of IV(①, 1) and IV(0, 0.52)         Fig.3−3

a

Table

7−4 Values ofノ…(al)in the case      ①f Iノ(0,1) and こ1(0.16,0.84) ノ}(α) 500 10

20

30 50 乃克聡㍗乃九 万乃恥乃先 乃乃孔㍗先鑑 乃聡九既既 0.10 0.05 0.02   0.01 102 28 44 31 140 22 18 95 137

860/517

3     ξ﹂く∨ 100一︶47二︶

   32

400 300 197 66 44 31 246 412 154 25 18 10 176 328   7   7   2 107 259

532160

fJ     7’7’

     1

200 90 57 54 343 491 251 43 33 16 292 472 22   8   9 212− 411 108 10   6   3 160 353 100 451 15.2 63 101・ 449 .500 4.13 91 35 38 403 500 259 38 14 23 347 499 254 18   8 14 292 497 0.01 0.02 O.05 0.10 Graphs of/i(α)in the case of U(0,1) and U(0.16,0.84)         ・皿9・_3=4.、 α

(16)

114

K.HIRAKAWA

Table

7−5 Values of兎(al)in the case      ①fN(O,1)anqN(O.5,0.52) .fi・(α) 500 10 20 50 乃乃乃九跣恥 五乃乃乃乃恥 万乃乃㍗既π 乃乃先乃先恥 0.10     0.05 0書02   0.01

10577’9

65634

11甘皿−﹂11 106 96 ’95 156 74

ヨ663753泣

2242︵﹂3

212688

400 300 355 347 305

259

302 399 269 277 240 160 228 335 191 169 125 160 278 181 112 119 86 100 221 200

,チ〆   /乙’ ,〃

353 294 250 337 432 283 204 162 151 196 326

 ,1 /!2 406 350 316 399 458 281 217 195 253 378 100 489 489 441 416 472

492

486 478 413 362 439 489 461 434 366 329 404 473

瑞幾纏

0◆010.02   0.05 O.10 Graphs of fi(のin the case ofN(0,1)and N(O.5,0.52)         Fig.3−5 α

Table

7−6 Values of兎(al)桓t血e case      ①fσ(0,1)and σ(0.3,1.1) ノ}(α) 500       1 0.10     0.05 0.02   0.01 10 30 30 50 万 乃 冗 九 鴛 恥 τ1 乃 冗 乃 先 恥 乃 乃 恥 乃 既 乃 τ1 乃 九ゴ 乃 先 恥 81 119 210 274

49

151 290 356 473 70 100 365 428 498

95

223 、 364    468    476    500    145    395 貌912430 1﹂’■且

74

199 297 418 37 56 185 316 387 493 52 .164 314 442

499

83 353 00’︶77︵∠ ⇔∠50/7  1 122 223 371 15 35 238 313 488 22 77 189 351 426 499 43 248

39ω456

36 .58 168 320   7 17 59 165 256 466 12 45 132 306 388 499 3、1 203 400 300 200 100 0.01 0◆02   0.05 ,,,’’’”T 0.10 Graphs of fi(α)in the case ①fU(0,1)and こ1(0.3,1.1)         Fig.3−6 α

(17)

THE TWOSAMPIE KUIPER TEST

115 Table 7−7 Valロes of fi(al)in the case of (て2) and C(4) fi(α) 500 ’ 10 20 30 \ 30 T6 乃先 乃乃 0.10 0.05 0.02   0.01 136 212 303 258 24 232 191 10 41 45 103 162 106   4 23 う一.82’︶37 ーエ︵∠06

  1

400 300

・279

  403   447   371    44   133 189 333 412 281 27 97 253 345 238   8 61 104 161 289 186   2 33 200 457 490 3’99 33 164 353 426 478 335 15 124 383

301   3

74

219 340 410 265   2 50 100 477 497 500 429 64 252

493 498 375 31 205 396 470 496 337 17 131 349 453 488 314   8 103 0.01 0.02    0.05 0.10 Graphs of兎(α)血the caSe of C(3) and C(4)         Fig.3−7 α Table 7−8 values of fi(ai)in the case of C(3) and C’(6) fi・(α) 500

ざ、

10 20 30 50 乃乃恥処鑑既 乃乃 的乃 乃乃万乃 0.10     0.05 0.02   0.01 ω菊725568

0920/

3234

349259

111111

  1

110784

400 300 123 76 71 64 159 140 67 46 44 28 109 82

加215584

︵U14丁︵U15 3’11’14.︵∠ 200 87 90 70 201 205 120 47 48 28 150 152 7’︵U7・1001

22186

︹51  

0118872

P︶41 100 230 129 104 94 287 285 186 90 72

42

213 231 89 37 39 25 137 145 69 Q8 P9 P6 O0 P5

    111

O.010.02    0.05 0.10 Graphs of ri(a)in the case of C(3) and C’(6)          Fig.3−8

(18)

116

K.HIRAKAWA・

(2) (3) f6(α‘)〉五(α1)>f2(α,)>f5(αハ)>f3(αδ〉五(α膓) π1:σ(0,1)andπ2:σ(0.3,1.1). 五(α1)<ゐ(α,)>f2(⑳)>f6(α‘)>fi(αt)>f5(α;) π1:C(2)andπ2:C(4). 五(α、)〉五(α、)〉五(由)〉万(α∫)>f6(⑳)>f9(αi) fbt 1=3,4,5,6; η=50. for l=3,4,5,6; n==50. 負)士1−= 3;4,5,6;カ=50.       TabIe 8−1 Frequencies fi2(k,のfor n=20桓the case ofハ1(0,1)andハ∼(1,1)       Table 8−2 Frequencies/i2¢,のfor刀=20 in、t血e case of σ(0, 1) an{1 σ(0・4;’ 1.4) (6) (5) (4) (3) (2) (1) 93 W2 W9 T3

ヨ娼

1 り ︵

Σω

0  0 0  0

0 70

39 12

34  5 43  0

01▲7・−▲10

 7”−

10’1

702100

︵UOOOOO

12

61∩V︵UOO

(6) (5) (4) (3) (2) (1) 299 95 61 25 12  8 116  87  90  80   0  127 (1)  (2)  (3)  (4)  (5)  (6) ω

Σθ

0004.28

   ︵∠−

0  0  85

0 95  0

60  0  1 1  0  0 0  0  0 0・ 0  0

00’0000

2°1

400000

44   61  95   86   0   214 (1)  (2)  (3)  (4)、 (5)  (6)       Table 8−3 Frequencies fi2(k,’) for n=20 in the case of IV(0,1) and IV(0,0.5『)       Table 8−4 Frequencies/12(k,のfor炉20 in t血e case of σ(0, 1) and U(0・16, 0・84) (6) (5) (4) (3)

(1)  4 21 30 62 100 283 ︶ ・∼ ︵

Σθ

 0  0  0  1 11 130

001251

    110

0  0 1  4 6  5

12 16

13 24

57 20

000000

 1具1331▲

4’0只V−ふ75

(6) (5) (4) (3) (2) (1)  3  4 18 41 83 351 142  79   89   69   0   121 (1)  (2)  (3)  (4)  (5)  (6) の

Σ㈹

 0  0  0  1 13 198 0  0 0  0 0  4

6 13

11 28

74 48

011953

    12

00

0000

333268

  11且¶−

212  91  93  49. 0 (1)  (2)  (3) ・(4)1 (5) 55 (6) ⋮ ⋮ i  ..     Table 8−5 iFrequencies fi3(k,∫)for’n=50 in the lcase of N(①,1) and ハ1(1, 1)       Table 8−6 Frequencies fi・(k,∫)for・n=50 i凪価e case of N(O,1)and M1の (6).490 (5)  6’ (4)  3 (3)  1  さ (2)  0 ,(1)li O” ㊤4’Σ     (k)

962100

7・01000

2

1000.00

5

00︵UOOO

3

500000

36

800000

(6) (5) (4) (3)

(1)  1  0  7  7 34 451 18   8  21『’50  35  368 .(1)  (2)  (3)  (4)  (5)  (6) ⑩

Σθ

︵UOOO417・     1

001007

0  0 0  0 0  0 0  0 1 ;1’・

20 49

00003・2

     3

 1  0  6  7

28

326 18   8  21 150  35  368 (1)  (2)  (3) i(4)  (5)  (6)

(19)

THE TWO−SAMPLE.KUIPER TEST

117        Table 8−7 Frequencies、∫i5(k,のfor n=50 in t血e case of IV(①》1) ξ1ndハr(O,0.5『)        Table 8−8      、 Frequencies fi3(k,∫)for n=50 in the case of N(O,1)andハr(O,0.5う (6) (5) (4) (3) (2) (1) 419 31 31  9  9   1 ⑩  Σ     (k)

03㊦3351▲

1310110

34︵﹂310

4.’11ふ

110120

5

458100

32

0’︶ーユ0∩UO

(6) (5) (4) (3) (2) (1)  4 12 21 24 45 394 15  12  14  65  68  326 (1)  (2)  (3)  (4)  (5)  (6) の  Σ     (k)

001ふ0︵U4

     1

     1

000011

     1

00iO12

     5

013236

     5

0︵31品365

 4

  8 15 19 34 246 15  12  14  65  68  326 (1)  (2)  (3)  (4)  (5)  (6)   .(4) π1:C(3)andπ2:(ア(6).        ノも(α1)>f5(α1)>fi(α;)>f2(al)>f3(α‘)〉ノ≧(α1) fbr 1=4,6;n=50.   In this case f2(α1), f3(α,)and f4(α1)are much smaller than f6(α1), f5(d,)and f1(α,) for 1=3,4,5,6; 〃=30,50.   Letぷdellotes the number of sign−changes of F,(x)一」F,(x)i’. Conside血g the results of above obserマation, we shoUld deal with Hl’②:ぷ=O instead H,. i2};alld H,’{3):ぷ=1 instead」既(3}. Our conclusion conoerni皿g the investigation of the two−sample distribu− tion−free test are as fb皿ows:   (1).T3 and T4 are good test statistics if H,’(2}is assured and T, and T6 are good if H,(3)is assured. But if a statistician set a false alternative hypothesis and adopt aunsuitable test statistic, then the power will greatly decrease. For example, s㏄ T,(⇒in Tables 7−1 and 7−2. Thus, if we use Ts when H,(2)is.true, the power becomes very sma皿. Also, see T3(α)and T4(α)in Tables 7−3 and 7−4. We see that if we use T30r T4 when・Hl(3)is true, the powers are very sma皿.   (2) It is seen that T, is good except the case when the alternative is Hlノ(3} type.         ・      ’   (3)、We see that the Kuiper test statistic is not always most superior against the others, but it has moderately large powers under broad altetnative hypotheses i.e. it has the robustness. Thus, the Kuiper test seems to be a usefUI test statistic when we have not certain information about the type of the alternative hypo也esis.   Now, if we write          Si(k)=」R‘(αk)∩、RiC(α是+1) fbr k=1,2,… ,5 and  &(6)=Ri(α6) then we have the division of the sample space of(Ti, Tj)i㎞to mutua皿y exclusive rectangular subspa㏄s Sij(k,1)(k,1=1,2,…,6), which is the direct product of Si(k) and Sj(1)..〕Let 」陥」(k,1) be the number of pairs (Ti, Tj).s fell o皿Sii(k,1),           thenΣΣ㊧(k,1)−500. The tables of㊧(k,1)are made for pa辻s of i and/with     i=1ト  i<ノand i,ノ∈{1,2,…,6}. They may be helpfUl to observing how Ti and Ti. are related. However, only Tables 8−1∼8−8 are shown as examples of theln.

(20)

t18         、  .  K. HIRAIKAwA      ・−

  AcKNowLEDGMENT:−The author expresses his great thankS to Prof. Y. Tumura for his instructivg suggestion on an earlier draft and his.effective’advice given to the author through this work. Thanks are given also to the Computer Centre i柱.

University of Tokyo whiCh permit to use也e HITAC 8700 and 8800 fbr this

reSeardh.  ’        .       「       ’   1 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

    −       REFERENCES       .

Abrahamson,1. G.:Exact Bahadur eMciencies fbr the Kolmogbrov−Smirllov and  Kuiper onv and two−sample statistics. A.M.S.,38(1967), pp.1475−1490. Ansari, A. R and Bradley, R. A.:Rank−sum tests fbf dispersions. A.M.S.,. R1  (1960),pp.1174−1189.1 Birnbau血, Z. W.:Numerical tabulatio皿of the distribution of Ko]mogorov’s statis−  tic fbr 6nite sample size.」.A.S.A.,47(1952), pp..425−441.   ・ Birnbaum, Z. W. and Ha皿, R A.:SmaU sample distributions fbf血u壮isample statis−  tics of the Sm丘nov type. A.M.S.,31(196q), pp.710−720. Daτ1ing, D. A.:The Kolmogorov−Smirnov, Craln6r von Mises tests. A.M.S.,28  (1957),pp.823−838. Haga, T.:.A伽o−sample rank test on location. Ani. Inst. Statist. Math.,11(1960).  pp.211−219. Japanese Standards Ass㏄iation. Statistical Tables alld Formulas with Computer  Application(1972). Kamat, A. R.:Atwg−sample distributi6n−free test. Biometrika,43(1950, pp.377−

 387.     .      「     .    閲

KuipeらN. H.:Tests concer血g random points on a circle. Indagatio’氏@Math.,33.   (196q), pp.38−47. Ma血, H. B. and Whitney, D. R.:OII a test of whether one.of twb random var−   iables is stochastically 1arger thall the other. A.M.S.,18(1947), pp..50二60. Raghavachad, M.:Limiting ’distributions of Kolmogorov−S血輌rnov type. statistics un−  der the alternative. Ann. Statist.,1(1973),. pp.67−73.      ,  . W遡coxon, E:Probability tables fbr individual comparisons by ranking methods.  Biometrics,3(1947), pp.119三122.       ’ Wolfbwitz,」. l Estimation.by the minimum distance methOd. Am. Inst. Statist。  Math.,5(1953), pp.9−23. <

参照

関連したドキュメント

In the previous section we have established a sample-path large deviation principle on a finite time grid; this LDP provides us with logarithmic asymptotics of the probability that

If condition (2) holds then no line intersects all the segments AB, BC, DE, EA (if such line exists then it also intersects the segment CD by condition (2) which is impossible due

The performance measures- the throughput, the type A and type B message loss probabilities, the idle probability of the server, the fraction of time the server is busy with type r,

2 Combining the lemma 5.4 with the main theorem of [SW1], we immediately obtain the following corollary.. Corollary 5.5 Let l > 3 be

The maximum likelihood estimates are much better than the moment estimates in terms of the bias when the relative difference between the two parameters is large and the sample size

Now it makes sense to ask if the curve x(s) has a tangent at the limit point x 0 ; this is exactly the formulation of the gradient conjecture in the Riemannian case.. By the

Henry proposed in his book [7] a method to estimate solutions of linear integral inequality with weakly singular kernel.. His inequality plays the same role in the geometric theory

The author, with the aid of an equivalent integral equation, proved the existence and uniqueness of the classical solution for a mixed problem with an integral condition for