• 検索結果がありません。

THE BOCHNER INTEGRAL FOR FUNCTIONS WITH VALUES IN THE UNION OF RANKED VECTOR SPACES

N/A
N/A
Protected

Academic year: 2021

シェア "THE BOCHNER INTEGRAL FOR FUNCTIONS WITH VALUES IN THE UNION OF RANKED VECTOR SPACES"

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

TRU Mathematics 15−2 〔1979〕

THE BOCHNER INrEGRAL FOR剛CTIONS WITH VALUES

       IN THE UNION OF RANKED VECTOR SPACES

. Yoshiko TAGU〔HI (Received November 16, 1979〕      K.Ku【lugi defined the ranked space of indicatorωo in l954([3],[4D. S.Nakanishi has defined the union of ranked spaces in 1974([6],[8]). The BamaCh space is considered as the ranked space of indicatorωo([7]).[[he union of suCh ranked spaces is called the uni㎝of ranked vector spaces. On the other hand, S.Bodhner defined the integral for the Bana(沮space valued functions in 1933〔[1D. In this note, we define the Bodhner integral fOr fuhctions with values in the union of ranked vector spaces and show so皿e properties of the integral.      1.  Preli皿inaries.      1.1. Ranked spaces. A none㎎)ty set E is called the ranked space(of in− dicatorωo) if it is e(luipped with the nonempty families U(ρ)〔ρε E) andひ〔n〕 @ ε N={0,1,2,...}) satisfying the conditions (A) and (a): (A)For everyγ(ρ)ετρ〔P),PεV(ρ). (a〕  For eadh V(ρ〕 ε び(ρ〕 and eadh nε N, there are a nu凪)er mε N and a σ(ρ)  εZS(ρ) satisfyillg that n <栩, [ノ〔P)(二 V〔P〕 and 〃〔ρ)εてタ(in). The element of 7フ(P),written γ(ρ〕, is called the preneighborhood of P and that ofび(n),written V(ρ) or 7〔p,n), the preneighborhood of p of rank n. The ranked space E is written 〔E,’び〔P〕,’tタ〔n)) or E simply.      1・a r・nk・d・pace・E…equence・f pren・ighb・rh・・dS{VIPk・nk)}〔k・めi・ called a fundamentaユsequence if the following conditions are satisfied: (1)γ@た・nk)⊃γ鮎ヱ・nk.1〕f・r ea・in k・

(2)nk≦nk+1 f・r・a・in k・   ・

〔3)F・rea・in k・there i・ ・n Z…hth・t Z≧k・pZ = pZ+ヱand ・Z<nUl・ A fundamenta1 seq・・nce i・ca11・d th・t・f・・nter p if p瓦一pf・r ・11 k・      Aran](ed space E is called comPlete if, for every f皿(lamental sequence {γIPk’nk〕}・ハ{ViPk・nk)}≠〆・A・equence{pk}i・Ei・ca11・d r−c・nverg・・t・r t°「−c°nve「g・t・P and・w・岨t・P=・−Zi・ pk・if th・・e i・a]imda・e・t・1 seq・− ence{γ@・nk〕}・f・enter・P・ati・fyi・g th・fb11・w血9・・nditi㎝・F・・ea・h k, th・r・i・an i・su・;h th・t pi・ViP・nk)if i≧i・・’      1・2・ The uniσn of ranked vector spaces. Let E be a vector space and 55

(2)

56 Y.TAGUCHI、 {E(α);α ε、4}(4 is an index set〕 a family of subspaces of E in the algebraic ・ens・and・mPP・se th・t each E〔・)i・a麺紬印ace岨th・n・m ll ll。 and・th・ following three conditions are satisfied:  〔i)   E;  ∪{E〔α〕; α εA}. (五)  Foτany E〔α〕 and E〔β), there exists an E(Y) sudh that E〔α〕UE(β)⊂  E(Y). (皿)lf E〔・)CE(β)・th・n・f・r・v・ry・P・E(・)・1[pll。−llpllβ・ The vector space E equipped with Z9(p) andてタ〔n) defined by the following way, written 〔E, Z9(p),’U,〔n〕) or E si巫4)1y, is called the union of ranked vector spaces・ For eachαεA, the families of sUbsets of E〔α〕,び(P,α) and Zタ(n,α) .are defined:        and V(P, n,α) hood of p of rank n respectively, such that      zタ(P〕=∪{び(ρ,α〕;αεA3μ・h that PεE〔α)},ρεE,      ’ty (n)=∪{戸び〔n,α);αεA}. The element of万〔ρ) is often written V〔P) and that ofび(n〕,      び(P,α)     sε〔α)     ひ(nsα)     s(n,α)     s(o,α) v(ρ,α)

={v(ρ,α)=P+σ。(・〕;ε>o}・P・E(・)・     、

=匂εE〔α);11ql]       <ε,ε>o}.       α   u{γ(ρ,n,α);P+sロ。α)sρεE(α)}。nεN。 {q・E(・〕;llqll。・・/2n},・・N−{・},  E(α).        are called the preneighboエ・hood of p and the preneighbor−       The familiesてタ(ρ) and η〔ヵ) are defined γ(ρ,n).     The fbllowing Properties have been proved 〔[6],[8]). (1)  〔E(α),Zフ(p,α),妙〔n,α)) fbr eachα εA and (E,ひ(狽),τタ(n)) are ranked spaces・ (2〕P=・−Z鋤k血(E(・)・ZylP・・)・妙㊤・・))iff p・Z鋤たin th・B紐・・h space E(α). 〔3)  (E(α),!Yフ(P,α〕,づ〔n,α〕) is co興)1ete iff E〔α) is a. Bana(虫space.

〔4)ρ=rLZ鋤k in⑫・ηω・びω)iff th…i・孤・・A・ud・th・t

P=古Z加P瓦in〔E(・〕・V〔P・・)・V(…))・ (5)  (亙㌧ τ9(p〕, η(n)〕 is complete iff, foT ever)rα ε ∠1, (E〔α),7タ(p,α),て夕(n,α)〕 is cαmplete. 2. E−valued f皿ctions.     2.1. SiJXple fUnctions . Let 5 be a set,Σ σ一field generated fr㎝subsets of S andμ a finite measure defined onΣ, i・e., 〔5,Σ,μ) is a finite measure space. Let E be the union of rεm]ked vector spaces defined in 1.2. The E_ valued丘mctionαdefined on 5, writtenα:S_→E , is called a si∬文)1e function on 3 if it takes a finite number of values in the fol1σwing foτm : 、

(3)

THE BOCHN正…R INI!EGRAL FOR FUNCTIONS

       ㌶謡罐ll(;;‡:嬬鷲畿1 e θ

Asi晦1e f皿ction is uniqUely defined in this fblm.      2・2・ Measurable fUmctions・. The亙一valued f㎞ctionアdefined onσ, written了ご5→E, is.called a measurable fUnction on 5 if there is a sequence {ak}・f・麺1・麺・ti㎝・・n・・u・恒h・t          f〔・)=・−Zim ak(・)伽・・…εβ・ Then・f“S→Ei・凪・・ca11・d鵬asurab1・。・β孤d i・訂itt㎝げ・{・た}】if.neces− sary.  The fb11㎝ing、prqp《)sitions aτe shσm.      . 〔1〕A1血ear cα⑯ination of s麺1e f血cti㎝s onぷis a s麺1e f皿ction on 5. (2)As坤1e fUnction on 5 is a measurable fU皿ct・ion on S. (3)Alineaτcombination of measurable fi皿ctions㎝5is a measurable fUnc− tiOII on 8.  :      Proof. 「Letア」5『→E↑andσごθ・→・E be measurable fUnctions油idh’are r−1imits °f seqtiences°f・迦P1・imgti。ns{・k}鋤d−{カた}re・pectiv・1y f・r a・…ε5・ i・e・・the「e a「e㎞㎞・t・1.sequ・nces・{γ〔王(・)・−k・・k(・))}・nd{7(θ〔・)・た・βた〔・))} satisfying that,.fbr ead1. k ε 」y and・a.e.8 ε 5,・.there are i’〔k,8) ε 1r alld i”(k,8)εηsuch that{i’〔k js)}and{引’〔k,8)}are increasing with respect to k and          ・z(・)・v(ア〔8)細・・た.1〔・))Zμ≧i’(k・・)・          bz(・)・γ(9(・)・k・1・β瓦.1〔・〕)zμ≧z”〔た・・)・ F°「a・e・8εぷ!th・rei・aY(・)・A・ati・輌gth・tE〔・1(・〕)VE〔β1(・))⊂E(Y(・)) (1・2・(ii))・P・tting・k=・たψ瓦(k・の・{・k}i・asequ・nce。f・麺1・㎞c− tions onσ((1))・ Then, the seqUence {V〔(f+9)(s),k,Y(s))} is a fUndamtental seqμence satisfying thqt, fbr eadh瓦,          ・ゴ(s)εv((f+9)(s)・k・Y(・))Z拒顧z’(k・・〕・z”(た・・〕)・ In fact, fbrゴ≧max(i’(k38),i”(k38〕) and a.e.ε ε5,          II(f+・)(・)一θゴ(叫(。)−ll(拘)(・)一〔・ゴ袖ゴ〕(・〕ll,(。) ・ < < llτ(8)一αゴ〔8)ll・、〔・)+ll・(・)一カゴ〔・)ll・、〔・) ll了(8)一%〔8)ll・k.、(司子       k+1        k+1

 1/2

       ・+ 1/・2  1/2た. 11・〔8)−bゴ〔8〕 ・、.、(・) 伽・・(f+9)(s)−r一伽・瓦(・)(・・θ・8εぷ)・     Also,λ了fbT any scalarλis measurable on 5.

(4)L・t{fk}〔醐b・asequence・f鵬・・u・abl・㎞・ti。n…3・ati・身ing th・t,

f°「e蝕友・the「e i・ase卯・・ce・f・坤1・麺・ti・ns{・ki}〔i・め…海血t       な〔・)=r−Zim aki〔・)in E〔α〔・〕)〔α…8ε3)・ L・tf〔・)b・飢r−1緬lt・f{fk〔・)}血亙〔・〔・))f・r・sεS−S・. iP〔3・)=0)・Th・nfi・a

measurable functi㎝㎝ε.

57

(4)

58

Y.TAG㏄HI

    Proof. By the above hypothesis, there is a f血damental seqUence {v(f〔s〕, k,α(8))}〔kεAり sud1 伍at, fbr ead賦’k,.8 ε β_ βo and someゴ(た,8〕,          身〔・)・v(了(・)・k・・(・))z了.ゴ≧ゴ〔k・・〕・ The same consideration as that of Egor◎ff†s T}1eorem on the I・ebesgue integral ・・adS・th・.f…㎝血9・F。・・k−・!・kチ1紐d・k−・!・k’1〔醐,・h・re・・e.蹴

Bk C d

c(㌔、S㌻R豊at   .

慾〔:慾綴誌1畿㌶{。∴。k.

    L・t・・−U,2−。{  coハnFk〔s−Bm)}.一σ一{ハ,2−。〔U三り・ Then, (ii)     μ(40) =11⑮), i.θ.3 μ(T〕 =o if T=● − Ao. F・r・・v・ry・ε・・一…』is s。鵬・〔・)…uCh・h・t・εハ急(.)(・一・m)・ Hence, there can be chosen an increasing sequence {k(Z,8)}with respect to Z sudl that          k(Z,8)≧nzczx(Z,ゴ(Z+1,8),た(8))∫ (’”〕11・fk〔、,;(・〕イ(・〕ll。(.)・・!2Zチヱ(・ε・・一・・)・     For every 8 ε5Lσo−T・=∠40−50〔μ(θo U㌘)=0,〔ii)) and Z ε N, if k≧k(Z,8〕, then,      ’          ll fω一aki(k}(・.)ll。(e〕≦ll・f〔・)−fk(・)ll。〔,)・+}fk(s)一α剛〔・)il。(。)       ・・/2Zチ1・・/・kチ1≦・/2Z子1・・/2Z・1。・/・・(〔、),(、i、)).

lhis shcrws that・fb「as餌uence°f s麺1e麺cti°ns{dk}={・た姻}(た・め

and a fun(㎞∋ntal sequence {γ(τ(8〕, Z,α(8)}, there is some k(Z,8)〔ZεN) ・ゆth・t・た〔8)εγ.げ〔8),z,α(8))if・k≧k(Z.・)(・・…ε・)・輪,ア・8→互 is a measurable function ol13.     3. Integrals・of E−valued functions on 3.     3・1・ Integraユs of sil呵〕le fUnctions on S・ The integral of a si皿ple 麺・ti・n・a・S→E・f th・fbm血2・1・i・d・fi…d ・・ ZkZ、akV〔Sk〕and i・冊itt・n rSα4i」. A si皿ple f皿ction is also called integrable over S. The followings are shown easily. (1) The integral of the linear coπbination of simple』fUnctions on 5 is e({ual to the linear co迎bination of integrals of those si呵ple fUnctions. (2)For a s坤1e fUnctionαご●→E, there is s㎝e YεAsuch that       l[・r.・刺,≦r.II・ll, dU・

(3)If’・・3・ε岬52=σmd’・∩5・=〆・「s a d・=’s、α血%、α dU・

    ’3・2・  Integra150f measurable fUm6tions onぷ. The functiOn f:S→互1 is call・d血t・g・ab1・・ve・5if th・・e i・a・・equence・f・i・rP1・㎞・ti…{・k・’S→E} (kEW) satisfying the fo11σwing conditions.

(5)

THE BOCHNER INTEGRAI、 FOR FUNCrlONS (i)τ(・〕=告鋤・た(・〕fg…ll・・ε・・

〔ii)輪e ar・飢塒・a・ing・S・q・・nce{MkSk副・nd・(s)・A劔e・・th・・3

・・血t㎏tll飼一・k(s〕ll。(S〕i・Lebesgu・鋤・g・泌1・飢d・ati・fies th籠          r。・ll了(・)一α、(・川。〔。)・… /、Mk〔k・め・ 〔iii)th・・eq・ence{「S・kdv}・f血t・gra1・。f the・麺短㎞・ti。n・i・r−・㎝一 vergent・         .

The・・各励な酩μi・ca11・d th・int・9r・1・fτ・ver 5頭訂itt・n毫飾・

We say also f is・an i皿tegral)1e function㎝β.      by the conditi㎝ 〔i), there is some f㎞damental sequence of center了(s〕 血・・鵬亙〔β〔・))・飢dτ(・)・%〔・)a・d了(・)−ak(S)・宮(β(S))〔・・…ε5)・F・r. ・〔・)血(ii)・了(r)一・k(・)・E〔・(8))・lh・n・        ll了(・)一・k〔・)ll。〔。〕−ll f(・)一・k(・〕II B(。)1(・・・・…)〔・・Z・(iii))・ Consequently,αmay be considered βwithout loss of generality. So,α is c㎝一 sidered β in the fb11σwing.      ifαごぷ→A is a siπple㎞ction, then 〔iii〕 resUlts fr㎝ 〔i) and (ii). Because there is some Y ε44 sudl that 石1(α〔8)〕(二石r(Y) 〔a・θ・8 ε●) and the sequ− ・・ce{fS・k dU}(醐is sh㎝・t。 be a鋼・thy・・eq・ence in th・B鋼・th・pace E〔Y) (1.2.〔ii),(iii〕).      3.3.S㎝e properties㎝integrals of measurable f皿cti㎝s㎝σ.. 〔1)  The illtegral of the integrable ㎞cti◎n is u【1iquely defined independently of the dhoice of sequences of si]呵ple㎞ctions. (2)  Ihe integral. of the linear’comi)illation of integrable functions.is the linear ccmbination of integrals of those functions. 〔3) Let f:S−》Ebe an integrable fUncti㎝on 5. Then, fbr someαご●→A and s輪α・εA・ll了(・)ll。(。)i・血t・醐1・w・・S・and・th・fb・…桓g掴皿・ity i・ satisfied:      ..       ll七醜ll。。≦f。 ll f〔・)‖。(。)血・      P・・。f・Let{c・Z}(醐be a・eq・㎝ce・f・麺1・㎞・ti・鵬・ati・fy血9 thd C°㎡iti°品(i)・(ii)飢d(iii)(3・2・)・・Tl・en・II・k〔・〕ll。〔。〕㈹・吐・・ssσf generality, we may chooseα(8〕.in 〔ii)) is a rea1−valued si珂)1e ftmction and satisfies that 〔1’) 川lf(・)11。〔.)−11・・(・)il。(。)1≦. llア(・)−ak〔・)ll。(.)・

1霊1麟慧罵’監ご蕊1’Ub°瓢1、Sl・1、=。g←

nt to∫3 f即. Fr㎝(1,),〔ii)and〔iii),for any e>0, there is s㎝eた口 such that       』      .        ’        ∫・ll・・(・〕ll。〔。)dU・f。 ll了〔・)ll.。(。声・・/・ and       .        II 「。 fゴ・ll。。・≦ ’ll fs・k dp ll。。… ./… 59

(6)

60

Y.TAGUCHI

      ・

Beca田e°f〔i’)・〔iiりand integrability°f  飢d llゐk〔・)llβ〔。〕・

ll f(・)一力友〔・〕llβ(s’)i・血・・卿…ver・皿d・f・−yε〉・,・h・re is s・面… such that       f・ 1|f(・〕−bk(釧β(.〕dv<ε・ 在田・this s坤1・f血・ti・n bk i・th・・equi・ed㎝・・     恥w・聡・・n・㎞。se a・equenc・・f・麺1・㎞・ti…{・た}〔k・N−{°}) Such that, fOr eadhた,         趣..Il f(・)一・k(・)lrβ〔.)一・(・…8ε5)・ 〔皿.)f,・llア〔・)一・k〔・)ll,〔。)・… /・k・ This shows that the conditions 〔i) and (五) of integrability for f are satis− fied. Ifβ(・)is a s麺1e fmction, theTe is anαεAsuch that E〔β(s))⊂E〔α)

㍍.ε:’,。::,t惣a:蓋:慧α1’蕊竺}{;、εs≡ζ当晋;1一

Because of the inequalities below:       ll∫,・た刺d。≦f。 ll・・II。。dU−∫。ll・k〔・〕ll。(。)dv・       ll∫5了刺。。<∫511 f(・〕li。〔。〕血’・・ ε>O is arbitrarily chosen, so the Teqμired inequality is shown. 〔4〕L・tf・5→Eb・a鵬田・・ab1・fUi・・i。・・lf ll国ll。〔。)i・L・besgu・血t・9r− able over 5 fヒ)r someα:3→、4, then, for anyε>0, there is a s ilnple fUnctionαご

8→亙sudh that

         ∫s ll f〔・)一α(・〕llβ(。)血・ε for someβご3→A. Mbreover, ifβ(s〕is a s麺1e fUnction, then,了is integr− able over 3.      P…f・L・t{・k}(κ・めbe a se・lu・・ce・f・麺1・㎞・ti・ns su・h th・t          f〔・〕=r−z玩αた(・)(α・…ε・〕・ i・e・・ for some βご3→ ・4・f〔8),αた〔s) εE(β〔s)) and         た拠1|了(・)一αた〔・)llβ(.)一・(・・…ε・)・

Put

     ,Tk={・・ll・k〔・)llβ〔。)≦il了(・〕llβ(.)・1}

and

        カk(・)一・瓦〔・){x〔Tk)}(・)(た・め・

“en・Tk・Σ〔k・め・bk(k・のi・a・坤1・fmcti・n孤d

〔1’)趣・・ll f〔・)一力た(・)llβ(。)一・〔・・…ε・)・ For any kεN, 〔ii1)ll f〔・)一ゐた〔・)llβ(。)≦ll了(・)llβ(.)・ll・・〔・〕llβ(。)        ll f〔・)ll。(.〕パ1 bk〔・)llβ〔。)        ll f〔・)ll。〔。)

(7)

THE BOCHNER INIEGRAL F()R FUNCTIONS 61 If k,たF≧たo, then

        晦・た血㌔・k・dU‖α≦fs ll・ピ・た’ll。δμ

      ≦{θll・た(・)−f(・)ll。4胆・{Jl%・(・)−f(・)ll♂μ       ・1/2た・1〆≦1!2た・+1/2た。くε. then・the「e exi・t・aX拠・k血迦(・〕・Thi・i・th・・−Zi・ rS・k dU i・th・ Tanked space (E〔α〕,1ノ(ρ,α〕,U)〔η,α)), i.e., in 〔互,τ9(p〕,Z夕(η)). Then, the conditign (iii) of integrability fbr f is sat‡sfie尋. (5).1・et{在5→亙}〔た・π)b・asequence。f鵬観・ab1・麺cti。ns・… u(虫 that, for every た,       .      』. 〔i’) Hfk(・)ll。た(.)≦”.<°°(・・…ε・〕− Let fごぷ÷E be a measurable f血ction sudh that 〔ii’). f(・〕=i’一’Ziin fk(・) ’(・・…εσ)・

Theri・允・・輪・・5鳩ll了〔・)ll。(。〕i・i…卿・・。鴨…   .

    If theτe is a siXple function corresl}ondent toβ(8)in(4〕. above, then了 is integrable oveT 3.      .     Proof. By (ii・〕, there is someαご5÷4 such that, fbr every kεN,          了(・)・fk〔・)唖 By 1.2.〔iii〕, lhen,    . 1 llf〔・〕11。〔.)− i・e・, forα.e◆sεS.         kZgm.II fk〔・)II As fk is measurable on these fac.ts and 〔iり, 了(・)−fk(・)ε恥〔・))(a.θ・8εs). Il・fk(8川・k〔・)=ll・fk(・)ll・〔。)・ II・fk(8〕ll・k〔・〕1≦ll了(・)−fk(・)ll。〔。)(・…8εβ)‘.

      編。 麟1・li。。鵬お一・。。n.⑭. by

      ll了(・)ll’。〔。)i・狐i泣・g・ab・・fm・ti・n・・ぷ・.     by (4) above, fbr a皿yε>0』, there 工s a si珂ple fUnctionαごぷ◆E such that ∫・ll f〔・〕一・(・)llβ(。〕cl・i・εfb…rne B…A・・fβ(・〕. i・a麺・・fmc− tion, then f is illtegrable over 3.       ’     Acknowledgemnents. The author would like to express her gratitude to Prof. S. Nakanishi fbr suggestions and valual)1e・dユscussions and to Prof. Y. Nagakura for 1∞king thrcugh this note and examining Proofs of Proposltlons・ ,

(8)

62 Y.TAGUCH工 [1] [2] [3] [4] ]] に∨∠0 [[ [7] [8]        REFERENCES S.Bochner: InVegration von正Unctionen, deren Werte die Elemente eines Vektorrauines sind, Fund. Math. 20 (1933), 262−276. H.G.Gamir, M.De Wilde, J.Schmets:Analyse Fonctionnelle, t.II, Bir㎞i辿ser Wrlag Basel und Stuttgart〔1972). K.KUnugi:Sur les espaces complets et r6gulibrernent co呵)1ets,1, Proc.Japan Acad. 30〔1954), 553−556. K.Kunugi:Sur la m6thode des espaces rang6s,1, Proc. Japan Acad.42(1966),  318−322. 1.Miyadera:Kansukaiseki, Rikoga㎞sha〔1972〕.      ・ S.Nakanishi:On the strict union of ran]ked皿etric spaces, Proc. Japan  Acad. 50〔1974), 603−607. S.Nakanishi:Integration of fUnctions with values in a convex ranked space Mathematica Japonica,23,no.1(1978),85−103. S.Nakanishi:On ranked union spaces, Mathematica Japonica, 23,no.2〔1978),  249−257. SCIENCE UNIVERSITY OF T〔)1(YO .

参照

関連したドキュメント

The author, with the aid of an equivalent integral equation, proved the existence and uniqueness of the classical solution for a mixed problem with an integral condition for

This is the rst (or \conical") type of polar decomposition of x , and it generalizes the polar decomposition of matrices. This representation is the second type of

Using generating functions appearing in these integral representations, we give new Vacca and Ramanujan-type series for values of the generalized Euler constant function

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

In the present work we determine the Poisson kernel for a ball of arbitrary radius in the cases of the spheres and (real) hyperbolic spaces of any dimension by applying the method

It leads to simple purely geometric criteria of boundary maximality which bear hyperbolic nature and allow us to identify the Poisson boundary with natural topological boundaries

In applications, this abstract result permits us to obtain the almost coerciv- ity inequality and the coercive stability estimates for the solutions of di ff erence schemes of the

Keywords and Phrases: spheres, ordered configuration spaces, sub- space arrangements, integral cohomology algebra, fibration, Serre spectral sequence..