• 検索結果がありません。

Chains in non-crossing partition posets

N/A
N/A
Protected

Academic year: 2022

シェア "Chains in non-crossing partition posets"

Copied!
36
0
0

読み込み中.... (全文を見る)

全文

(1)

Chains in non-crossing partition posets

B´er´enice Delcroix-Oger work in progress

with Matthieu Josuat-Verg`es (LIGM) and Lucas Randazzo (LIGM)

SLC 82 Curia & 9th combinatorics days April 2019

(2)

Outline

1 Saturated chains in non-crossing partition posets

2 Minimal factorisations of a cycle

3 2-partition posets

(3)

Saturated chains in non-crossing partition posets

(4)

1

Poset of non-crossing partitions

Definition (Kreweras 1972)

non-crossing partitiononn elements=

set partition of {1, . . . ,n} which parts do not intersect

1 2 3

4 5 7 6 8 9 10

11 12

Ordered by refinement.

1 2 3

4 5 7 6 8 9 10

11 12

1 2 3

4 5 7 6 8 9 10

11 12

, not comp.

1 2 3

4 5 7 6 8 9 10

11 12

(5)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5

3 1

4 1

3

31413 → parking function !!

(6)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5 3

1

4 1

3

31413 → parking function !!

(7)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5 3

1

4 1

3

31413 → parking function !!

(8)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5 3

1

4

1 3

31413 → parking function !!

(9)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5 3

1

4 1

3

31413 → parking function !!

(10)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5 3

1

4 1

3

31413 → parking function !!

(11)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5 3

1

4 1

3

31413

→ parking function !!

(12)

1

Saturated chains in NCP Poset [Stanley 1996]

Definition

A saturated chainin NCn is a maximal chain π1 < . . . < πn−2. 1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 3 6 2 4 5 3

1

4 1

3

31413 →parking function !!

(13)

1

From parking functions to planar binary trees

Chains in NCPP Parking functions Decorated Dyck paths

1 4 3 2

111 123

1 4 2 3 1 4 2 3 1 4 2 3

112 121 211

ba c

1 2 4 3 1 2 4 3 1 2 4 3

122 212 221

a b c

1 3 2 4 1 3 4 2 1 3 4 2

113 131 311

ab c

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

123 132 213 231

312 321 a b

c

(14)

1

From parking functions to planar binary trees

Chains in NCPP Parking functions Decorated Dyck paths 1 4 3 2

111 123

1 4 2 3 1 4 2 3 1 4 2 3

112 121 211

ba c

1 2 4 3 1 2 4 3 1 2 4 3

122 212 221

a b c

1 3 2 4 1 3 4 2 1 3 4 2

113 131 311

ab c

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

123 132 213 231

312 321 a b

c

(15)

1

From parking functions to planar binary trees

Chains in NCPP Parking functions Decorated Dyck paths 1 4 3 2

111 123

1 4 2 3 1 4 2 3 1 4 2 3

112 121 211

ba c

1 2 4 3 1 2 4 3 1 2 4 3

122 212 221

a b c

1 3 2 4 1 3 4 2 1 3 4 2

113 131 311

ab c

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

123 132 213 231

312 321 a b

c

(16)

1

From parking functions to planar binary trees

Chains in NCPP Parking functions Decorated Dyck paths 1 4 3 2

111 123

1 4 2 3 1 4 2 3 1 4 2 3

112 121 211

ba c

1 2 4 3 1 2 4 3 1 2 4 3

122 212 221

a b c

1 3 2 4 1 3 4 2 1 3 4 2

113 131 311

ab c

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

123 132 213 231

312 321 a b

c

(17)

1

π1: Chains in NCPP → PBT π2: Decorated Dyck paths→ PBT

Shape

π1 6 4 3 2 1

π2 6 3 3 3 1

(18)

1

Hook formula(s)

Proposition (DO, Josuat-Verg`es) The multiplicity of a given leveled tree T

W(T) = Y

v∈L(T)

(hv + 1),

where L(T)= {left children in T}

and hv = nbr of inner vertices in the subtree of T rooted in v .

(19)

1

Hook formula(s)

Proposition (DO, Josuat-Verg`es) The multiplicity of a given leveled tree T

W(T) = Y

v∈L(T)

(hv + 1),

where L(T)= {left children in T}

and hv = nbr of inner vertices in the subtree of T rooted in v .

(20)

1

Hook formula(s)

Proposition (DO, Josuat-Verg`es) The multiplicity of a given leveled tree T

W(T) = Y

v∈L(T)

(hv + 1),

where L(T)= {left children in T}

and hv = nbr of inner vertices in the subtree of T rooted in v .

4

3 2

(21)

1

Hook formula(s)

Proposition (DO, Josuat-Verg`es) The multiplicity of a given leveled tree T

W(T) = Y

v∈L(T)

(hv + 1),

where L(T)= {left children in T}

and hv = nbr of inner vertices in the subtree of T rooted in v .

4

3 2

Corollary (Hook formula) (n+ 1)n−1 =X

T

n!

Q

v∈V(T)hv × Y

v∈L(T)

(hv + 1)

where the sum runs over any complete binary tree T .

(22)

1

Hook formula(s)

Corollary (Hook formula) (n+ 1)n−1 =X

T

n!

Q

v∈V(T)hv × Y

v∈L(T)

(hv + 1)

where the sum runs over any complete binary tree T . Proposition (Postnikov 2005)

(n+ 1)n−1 =X

T

n!

2n Y

v∈V(T)

( 1 hv

+ 1)

Rk: PTW(T) given by A0088716

(23)

Minimal factorisations of a cycle

(24)

2

Minimal factorisations of a cycle

Definition

A factorisation of (1 2 . . . n),σ1· · ·σj, is minimalifPil(σi) =n+j−1.

Proposition (Biane 1997)

Minimal factorizations

Chains of NCPˆ0≤π1 ≤ · · · ≤ˆ1

s.t. l(σi) blocks are merged between πi and πi−1.

(25)

2

Enumeration

The number of factorisations (1,2, . . . ,kn+ 1) =σ1· · ·σn whereσi is a cycle on k+ 1 elements is

(kn+ 1)n−1.

Proposition (DO - Josuat-Verg`es)

We have with T running over plane(k+ 1)-ary trees with n increasingly-labeled internal vertices:

(kn+ 1)n−1 =X

T

Y

v left vertex

hv,

where hv is equal to the number of leaves above v .

→ 5

(26)

2

YAHF

Proposition (DO - Josuat-Verg`es)

We have with T running over plane (k+ 1)-ary trees with n increasingly-labeled internal vertices:

(kn+ 1)n−1=X

T

Y

v left vertex

hv,

Corollary

Considering planar (k+ 1)-ary trees T , we get:

(kn+ 1)n−1=X

T

Y

v left vertex

hv

!

× n!

Q

v hv−1

k

(27)

2-partition posets

(28)

3

2-partitions [Edelmann 1980]

Definition

A 2-partitionis a couple (P,Q)φ, where P is a non-crossing partition, Q is set-partition

andφis a bijections between parts of P and parts of Q s.t.

|Pi|=|φ(Pi)|.

Example:

( • •,{14}{3}{257}{6})3412 ↔ 2 6 5 1 4 7 3• •

(29)

3

2-partitions [Edelmann 1980]

Definition

A 2-partitionis a couple (P,Q)φ, where P is a non-crossing partition, Q is set-partition

andφis a bijections between parts of P and parts of Q s.t.

|Pi|=|φ(Pi)|.

Example:

( • •,{14}{3}{257}{6})3412 ↔ 2 6 5 1 4 7 3• • Order : (P,Q)φ≤(P0,Q0)ψ iff P ≤P0,Q ≤Q0 and the bijections commute with the order

(30)

3

2-partition poset on 3 vertices [Edelman]

1 2 3 1 3 2

1 2 3

2 1 3

1 2 3

2 1 3

3 1 2

1 2 3

1 3 2

1 3 2 1 2 3

• • •

1 3 2

• • •

2 1 3

• • •

3 1 2

• • •

2 3 1

• • •

3 2 1

• • •

(31)

3

2-partition poset on 3 vertices P 2

3

[Edelman]

111

112 121 211 122 212 221 113 131 311

123 132 213 231 312 321

(32)

3

Zeta polynomial

Definition (Stanley 1974)

The Zeta polynomialof the posets of 2-partitions is defined by:

ζ(l,k,n) =|{π1. . . πki ∈P2n,rk(πk) =l}|

Proposition (DO - Josuat-Verg`es - Randazzo) ζ(l,k,n) =l! kn

l

!

S(n,l+ 1)

In particular, ζ(l,−1,n) is given by A198204. Corollary (Edelman)

X

l

ζ(l,k,n) = (nk+ 1)n−1

(33)

3

Zeta polynomial

Definition (Stanley 1974)

The Zeta polynomialof the posets of 2-partitions is defined by:

ζ(l,k,n) =|{π1. . . πki ∈P2n,rk(πk) =l}|

Proposition (DO - Josuat-Verg`es - Randazzo) ζ(l,k,n) =l! kn

l

!

S(n,l+ 1)

In particular, ζ(l,−1,n) is given by A198204.

Corollary (Edelman)

X

l

ζ(l,k,n) = (nk+ 1)n−1

(34)

3

Zeta polynomial

Definition (Stanley 1974)

The Zeta polynomialof the posets of 2-partitions is defined by:

ζ(l,k,n) =|{π1. . . πki ∈P2n,rk(πk) =l}|

Proposition (DO - Josuat-Verg`es - Randazzo) ζ(l,k,n) =l! kn

l

!

S(n,l+ 1)

In particular, ζ(l,−1,n) is given by A198204.

Corollary (Edelman)

X

l

ζ(l,k,n) = (nk+ 1)n−1

(35)

3

Some species

Proposition

The species of weak k-chains satisfies the following relation:

Ck,tl =X

p≥1

Ck−1,tl,p ×Ck,tl + 1p,

whereCk−1,tl,p is the species which coincides withCk−1,tl on any set of size p and send any other set to the empty set.

Obrigada pela vossa aten¸c˜ ao !

(36)

3

Some species

Proposition

The species of weak k-chains satisfies the following relation:

Ck,tl =X

p≥1

Ck−1,tl,p ×Ck,tl + 1p,

whereCk−1,tl,p is the species which coincides withCk−1,tl on any set of size p and send any other set to the empty set.

Obrigada pela vossa aten¸c˜ ao !

参照

関連したドキュメント

This issue was resolved by the introduction of the zip product of graphs in [2, 3], which led to exact crossing number of several two-parameter graph families, most general being

In Section 3 the extended Rapcs´ ak system with curvature condition is considered in the n-dimensional generic case, when the eigenvalues of the Jacobi curvature tensor Φ are

Whereas up to now I have described free cumulants as a good object to deal with additive free convolution I will now show that cumulants have a much more general meaning: they are

Here we do not consider the case where the discontinuity curve is the conic (DL), because first in [11, 13] it was proved that discontinuous piecewise linear differential

Our approach follows essentially the pattern introduced by Filippov [4] and developed by Frankowska [5], Tolstonogov [16], and Papageorgiou [13], however with the basic difference

Theorem 1.6 For every f in the group M 1 of 1. 14 ) converts the convolution of multiplicative functions on non-crossing partitions into the multiplication of formal power

In particular, we find that, asymptotically, the expected number of blocks of size t of a k-divisible non-crossing partition of nk elements chosen uniformly at random is (k+1)

We will later see that non-crossing and non-nesting set partitions can be seen as the type A instances of more general constructions:.. ▸ non-crossing partitions NC ( W ) , attached