• 検索結果がありません。

THE PROPER VALUE OF △ FOR 1-FORM AND FUNCTION IN CERTAIN COMPACT KAEHLERIAN MANIFOLDS

N/A
N/A
Protected

Academic year: 2021

シェア "THE PROPER VALUE OF △ FOR 1-FORM AND FUNCTION IN CERTAIN COMPACT KAEHLERIAN MANIFOLDS"

Copied!
13
0
0

読み込み中.... (全文を見る)

全文

(1)

SUT Journal oま Ha土he血at ic.s..、, (Foコロnerly TRU Hathematics) Volume 26, Number 1 (1990), 55−67

.THE PROPER VALUE OF△FOR 1・FORM AND

      FUNCTION IN CERTAIN.』 一 ”‘

      COMPACT KAE肌ERIAN MAN皿OLDS 、、

KAZUHIKO TA.KANO

1

(Recgi▼ed February 1, 1990;.Revised April 18, 1990)

Abstrsct. For any proper 1.for血and proper function of△corresponding tothe proper value λ,we show that the gb.special KiMng 1−form with k plays essentiahbles三n certain compact Keehlerian msnifelds when A actUally takes the possible minimal value. A」lfS 198θsubiect classifications. Primary 53C55;Secondary 53C65. Key脚?ds and夕九7α”ε8. Kaehlerian皿anifold, Lsplacian operator, Pmper form,由special Killing 1−form with・k, K−confbma1 Killing 2一伽m・     §1.IntIod皿ction. Let M「be an n−dimensio丑訓Riema皿ian ’manifold. Throughout this papel, we assume that manifolds・are・con皿ected and of dass C°°. Denoteエespectively・ by g飾Rki‘九,and Ri‘=Rhj‘b the皿etric te皿sor, the curvature tensor and the Ricci te丑soI of」M「in terms of local coordinates{¢‘}, where Latin indices run over the.range{1,∴.,n}.     AKaehleエia皿manif・1d K2m withmet永g・f・eal⊃(五tnensil・皿n=2m・iS・a・Riemannia皿 manifo1《1 admitting a parallel tepsor五ddφ∼such that        .      ウ        φ‘?φ㌶ ニーδ!,  φ」輌=一φi∫, where we putφ∫‘=φ∫?侮. Let us associate to a p−fblm%(2η膓i≧p≧2)a scalar qp(u)by      a・(・)一:@i…㌔・‘・一㌔†φ加φ」’・・」・3・−i?U・∼・一恒φ九ψ’・・」・・一ら・・∼ll・・r‘・》     If thele exists a positive constantんsuch that        ・ −Rk5ih uig7’ uih.≧んσ2(%) : ・    .  ビ holds for .any 2−fbrm%on。K2m evelywhele, the皿K2,n is said to be ofσ一positive cuτva− ture operator. In a co血pact Kaehlelian ma㎡fold K2冊ofσ一positive cu茸冊ture opetator, S』㌔・hiban・([5D・hb能d th・t“2m・dm』・6・1・・ed PT・pe・1−f・1m⑭f△・9・・e・p・亘d・ i皿ξtO the pr・peエv曲e(m+1)克, th・h匝aφ一sp・Clal・K皿桓91−{brm with k. M6re(頑, he plove{l that a compact simply co丑hected Kaehlelia皿ina皿ifbld K2nt 6fσ一positive curvat皿xe operato写.is isq皿etric with the complex proje.: ▲ive space Opm(k)with the Eubi皿i−Study m・tTi・・fC。・・t・・品・1・rP・・Phig Secti・pal・u・頑・e k・ .     We consideエaKaehleΣia皿rnanifold K2M satisfying t・he condition(*):一・ (*)

F・(%)≧}(冊+1)k国2     f・r any・1−f・・m・u,

  F2(w)≧▲克(4m l w 121十1Φ殼ノ13−41Aw l 2) fbエany 2−fbl血、セρ..

55

(2)

56

THE PROPER V▲LUE OP △ FO駐 1−FORH ▲m》 F㎝CT工ON

whele先返apositive co皿stant.(s㏄【8D・The abo▼e condition(*)桓alwayミsatis6ed血a

Kaehlerian・manifold・of・a−P・siti▼e curvature dperator.     Remalk. If K鍋{s of constant holomolphi¢s㏄tional cl11▼ature,. the equality signs in the condition(*)hOld. Recently, we have proved the fo皿owing theorems(18D. THEOREM A・Inαcompact Kaeゐlem’an manifold sat‘吻‘π9坑e coπ♂伍oπ(*), for any ・cわ8e♂P7りpef・2.form wφ∫△co7写esponding teオ克eρハoper valueλ, tρeゐαηε

     ωザΦw・d・一・繊働・4嚇紘・πλ≧鵠ぱ為,

     ↓2ノザlw”απ輌θゐe8 identically, tゐeπλ≧(m十1)〃,

     ωザm>5andλ=(m十1)k, tゐεπw品αclosed K二coηプiortnal Killin92イbm・

THEOREM B. L・t.κ2m‘eα・・mp・ct・Ka・ゐ’・・‘⑰ 四en we九α暫e疏e lb〃owingS:     ρノ皿e‘帖e璽包α在£y manザbld 8α‘isfu輌n9‘みe cond‘tion(*).      1▽du l 2≧克[〈δ血,%〉十〈(ア♂包,蚕忽〉−2〈dA.du,Φ%〉]−2(m十1)ん21%12 holds∫for any 1・1向m%, tσゐere‘ゐe eguality signゐolds if and op『yザt九ε1−form of‘5φ・special Killingψitゐ‘.      ヒ     ↓2/ij K2M a伽‘‘・αC・Cわ8eば卿,er 1・f・rm U Of△C・”℃sp・ndi.ng t・砺ρ・・ρeずカα』 (7π十1)克,ぴεπ%‘8毒ゐeφ一θρec‘α∼Killing 1−form tρ‘毒九克. THBOR■M C・Let」K2m beαco”rpact simp ly connected Kaehleri’an manijold satisfuing重ゐe COπイ‘‘‘0π(*)・If K2m admits a coclosed pro,er 1・ノb丹πq∫△corresponding‘O tみe proper ralue(m十1)‘,疏eπK2m‘θ‘30冊e‘ず‘C tρ‘疏cpm(克)..      Fロrthermore, in{6], we ha▼e co皿si《leτed the plopel▼altieλof 1−fbエm%s皿ch that

Φdu=0桓acompact Kaehledan maコifold K2m satiSfying the co皿ditio皿(*)and have

obtai皿ed“s lower 1》ound・We also discussed the case w1[e皿λactua皿y takes the possible minima1▽alue and showed that the K−conformal Ki皿ing 2−fbrm and the aspecial Ki伍ng 1−form with k play essenti訓エoles in this field.     h§3some operators for the differential P−form h a Kaehle車n manifold K2,n ale recalled a皿d we gi▼e the aefinitions of theφ一specia[Ki皿ing 1−f(》lm Withみand the K− conforrnal Killing 2−form.     We c・nsider the p・・peτ▼alue・A・f 1−form u in a c・mpact Kaehlerian鵬nif・ld・K2m satiSfyi皿g the co皿dition(*)and show that its lower botind co丘tCide‘With the lower proper value of Theorem A..We show that’the g6−special ’Ki皿ing 1−form with k Plays esse丑tial roles in§4・h§5, we disc皿ss the proper value of the plopex function.     The author woUld like to express hiS hearty thanks to Professor S. Yl皿aguchi・a取d Professor N. Abe for their help血l advice. He also.wo皿ld like to admowledge the encour− agement of ProfessoX S・「fachibana・      .

§2・Pxd丘n桓頭es・We宝eprese皿t ten50Xs by the血components With respect to the

(3)

K編丁▲K▲加 ”57

n蜘「al basisD and’@use ‘he’

@Sntn血輌.c°”e

q.,F°⇔鑓・・en‘ill P−fo皿 ..

       1     .      .       旭=碗晦・一㌔♂       2鞄く…  〈♂¢8, with skew symme垣c coe伍cients勉‘1..,i., the coeMcients of its exteτior differential du a皿d the exteτioΣco《lifferentialδ秘ale given by        ,十1        傾)・、..,・?.、一Σ(−1)a+1▽・.・、、..乱..㌔+1,        α=1       (δセt)‘2..,i.=一▽hOf・h‘2..ぷ., wh・・e▽九=9み」▽」,▽」d・n・t題th・・P…t・・㎡・⑰㎡・nt d・riv・ti▽・, and;。 m㎝・sい。 be deleted. R)r p−forms%a皿d v the inner Prod皿ct〈%,”〉, the Ien{紬s l旭lan《l l▽旭l aエegiven by       〈%lv〉−i!u・・−i、v’1・・.ie,国2−〈包,・〉・       1▽・12=〉▽鵬一ら▽ゐu’・一ら・  . De丑oti皿g by△=dδ十δd the Laplacian operator,.we ha▼e△∫=一▽,▽, f fbr a functio皿

∫and

(2・1)    (△%)・、1.㌔=一▽’▽,%・、..ぷ.+恥)・、…・. as the coeMcients of△%, whele H(%)‘1...i. ale the coe]吊cients of H(%)gi▼e皿by (2.2) 丑(%)ξ=R‘, H(旭)‘1..,iP=

Ul

ΣR

(P・=1), i.’u・、…・…i,+ΣR、.“”eq、一.t…...,i.        a<b (n≧カ≧2). hthe sec・皿d・term・n the right−ha皿d・Side・f the・1ast・ab・▼e equati・皿, the subscript・皿d 8are伍the positio皿s of ia and‘6 respecti▼dy, and We shall use血Ular arrangements of hdices without any special notice.(2.1)mぴy be vvritten as follows: (2・3)      △%=一▽,▽.%十H(%).     The quadxatic fb血Fp(%)of%is define《l by          Fp(%)=<.H(%),u>       一(ρ」1)!(争漣一ら㎡・、一ら+P;1阜ぷ♂・・㌔磯A), and it appeals i皿the fb皿owhlg wel1−k皿own .formUla which iS va五《I fbr any. pfoエm%:

(…)  1△(1・12)一く△・,・戸1▽・臼(・).’

(4)

58=

THE PROPER ▼▲LUE OF・△}FOR 1−FORIl▲m FUNCT工ON

    If a nonzelo垣b叫u satisfies△%=.加with a.positive constantλ, i巳ca皿ed a

P・・pe・fbxm(ぜ△coロespond桓g t・the pπ・pe・value・A.

K,。監、鷲瓢゜漂2竺h興uei, we shaJ’岬eτaKaeMe麺ma興

    The血ndamental{bmφ垣he 2−form given by

      ・ 1   .  .      .        φ=豆φ」‘d♂〈d『8・         .     Now, we wartt to recal1 some operators for di ffere皿tia1 f(》rms in K2m. De皿ote byヂρ t’

?E・et・f雄戸㎜・・n K2m・Th・・pe・・t。・s

      r.:アP→タP+1,  0:アP→ク7−1,  委:戸→.プ?

are・defined・respectively bプ    .   ド’ 内  ’. .

      P       (ru)・。..・.一Σ(71)αφ㌔’▽・・、。..』。...、,,・       α=0       (c%)‘…エ・=φ1’▽・%’‘?;・’i・,       ,         ’      .       、.  (叫、..㌔一Σヂ㌔?eq、..・..㌔ .       ’      』      6=1       . fbl a皿y p{brm u. FOI O−fblm旭o, we・defi皿ed O廻⑲=QUo=0.     We denote by L(ヱesp. A)the exterior(resp.加αior)product with the fUndamental 2−fbxmφ, then the operators L:フmP→ヂ7+2 and A:戸→フ「P−2 ale wlitten by        l  Lu」.φ∧旭,..A%ニ(−1),*五*泌   f(》ra’吹Dform包, whexe*means the dilal operator. A is・t亘・6al on O a丑d 1−f()rrns. These }ocal explessio丑s ale《le五ned by        ・「      ,       ,        ・     ..      . ⑭…、..・,=φ脳、..・.一Σφ・醐…・.・・,一Σφ・・.・・、…・…ii+Σφ・。・.・・、…・…・..,i,,       4=1       b=1       α<b       .       1

         ・..・\∵(A・)・・,み.=豆φ”・”・…㌔・’  ‘.h、..

    亜bl the opelatols abo▼e, we have丘01n[1]a皿d【2】 (3.1) (d!壷一委d!)勉=−r賜, (3.3) (rQ一φ]F)%=du, (3.5) (δr十rδ)%=0, (3.7) (δC十〇δ)包二〇, (3・9) (dC十〇d)勉「. q, (3◆1i)(AΦ一QA)旭=0, {3.13)(Llr・1{匝Z})%=0,. (3.15)(1’0十(アr)%:=△%, (3.17)】P2u=0. .    ’ (3.2) (δ委一φδ)%=−0勉, 、(3・4).(0曼・一倭C)勉=δ%, (3.6) (61r十rd)%=0, (3.8) (d!A.−Ad)%=一(ア1比,三 (3.10)./(]F4v−Ar)%=δ%,  (3.12)(C五一1}0)%=_dηL, ⑬.ユ4)(△委「.倭△)旭=.0,、  (3.16)σ2%==0,

(5)

K..・T▲IUπ0.

59

    Moxeovel桓a compact K2m, it fb皿ows丘o血{1】tha1  、 (3.18)   (Lu,,%)=(ω,A%)   for w∈ヂ7 a皿d%∈夕予+2,層 (3.19)  .{委w,』%)聖=一(ψ,Φu)1 ・二.9for w,%∈’∫P,   .‘ (3.20)   (Pw,旭)=(切,0%)   fbl w∈アP aロd%∈1p+.1, whexe(,)denotes the global hmex product.

    L・t・一鋤‘b・・K皿・g1−f・・m,甑・1一蝕m・…hth・t th・▼㏄t・r・fi・ld・#一(め

・btain・d丘・m・by輌・・f th・頑i・gi・輌五㎡t輌曲・m・t・y・

      ▽5吻十▽iUi=;O:

AK過9・−f・・m・iS・d・・d・Of・peci麺砕江麺i訊・・

      1        ▽・▽」聾・+ik(9・5・・−9刷一φ・∫毎+φ繭+2φ吻一〇, wheleんis a CO丑stant and we P皿t毎」(IU)‘.     A2−form a〃is said to be I(−co皿fblmal Ki皿ing, if it satiSfies        ▽・W」・+▽iWk・=2ρ・9ザρ・9」・−Pi gk・+3(P為φ5‘十砺φ為‘)・ where we p皿t       1        ρ‘=−h+2{6w)‘, p‘=(¢P)・・ It・is easy to see f}om the above equation that 1 (3.21)      dΦw=2rwり..     §4.The p宝opel▼alue of the proper 1−fblm. At first, we plepare thdb且owing Lemrdas

飴「1・tc・u・e・ .,.、. ∴. .・、. ’   ,

L・MM・4.1.1。 K・冊, w,』

ノ。。。輌W 1.fo。m。 ㌧’

(…)   .:A砕』・,∂畷㌍・・l

LEMMA・4.2.加・卿・ct・K・・ゐ㎞・・m・晒ぼ頁2m, w・ゐ鋤か・・y・1.f。rm・u

(4.2)   1|Φ刺2=2(lldall2−ll酬2).=2(llr包ll2−llδ・ll2),

(4.3)      II輌12−llC・ll2,

⑭.、    ll酬12−1酬∵.... .、・.,L

       l匝{彦動112r恒吻ll2,・.・   、(4.5)

(4・6)      llA輌ll2一胸12,

(6)

60

THE PROPER V▲LUE Oセ ム’FOR 1−PORIf AND FUNCTION

ψゐe肥1卜ll den・勧疏e g∫・bal length.    Pxoof It{b皿ows丘om(3.1)∼(3.5),(3.8),(3.9),(3.15),(3.19),(3.20)and△=砺十δd

that

       (Qdu,《¢du)=(堀%,饅包)+.(釘包,r%).        =一傾,翻委%)一佃,Φr%)        r2[ll刺2−(du, rQu)]        =2{lld電島ll2−(Cda㌧4}%)】        =2{1μ%ll2十(dCu,亜%)】        =2[ll♂%‖2十((ア%,δΦ%)]        =2(lld:毘ll2−llO%ll2)        =2(llr%ll2−llδ%ll2),       (A4%, Adu)ニ(dA%+0%, d加+(ア旭)       =‖o%ll2

and

      (dlu, dΦu)=一(包,4}δ♂Φ%)       =一(%,(δ委+c)踵%)       =一(勉,δ(dQ十r)Φ%十Cd{Pu)       =(%,《1δu十δば%−rc%)

      =(%,△%−ro%)      .

      =(u, CTu)       =llr%ll2, whidl yidd that(4.2)∼(4.4)are true. It is easy to see that the rest hold by▼irtile of (3.4)a皿d(42)∼(4.4).

LEMMA 4.3.1れαcompαc毒καeゐ’eパαπmanifeld K玩,∫ごアany p”per 1・∫b牝m%o∫△

correspOnding毒o fゐεp7りpεP valueλ‘ゐε∫bπ0電∂‘πgノ’ormulqsゐ0「」:  ’ (4・7)     ’       (Φδdu, dAdu)=一(蚕δ4%, Odu)=一λllOul12,

(4・8)      11δdφ・ll2一λ11r・ll2,

(4・9)       (Φδd委u,(IAdφ%)=一(¢δdQ%, Od委u)=一λll6%‖2,

(・…)  1剛1→1・・酬・一・ll…ll・,

(・…)   ll・卿1!一・ll壷剛1・・

   Proof We obtain i皿mediately(4.7)by(3.1),(3.5),(3.7)∼(3.9),(3.19),(3.20)a泊d

△=d6+δd. N血g acco皿t・of△=dδ+δd,‘we have

      llδdul▲2=λlldul12.

(7)

K.T▲K▲NO・一’・・1:「

61

The皿cha丑ging包i皿to委%in theε山o▼e equatioロa孤《Lowihg to(4・4)ジwe 96t(4.8).’It拍

1雛ぽ;鵠th°’日by壷t皿e°f(3司∼(3外(3・15),(3’16)・(生2),⑭・㈹,

    hth・・e舳・d…f趣・ecti・・, w・…m・th・t・K2m・・t域・li・th・・c・・diii・・(・)㎝d is comp㏄t. The positi▼e cons‘ant先h(*)wil1 be fU【ed thlo皿gho皿t papeτ.     h[6],we Plo▽ed the fbllo㎡丑9 fheorem.   . . THBOR取l D・1}bずα〃oper 2−form w q∫△corresponding toαρ7りpeず拠玩eλ‘παcomρact π2m satisfuin9坑e condit‘on(*),坑e‘πε璽題α況ダ       .

・1回12≧}1酬2−m…、【II・wll・+・(亜δw, (IAw)一(・・w7・切】』

      +{・{輌ll・+lliwll・一司1酬 ゐolds・ij‘ゐεeguality signゐeld●‘πオゐεabOVe‘negualit.y,彦ゐeπtゐe 2−♪om⑩‘8 K;「confol∀πα「 Killing.       .       ・     Let u be a proper 1−form。f△coエr巴pon曲1g t。 the pxopex曲eλ. Then changing whlto♂%a皿d{煙%in Theoτe皿D,τespecti▽ely and owing to(3.14), we get        1         λ11dull2≧一       {11δdu‖2十2(《臣δ4%, dAdu).一(委δ血, C4%)l        m十1        +;酬刺・+ll呪・ll・一・1』‖・1,

     ・ll酬2≧−mし1‖1・…ll・+・(委δd蚕包,立ば《5包)一(・・…幽)1・

       +;・{・mll剰1・+1匝西・ll・一・llA・酬 and b㏄a皿se of(4.2)∼(4.9), the above two eq皿atio草s are rewritten as fb皿ows:

(4・12) [2(仇+2)λ一伽+1)(2m+1)‘1酬2−3[2λ一(m+1)‘川σ・ll2≧0,

(4・13) [2伽+2)λ一(m+1)(2m+1)克川「ザ三3[2λ一(m+1周llδ・ll2≧・・

    Also, changhng w麺to dCru in Theolem D and makhlg use of(3.14),(4.1),(4.10),

(4.11),△0ニ0△皿d△r=r△,we have   l

(4.14)      {2(”駕十2)λ一(冊十1)(2”葛十1)ゐ川委ば%‖2≧0.     Hence we have PROPOSITION 4.4. Inαcompαc毒Kaehlert’an M’ anifoldκ2mθᣑ∂ノシ‘πg毒ゐe coπ♂“‘oπ(*),

忽㌶慧繊’㌶工1Z△‘9”−s?°”4‘π四毒ゐ1卿P『ず”α九e戎ザ委4We8城‘4伽

       (m十1)(2m十1)       λ〉       克.       2(協+2)

(8)

62

THE PROPER ▼▲LUE O野△./,FOR 1・−PORN ▲ND FUNCTION    ・P零oo£Erom(4.14).and Theorem D. we have..・,  t−..t.:    …−

   r(・)江賄d・es・』・・i・allY・Vani・h,』・hと・λ≧m吉鵠+1ゐ,.層.

−2)ギλ三.me・’−1・)+;靱ρ・拠姪・岬K−・・輌m垣K過・2−f°・m・、

    We c…ider・・th・・.’・eas…f(2)・W・dS・um・・thatrA’≒竺き器笥‡Uk・’・Th・n・it・f・ll・w・

丘om(4.12)a丑d(4.13)that O%=Oa皿dδμrO. By▼iヰUe.of(3.15)a皿d O包=0, we

obt血      F

     ・一一ば伽一d△・一λdu一雲(1)(2m+1nt+2)1)晒 ,

whi《血mea皿s that du iS a closed K−confbτmal K皿皿92−fbm. Also, Changing w into du麺 (3.21)a皿《ltah皿g acco皿nt of(3.1),.we have  ..、  .    t   ・、.    ..        口%=0.

If we operateδto the above equatio皿a皿d regard to(3.5),δ%=Oa且d△=dδ十δd,

the皿we get r%=0, which denotes by y詮t皿e of(3ユ5)a皿d Oμ=.Othat A%=0. This

…t・adi・・t・t・λ一誓器笥+1ゐ・H・・c−・血dλ>ml袈穿1随・皿(1)・nd(2)・∵・

    Let.us.・pr◎ve the fbUowings・; 、。・.  ・ LEMMA 4.5.1カ.1ζ2仇, we’ 薰≠魔?@   1 (4.15)       ‘ ・  4}drδu:=0;『   φ’acO%=0,

(4・16)  ∴ .・.・一岬㍑=0.

for any 1・≠「orm u.       ・  .      』・       ・.ζ       t/: ;.      ..  “ LE瑚[M[A 4.6.1カαcρmραcfκαe脳eパαππ己anifo’d頁2m,∫bアany proper 1・∫ρ仇%o∫△ CO竹℃3ρ6π{“句・toオゐe pmpeア”α1題6λ’tゐe fo∼あwing formulasゐold: (4.17)    ミ ・ξ :−r :  ・‖drδu,H 3=‖Adriδ%‖2=ごλ2 Hδ旭川2,・

(4・18)_’・.、...、  ll郷μ r rλ311δ・ll2,... .「  、・、

(4.19)         (倭δ孤δ%,瑚L《江δ%)=一(Φ6drδu, cacδu)=一λSlIδ包II2,

(4・2°)....㌧一、1μCcll2−1|∧在9・ll2三λ2110・ll2,一・  、.

(4.21)      11δdl’Oull2=λ311Cul12,       . ’ (4・22).・.fΦδ4ro%,44ばrσ%〕ニー(’¢6arσu3 cerOu)ヒ=→3HOull2.

(生23)  1酬1・一醐・ll・二・ll酬1・,「『  −

(生・4)   岬二ll・三・ll軸・.「

  ・.Plo6f. Erom(3.5)∼(3.7),(3.9),(3.15),(4.3)a孤d△=品十δd we obta口1㎞mediately (4ユ7)..Ma1血g・use of(3.1)∼(3.3),(3:5)∼(3.7),(3.9),.(3:10),(3.15)∼(3.17),(3,・20), (4.2),(4.3),(4.5),(4.7)and△=が十δば, we have the Iest.      ’   ∴  」

(9)

! ・K.TAK▲NO

63,     Now, cha皿gipg w i皿to dl)δu .and aSCu in Theorem D, respectively. and ow口lg .to (4.15),(4.17)∼(4.22),△OrO△an{ユムr=r△, we get       [λ一(i}十1)珂11δull2≧0;.’     』   1       ・ . 、[λ一.(m.十1)klllCull2≧0..tt.・一、

    He皿ce, we have   .. .・ .,. 、.     ..

      T THE・REM 4・7・血.…殉・・t K“ゐ伝・・m・nif・ld K2nt・・ti・fU吻蓄ゐ・c・ndition(1), f・r any proper 1−∫わ㎝旭0∫△CO洲pe5,0π♂輌π9 to the Pfりperηψελ,ωεゐave   .   .     (1/if 6u ・r Cu d…n・t・id・nti・・鞠・碗・ゐ, tE・n・」L≧(”・+1)ん,     (2) ifλ=(m+1)克, th・n・drδu⑰」4rρ%・副ゐ・ψ・・d K−・・nf・rm・1・Killing 2・釦㎜,

    (3)ザδ…d伽励ゐ硫‘・・lly・・th・・.λ>m器笥+1先・

    Ploof It is easy to see丘om the above two inequalities and Theorem D that(1)artd (2)hold. Now, we considex the case of(3). We assume thatδ%=Oa皿d O%=0. The皿it

姐・ws丘・m(4.12)that

       λ[2(7π十2)λ一(m十1)(27π十1)k]IIul12≧0.     tt    ≧

Beca・se・f・All・ll2>0, w・g・tλ≧m耀笥+Uk・E・peci姐y,血the㈱・fλ一

冊器笥+1ん,w・・ee by輌・・f・The・・em・D・th・鋤杣・・1・・ed K−…f・・mal・Killi・g

2−fblm・Also, changingセ〃hto♂勉麺(3・21)and皿akhtg use of(3.1), we get        Tdu=0. Opelatingδto the above equation an《l owi皿g to(3.5),δ%=Oand△=砺十δd, we obt血

「・=0畑・h implies f「・m O・−Oth・t△・=0・Ths c・・t・・di・t・t・λ一m吉器笥+llk・

]日[e皿ce we see that(3)hol《1s.     Let us show the fb且owing. TH・・R・M 4・8・L・t K2m b・α…卿《. A故・娠・晒・η{岡・・働拘th・・c・・diti・・(・). ij K2,n・dmit・α〃・P・・1・f・・rm・u。∫△・・仇・P・π輌‘・£ゐe’ P・・p・r・valu・伽+1)いゐ・η t九e 1イform rδu and rCu are ¢−sp’e’ cial Killing with k.一・     P…f・・lt・iS・d・・y t・・ee・th・t th・1麺i 6drδu‘and・6are…e+・pecial Killi・g With        d々2)・Owi・g’ tb〈3・5)・∼(3・7),(3.9)and△−dδ+δd, w・g・t みby The・rem B・(2)an        δ《肛δ%=rδ△%=(7亮十1)克rδ%,        δaCCu=「o△・−d6「Cu=(m十1)克「o・・ whi・h・impli・・th・t th・1−f・・m r5%・皿d rO%・・e◆・pecial・K沮桓9曲h克. Th・・e・c・mp1・t・’ proof.       ’     Also, changhlgψi皿to 6dru in Theo‡em D and oWing to(4.16),(4.23)∼(4.25)and

△rニ

     r△,we Hnd (4.25)      .、     14λ一3(2m十1)ゐ川委血‖2≧0.  ⊥      P       ♪      .       〉、     −      .     ’      . .       .     r      .         ’     He皿ce, we get       1.    9  『 ・

(10)

64

皿 PROPER ▼」LLUE OF △・FO且、1−FORN ▲M》FUNCTION

THEOREM 4.9. Let K2冊6εαcompact simp’ly bonnected」Kaeみleri¢n manijわld satiSli旨ing ‘ゐ…nditi・n(*).『ij K2m admite a P・・p・・1−f・rm U ・f△・・f・rNl・Pbnding t・品pmP・・

・・lu・(m+1)いゐ・n K2m i・輌・拠撤嚇.cpmω・

・    Proof. We assume that rδu=O and TOu・=0. Then, by Virtue of(3.5),(3.7),(3.9), (3.15)and(3.20), we obt血δ旭=Oand O%=0, whidl denotes丘om(4.2)and(4.25)that 旭▼輌hes identica皿yL This co皿tradicts to、 u≠0・Thus rδ笹and rCu dobS皿ot i《le皿tica皿y ▼anish. Co皿seq皿e皿tly, the fact together With Theorem C a丑d 4.8 co皿plete the proof. We sha皿prove the folloWing. LEMMA 4.10. In K2冊, weノ言π♂Jbずany 1−Jb㎜旭

(4.26)      A委ru=0,  AΦCLu=0.

   It is easy to see that (4.27) for any 2−form w. The皿we get ll亜2wll2 ・= 4111tvH2 LE】ばM【A 4.11. Inαcompact Kaeゐlerian manifold K2m, w¢ムαガeプbr any 1−Jb牝m包 (4.28)      II委rul12=IlΦdull2, (4.29)       ll委(ア1}笹‖2=[1壷diutl2, (4◆30)       1ドφ21、包ll2=4‖{φdu‖2, (4.31)       1|蚕2CLul12『411¢(彦%ll2.    Proof It follows丘om(3.1)∼(3.5),(3.9),(3.12),(3.13),(3.19),(3.20)肌d(4.2)

that

       (Φr%,¢r%)=(壷r題,rΦ%)一(亜r包吻)        =一(ru, ¢r¢v)一(δ¢rOf, u)        =一(r%,(re 一 d)Φu)一((委δ一のr%,%)        =llr司12+(ru,d¢u)一(倭δr%,%)+(σr%,%)        =211r電tll2十(%, CdQtり一(rδ%,壷電り        ・==211rull2−(包,dO¢uL)一(δ%, C委r匹)        ニ2(llrz,ll2−11δ%ll2)        ニll郵旭ll2 a皿d       (ΦCL%,壷CL%)=(倭(LO−d)%,亜(LC−4)%)        ’  =(LΦc包一Φ砺,必委c%一郵%)        =1ρ州12, w]hich yields that(4.28)a皿《1(4.29)atre t皿e. It is’e8sy to see that theτest hold by v丘琶皿e of(4.27) ∼ (4.29).

(11)

K. r▲K▲NO ..二」∵

65

LEMMA 4.12.1亮α¢oηPαc毒Kaeゐlerian.m¢nifold K3m, for.απ夕,πΨer lrJb仇%q∫△ corre3pondin9£0毒ゐeρず0ρεr val包eλまゐe JbμOtρ輌π91b㎜題las hold:

(生32) ll酬2−‖・…1ト脚・,酬一;・1』II・,.

醐 1輌・‖2−ll・・…1ト(Φδ委CLu, c亜CLu).−ll酬・・

    Proof Beca皿se of(3.1),(3.3)∼(3.5),(3.20),(4.2)and(4.4), it fb皿ows that        (deru, d¢ru) =(d(rΦ一d)u, d(re−d)u)       =(孤亜秘,(幻P¢u)       =(δ《饅%,orΦ旭)       =λ(lld倭u”2−llc¢ul12)       =λ(llru”2−11δull2)       =;λ1陣ll2, which mea皿s−that the first telm is eq皿a“o the last tem of(4.32). Fuxthexmore, it is cleax by virt皿e of(3.1)∼(3.7),(3.9),(3.12),(3.13),(3.15)∼(3.17),(3.20),(4.2)and △ニdδ十6d that the工est hold.      ’

    Lastly, cha皿g桓gセ〃垣o委r%and亜CLu桓Theolem D and ow麺g to(3.14),△C=

(アム,△r=r△,△1}=1}△,Lemma 4.11 and 4.12, we find       6(m+1)2        ゐ川Φdul12≧0.       {λ一       5m十11

TherefOle we have

THEOREM 4・13・1}1αcompact」(aeゐlem’an mαπ1サbld K2悟satiaヅ旨‘π9‘ゐe condition(*), for anyρ7り,eず1イb7¶;%0チム¢0ずずeθρ0π直π9 to‘ゐe p7⑲,e伊”¢}払eλ,切eゐα”e     (1ノサΦば%does,帖θt輌dentically㊨απ‘θ九, thenλ≧警ii…≒…}}2‘,

   −酬λ一舗い九・・輌・nd・¢CL一伽忌・呼珊・ぷ存・92一畑肱

    Esp㏄idly,桓the case of m=5, we obt血by Theoτ㎝B.(2)孤d 4.13.(2) THEOREM 4.14. Let Xlo beαco”rpact Kaeゐ」』7喝απ7παπりbれ「satisf旨ing‘ゐe condition(*). If頁10 α♂m“8αρ卿eヂ1−1b7亨n叙L of△ corresponding毒o tゐe,ropeヂ宕α缶e 6んandΦdu♂oe8 πo毒identically㊨α頑θ九,‘ゐen‘ゐε1−formδ委ru.and 6蚕CLu areφ・θρθc‘α「Killing tσ‘‘ゐ克. It follows from Theorρm C,4.14 atid Lemma 4.12 that THEOREM 4・15. Let Klo 6eαcompact 5‘7ηρ「ダcoπ飽ec諺e♂Kaeゐk7輌απmanifold satisjlving tゐecon{lition(*)・lf KIOα♂m“5 a proper 1イbm%{ザムcorrespondi”to t克e pmpeず”α缶e 6ゐ and¢du does not identically秒απ‘θ九,毒九επKlo ‘θo”8e97輌c姻諺ゐCP5(k). B)rthe case when委.du▼a丑垣hes ide皿tica皿y, we h訂e know皿the f(∼110wirtgs[61

(12)

66

皿P且OPER▼ALUE OF △ FOR 1−FORN Am FUNCT工ON

THEOREM.E.血…mpa・t’Ka・ゐ1・rian. manifold.K2m 8・ti・ju‘π9オゐe c・π♂櫛π(・).∫ρ・ anyρ7ゆρεr lr∫b丹n%θアム.¢o習匂℃5jpoπ♂‘πg to 8λe Proper valueλ●題cゐtゐα‘Φ4%=0, we九ave     μノλ≧(m十1)為,        .     (2)“‘n抗ecα5εofλニ(m十1)為,       (Vザd委U40e8π0‘‘denti¢allダ.況泊θゐ,‘みeπば蚕%‘・αclosed K−conformal Killin9 2・∫ρ仇,       (ii]ザばΦ%”απ‘8ゐεθidentically,‘ゐeπdu‘5αclosed K二co勾tormal Ki砺π92一戊6rm・ THEOREM F. Let K2mあeαcbmpact Xbeゐ1eパαπη昭πガiold 3ati‘ヴ旨‘π9‘九e condit‘oπ(*).1ア 頁2m admits αproper 1!・ノb7ヲn%o∫△. con℃spo/nding‘o‘ゐe propeア妙α1%e(7η」一{−1)ん 3包cゐtゐα£ Φdu=0, then♂ゐe 1−∫わ77πδdΦu.oず6du輌5φ一5ρec‘αI Killing t〃“ゐゐ.

THEOREM G.五e毒K2冊6eα¢・卿αcf⑰内c・nnectd・Kae九lem’an manif・ld satisju殉‘屍e

COπば“‘0π(*). ij K2m admitsαpro,er 1・for冊%of△corresponding te t九e〃(Ψeアvalue (m十1)〃8題cみ‘みatΦ血二〇, then ’K−2i輌5・‘・ome垣c w“みopm(為).     Remaτk. It holds that .

      ..(竺吉(辮1)・・6無}}i・・(m.+1)・,(1・m・・)・

       (m十1)(2m十1  2(m+2))・・(m+り‘≦6i二‡;;・;’(・≦m)・   Remark. Because of伍e conditio皿(*), Theoエem B.(2)an《1(2.4),we get λ‖d庇112≧1ゐ[1|d!%112十(Φ%,Ode)−2(委%, d!A《lu)r−2(77L十1)克2‖殼Ll12

       ”1....∫..十{・剛・1‖・+ll酬1一軸II・]

for any pr6pel 1−fblm u of△correspon《li皿g to the propel va1皿eλ. If the equality sig皿 holds i皿the above inequality, then the 1一命m吐φ一speci㎡Kil両g with瓦. U皿del the s㎜e−mptions ih.Theole血4.7, we find that the in《quality of Theorem.D iS betteエ

▲ha唖e Wr興輌_t .t...,、 . ..・ゴ

    §5.1Thef p卿e士▼a1血e of the pIopex fmction. We’cOhSider the proper val皿とdf the proper fuロction in this section. Let∫be a plopel,血nctio皿of△correspondi皿g to the ploper valueλ. Then ch孤gi皿g包hitb r∫i皿鰍(4.12)and㎝輌ng to(3.5),(3・:6),(3.15),(320), .△=d6 t、 6d 4且d Ar=.r△, W『obt麺  .   、   .      .、:

      .・㌃・ ,..【λ一伽+1)克川f)12≧0.....  ..

  .He丑ce,’:We get丘om the、above inequa1丑y and.Theoleln D.

(13)

K.TAKANO

67

THEOREM【5.1. Inαcompact Kaeゐlef、{an manijold K2”⑱θα飾㎡旨碗g t克e coπ♂“‘oπ(*),∫bp anyρ卿,eず∫itnction∫ρ∫△corresponding to毒克e p70pep valueλ,ψeゐave     ρノλ≧伽+1)‘,     ↓2ノザλ=(7π十1)先,毒ゐe扮ばr∫‘θαclosed K」coη≠o㎝α「Killing 2−1bm. By(3.5),(3.6),△=d6十δd and Theorem B.(2), we find THEOREM 5.2. Let K2m 6eαcompact Kaeムle豹iαπmanijわldθα毒輌巧膨‘帖g t轟e co抱d輌‘{oπ(*).

If K2冊・dmit・・p仰・・加・ti・π揖△・・rve・p・・輪9姻ゐ・p”,・・曲・(m+1)いゐ・n

毒ゐe1−1わずm r了‘8φ・special Killing with k. It fo皿ows fアom Theorem C and 5.2 that THEOREM 5.3.□ε‘K2m 6eα¢omραc£simply connected Kaeゐ「eパαπmanijわld satislVing tゐ…π砲‘・π(・)・lf頁2㌔」頑・・p卿・小π・t‘・n・f ・f△・・f・re・卿ding t・tゐ・ρ仰・・ valu・(m+1)いλ・n・K2m‘θ‘3励e‘ず‘・witゐcpm(克).     Acknowledgme皿t. The a皿thor vvish to express ltis sincere thanks to the referees who sugeste《1 a皿iml》τovement of伍e丑宝st▼ersio丑of堀s papeL

R】DFERENCBS

【1】J.BJun, S. Ayabe 8nd S. Yamaguchi, Onまゐe¢oψ?mal Kil撫g,.∫erm‘n com?a¢’Xαεゐ1ε?‘4烏   manifolds, Tensor, N. S.42(1985),258−271. 【2】Y.Ogawa,句ε?6£op80πalmost H¢ずm《tian manifolds,」. Dif£Geom.4(1970),105−119. [3】S.Tachibana, On infinite”‘η乙al bolemerpゐ《¢ally p?∂ゴec9緬e‡?cn」ヅo?m4ま‘oπ●《n eε?‡α‘πalmo●‡一石丘ア.   而tiap J,4ce3, Nat. Sci. Rep. Ochanomizu Ulliv.10(1959),45−5L [4】        ,A‘ムεo?em oπR‘emennian manifolds∂ノ?os‘ま侮e¢笹閥α‡匂?εOPε?ater, PToc. Japan   Acad.50(1974),301−302. [5]       ,0πKeehlerian manito ld”∂fσ・,o”‘tive¢忽怖6施?e o,ε?4‘o?, Nat. Sci. Rep. OChsn(←   mizu Univ.25(1974),7−16. 【6】K.Tok8no and S. Y己maguchi, TEe,?02.?”alue o∫△∫ρ?1・∫orm uθ零c克‘ゐ4‡委du=.0‘πcomp“オ   Xαz瓦1ε膏⑰刷nifolds tat‘8売㍍g Fi(u)and F2(w)>0, SUT Joum810f M8them‡ic525(1)(1989),   39−50. 【7】S.YameguChi, On Kceゐlerian s,4¢ε”4吻;itting a certa‘n sk四spmmet?《deπ”o?飼己 TRU Msth−   ematics 5(1969),31−36. 【8]S.Yamaguchi 8nd K.「㎞o,夕λe∫iずtt ?■o?e?”,4cε㎡△∫ρ?2.∫0?肌3 in com,aci Kaehlen’a外mcn.   ifo lds∂∫σ.po5“‘号e c包”6‘#re opz饅£o?, Proceedings of the’ internetional Conference on Differential   Geometry砿d Appnc8tions, Dubm▼nik(1988),409−433. 【9】K.Y己no,‘‘Differentiel geemetry on complex仙d almost complex 8p8ces,,, Pergamon Press,1965. Department of Mathematics ■aculty of Science Science Uni▼ersity of Tokyo Tokyo 162, Jspan

参照

関連したドキュメント

The Beurling-Bj ¨orck space S w , as defined in 2, consists of C ∞ functions such that the functions and their Fourier transform jointly with all their derivatives decay ultrarapidly

Finally, we give an example to show how the generalized zeta function can be applied to graphs to distinguish non-isomorphic graphs with the same Ihara-Selberg zeta

As with subword order, the M¨obius function for compositions is given by a signed sum over normal embeddings, although here the sign of a normal embedding depends on the

S.; On the Solvability of Boundary Value Problems with a Nonlocal Boundary Condition of Integral Form for Multidimentional Hyperbolic Equations, Differential Equations, 2006, vol..

In the present §3, we establish functorial “group-theoretic” algorithms for reconstruct- ing various objects related to the geometry of the stable models of proper hyperbolic

Kirchheim in [14] pointed out that using a classical result in function theory (Theorem 17) then the proof of Dacorogna–Marcellini was still valid without the extra hypothesis on E..

made this degree of limited practical value, this work revealed that an integer-valued degree theory for Fredholm mappings of index 0 cannot comply with the homotopy in-

By the algorithm in [1] for drawing framed link descriptions of branched covers of Seifert surfaces, a half circle should be drawn in each 1–handle, and then these eight half