• 検索結果がありません。

Addition Reaction of Heteroatom Nucleophiles onto Styrene Catalyzed by Ru(II) Complex

N/A
N/A
Protected

Academic year: 2022

シェア "Addition Reaction of Heteroatom Nucleophiles onto Styrene Catalyzed by Ru(II) Complex "

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

Addition Reaction of Heteroatom Nucleophiles onto Styrene Catalyzed by Ru(II) Complex

Yohei OE*, Tetsuo OHTA*, and Yoshihiko ITO**

(Received May 11, 2009)

Development of a novel Ru(II) complex-catalyzed addition reaction of heteroatom nucleophiles onto styrene was achieved.

Thus, the reaction of N-methyltosylamide with styrene was carried out in the presence of 1 mol% Ru of catalysis generated by mixing [(p-cymene)RuCl2]2, AgOTf and DppBz in CHCl3 at reflux for 18 h to give N-methyl-N-(1-phenylethyl)tosylamide in 83%

yield. NMR experiments, FAB-MS spectrum and X-ray analysis revealed that [(p-cymene)RuOTf(DppBz)]OTf was generated in situ by mixing [(p-cymene)RuCl2]2, AgOTf and 1,2-bis(diphenylphosphino)benzene (DppBz) in refluxed CHCl3. Isolated [(p-cymene)RuOTf(DppBz)]OTf showed good catalytic activity for the addition reaction of N-methyltosylamide, 4-ethylbenzoic acid, and 2-phenylethanol onto styrene in CHCl3 to provide the corresponding addition products in good to excellent yields.

.H\ZRUGV ruthenium catalysis, nucleophilic addition reaction, olefins, atom economy

࣮࣮࢟࣡ࢻ㸸ࣝࢸࢽ࣒࢘ゐ፹㸪ồ᰾௜ຍ཯ᛂ㸪࢜ࣞࣇ࢕ࣥ㸪࢔ࢺ࣒࢚ࢥࣀ࣑࣮

஧౯ࡢࣝࢸࢽ࣒࢘㘒యࢆ⏝࠸ࡓ࣊ࢸࣟồ᰾๣ࡢࢫࢳࣞࣥ࡬ࡢ௜ຍ཯ᛂ

኱Ụὒᖹ࣭ኴ⏣ဴ⏨࣭ఀ⸨჆ᙪ

ࡣࡌࡵ࡟

࢔ࣝࢥ࣮ࣝ㢮㸪࢚࣮ࢸࣝ㢮㸪࢚ࢫࢸࣝ㢮࠾ࡼࡧ࢔

࣑ࣥ㢮ࡣ㸪᭷ᶵྜᡂ໬Ꮫୖ㔜せ࡞ྜᡂ୰㛫యࡸ᭱⤊

⏕ᡂ≀࡜ࡋ࡚㸪ᖜᗈ࠸⏝㏵ࢆ᭷ࡍࡿ㔜せ࡞໬ྜ≀࡛

࠶ࡾ㸪ࡑࢀࡽࢆ⡆౽࠿ࡘຠ⋡ⓗ࡟ㄪ㐩ࡍࡿᡭἲࡢ㛤

Ⓨࡣ㠀ᖖ࡟㔜せ࡞ㄢ㢟࡛࠶ࡿ㸬ᚑ᮶㸪ࡇࢀࡽࡢ໬ྜ

≀ࡣ୺࡜ࡋ࡚ồ᰾ⓗ⨨᥮཯ᛂ࡟ࡼࡗ࡚ྜᡂࡉࢀ࡚

ࡁࡓࡀ㸪ᑡ࡞ࡃ࡜ࡶ┠ⓗࡢ໬ྜ≀࡜➼ࣔࣝ㔞ࡢᗫᲠ

≀ࡀ๪⏕ࡋ࡚ࡋࡲ࠺ࡓࡵ㸪ࡑࢀࡽ࡟ྲྀࡗ࡚᭰ࢃࡿᡭ ἲࡢ㛤Ⓨࡀồࡵࡽࢀࡿ1)㸬࢜ࣞࣇ࢕ࣥ㢮ࡣ▼Ἔ㈨※

ࡢ➨୍ḟ୰㛫ཎᩱ࡜ࡋ࡚㇏ᐩ࡟ᚓࡽࢀ㸪⌧௦࡛ࡶ▼

Ἔ໬Ꮫᕤᴗࡢ୰᰾ࢆᢸ࠺ධᡭᐜ᫆࡞ྜᡂཎᩱࡢ୍

ࡘ࡛࠶ࡿ 2)㸬ࡑࡢࡼ࠺࡞࢜ࣞࣇ࢕ࣥ㢮࠿ࡽࡢ࢔ࣝࢥ

࣮ࣝ㢮㸪࢚࣮ࢸࣝ㢮㸪࢚ࢫࢸࣝ㢮࠾ࡼࡧ࢔࣑ࣥ㢮ࡢ

ྜᡂἲࡣ㸪ᙉ㓟ࢆゐ፹࡜ࡍࡿồ᰾๣ࡢ௜ຍ཯ᛂࡀ▱

ࡽࢀ࡚࠸ࡿ㸬ࡇࡢ཯ᛂ࡛ࡣ㸪௜ຍ࡜࠸࠺཯ᛂᙧᘧ࠿

ࡽཎᏊࡢᦆኻࡀ࡞ࡃ࢔ࢺ࣒࢚ࢥࣀ࣑࣮࡟ඃࢀ࡚࠾

ࡾ⨨᥮཯ᛂ࡟ẚ࡭࡚⎔ቃ࡟㐺ᛂࡋࡓࡶࡢ࡜ゝ࠼ࡿ㸬 ࡋ࠿ࡋ࡞ࡀࡽ㸪ゐ፹㔞࡜࠸࠼࡝ࡶᙉ㓟ࢆ⏝࠸ࡿࡓࡵ㸪 ᕤᴗ໬ࡍࡿ࡟ࡣ⎔ቃࡸタഛ࡬ࡢ㈇Ⲵࡀၥ㢟࡛࠶ࡿ㸬

୍᪉㸪㑄⛣㔠ᒓ㘒యࢆ⏝࠸ࡓᆒ୍⣔ゐ፹཯ᛂࡣ㸪 ࡈࡃᑡ㔞ࡢ㘒యゐ፹ࢆ⏝࠸㸪୰ᛶࡢ᮲௳ୗ࡟࠾࠸࡚

* Department of Biomedical Information, Faculty of Life and Medical Sciences, Doshisha University, Kyoto Yohei OE; Telephone: +81-774-65-6505, FAX: +81-774-65-6505, E-mail: yoe@mail.doshisha.ac.jp Tetsuo OHTA; Telephone: +81-774-65-6548, FAX: +81-774-65-6789, E-mail: tota@mail.doshisha.ac.jp

** Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University

(2)

ከᵝ࡞཯ᛂࢆไᚚ࡛ࡁࡿ࡜࠸ࡗࡓⅬ࡛㸪⌧ᅾ᭱ࡶά

Ⓨ࡟◊✲ࡉࢀ࡚࠸ࡿศ㔝ࡢ୍ࡘ࡛࠶ࡿ㸬㑄⛣㔠ᒓ㘒 యࢆ⏝࠸ࡓ࣊ࢸࣟồ᰾๣࡜࢜ࣞࣇ࢕ࣥࡢ཯ᛂ࡜ࡋ

࡚Wacker཯ᛂࡀᣲࡆࡽࢀࡿࡀ㸪EỈ⣲⬺㞳ࢆ㉳ࡇ

ࡍࡇ࡜࠿ࡽ༢⣧࡞௜ຍ⏕ᡂ≀ࡣᚓࡽࢀ࡞࠸3)㸬⿬ࢆ

㏉ࡏࡤ㸪EỈ⣲⬺㞳ࢆไᚚࡍࡿࡇ࡜ࡀ࡛ࡁࢀࡤ㸪✜

ࡸ࠿࡞᮲௳࡛ࡢ༢⣧࡞௜ຍ཯ᛂࢆ㐩ᡂ࡛ࡁࡿ㸬ࡑࡢ

ࡼ࠺࡞ほⅬ࠿ࡽ㸪ᙜ◊✲ᐊ࡛ࡣ㑄⛣㔠ᒓࡢゐ፹స⏝

ࢆ฼⏝ࡋ㸪࡞࠾࠿ࡘEỈ⣲⬺㞳ࢆไᚚࡍࡿࡇ࡜࡟ࡼ

ࡗ࡚㸪࢜ࣞࣇ࢕ࣥ࡬ࡢ࣊ࢸࣟồ᰾๣ࡢ༢⣧࡞௜ຍ཯

ᛂ࡟㛵ࡍࡿ◊✲ࢆ⥅⥆ࡋ࡚⾜ࡗ࡚ࡁࡓ㸬ࡑࡢ⤖ᯝ㸪 ศᏊෆ཯ᛂ࡛ࡣ୕౯ࡢࣝࢸࢽ࣒࢘ 4a-b)㸪஧౯ࡢ㖡࠾

ࡼࡧ୍౯ࡢ㖟㘒య 5) ࡀ┠ⓗ࡜ࡍࡿ࢜ࣞࣇ࢕ࣥ࡬ࡢ ồ᰾๣ࡢ௜ຍ཯ᛂࢆゐ፹ࡍࡿࡇ࡜ࢆぢฟࡋࡓ㸬≉࡟㸪

ࣝࢸࢽ࣒࢘ゐ፹ࡣࡇࡢ཯ᛂᙧᘧ࡟࠾࠸࡚၏୍୙ᩧ

཯ᛂࢆᐇ⌧ࡋࡓඃࢀࡓゐ፹⣔࡛࠶ࡿ4b) (Scheme 1)㸬

Scheme 1. Asymmetric Intramolecular Cyclization.

ࡲࡓ㸪ศᏊ㛫཯ᛂ࡛ࡣ୕౯ࡢࣝࢸࢽ࣒࢘ゐ፹ࡀ࢝

ࣝ࣎ࣥ㓟㢮㸪࢔ࣝࢥ࣮ࣝ㢮࠾ࡼࡧࢫࣝ࣍ࣥ࢔࣑ࢻ㢮 ࡢ࢜ࣞࣇ࢕ࣥ࡬ࡢ௜ຍ཯ᛂࢆゐ፹ࡍࡿࡇ࡜ࢆぢฟ ࡋ࡚࠸ࡿ6a-b) (Scheme 2)㸬

Scheme 2. Ru(III)-Catalyzed Intermolecular Additions.

ࡋ࠿ࡋ࡞ࡀࡽ㸪ศᏊ㛫཯ᛂ࡟࠾ࡅࡿ࢜ࣞࣇ࢕ࣥࡢ ᇶ㉁㐺⏝⠊ᅖࡣ⊃ࡃ㸪ᇶ㉁୍⯡ᛶ࡟ᐩࢇࡔゐ፹⣔ࡢ 㛤Ⓨࡀ⌧᫬Ⅼ࡟࠾࠸࡚኱ࡁ࡞ㄢ㢟࡛࠶ࡿ㸬ゐ፹άᛶ ࡢྥୖࢆᅗࡿ࡟ࡣ㸪⣔୰࡛࡝ࡢࡼ࠺࡞ゐ፹άᛶ✀ࡀ ᙧᡂࡉࢀ࡚࠸ࡿ࠿ࢆ▱ࡿࡇ࡜ࡀ᭱ࡶ㏆㐨࡟࡞ࡿࡀ㸪

୕౯ࡢࣝࢸࢽ࣒࢘㘒యࡣᖖ☢ᛶ࠾ࡼࡧ୙Ᏻᐃࡉ࠿

ࡽ㸪ࡑࢀࡽࢆྠᐃࡍࡿࡇ࡜ࡣ㠀ᖖ࡟ᅔ㞴ࢆᴟࡵࡓ㸬

௒ᅇᡃࠎࡣ㸪ẚ㍑ⓗྲྀᢅ࠸᫆ࡃ㸪NMR ࡛ࡢほ 

ࡶᐜ᫆࡞஧౯ࡢࣝࢸࢽ࣒࢘ゐ፹⣔ࡢ㛤Ⓨ࡟ᡂຌࡋ㸪

⣔୰࡛Ⓨ⏕ࡋ࡚࠸ࡿゐ፹άᛶ✀࡟㛵ࡍࡿ㔜せ࡞▱

ぢࡀᚓࡽࢀࡓࡢ࡛௨ୗ࡟ሗ࿌ࡍࡿ㸬

ヨ⸆࠾ࡼࡧᐇ㦂᪉ἲ ヨ⸆

ᇶ㉁ࡢࢫࢳࣞࣥ㸪N࣓ࢳࣝࢺࢩࣝ࢔࣑ࢻ㸪p࢚ࢳ

ࣝᏳᜥ㤶㓟㸪ࣇ࢙ࢽ࢚ࣝࢱࣀ࣮ࣝ㸪㓄఩Ꮚࡢࢺࣜ

ࣇ࢙ࢽ ࣝ࣍ࢫࣇ࢕ ࣥ㸪Dppm, Dppe, Dppp, Dppb,

DppBz 7)㸪࠾ࡼࡧࢺࣝࣇ࣓ࣝ࢜ࣟࢱࣥࢫࣝ࣍ࣥ㓟㖟

(AgOTf)ࡣᕷ㈍ရࢆ⢭〇ࡍࡿࡇ࡜࡞ࡃࡑࡢࡲࡲ౑⏝

ࡋࡓ㸬ࢸࢺࣛࢡࣟࣟࣅࢫpࢩ࣓ࣥࢪࣝࢸࢽ࣒࢘㘒 య[(p-cymene)RuCl2]2ࡣ㸪ᩥ⊩グ㍕ࡢ᪉ἲࢆᨵⰋࡋ ࡓ᪉ἲ࡛ㄪ〇ࡋࡓ8)㸬ࢡ࣒ࣟࣟ࣍ࣝ㸪ሷ໬࣓ࢳࣞࣥ㸪

࠾ࡼࡧ㔜ࢡ࣒ࣟࣟ࣍ࣝ㸪࣊࢟ࢧࣥࡣỈ⣲໬࢝ࣝࢩ࢘

࣒࡟࡚⬺Ỉᚋ㸪࢔ࣝࢦࣥẼὶୗ࡟࡚ᖖᅽ⵨␃ࡋࡓࡶ

ࡢࢆ౑⏝ࡋࡓ㸬ࢪ࢚ࢳ࢚࣮ࣝࢸࣝࡣࢼࢺ࣒ࣜ࢘࣋

ࣥࢰࣇ࢙ࣀ࡛ࣥ⬺Ỉᚋ㸪࢔ࣝࢦࣥẼὶୗ࡟࠾࠸࡚ᖖ ᅽ⵨␃ࡋࡓࡶࡢࢆ౑⏝ࡋࡓ㸬

ᵓ㐀ゎᯒ

NMR ࢫ࣌ࢡࢺࣝࡣ㸪VarianVNMR300 Mercury plus (300 MHz for 1H, 282 MHz for 19F, 125 MHz for

31P) ࢆ⏝࠸࡚ ᐃࡋࡓ㸬FAB-MS ࢫ࣌ࢡࢺࣝࡣ㸪 JEOL Mstation JMS-700ࢆ⏝࠸࡚ ᐃࡋࡓ 㸬

ᐇ㦂᪉ἲ

^SF\PHQH5X&O'SS%]`&O ࡢㄪ〇

ࣇ࣮࣒ࣞࢻࣛ࢖ᚋ㸪࢔ࣝࢦࣥࢆ඘ሸࡋࡓ୕ཱྀ཯ᛂ ᐜჾ࡟㸪[(p-cymene)RuCl2]2 (0.0621 g, 0,1 mmol)㸪 DppBz (0.1116 g, 0.25 mmol)㸪CH2Cl2 (10 mL)ࢆຍ࠼㸪 ຍ⇕㑏ὶୗ㸪4.5 ᫬㛫཯ᛂࡉࡏࡓ㸬཯ᛂ⤊஢ᚋ㸪⁐

(3)

፹ࢆ࠾ࡼࡑ2.5 mL⛬ᗘ࡟࡞ࡿࡲ࡛ῶᅽ␃ཤࡋ㸪3 mL ࡢࢪ࢚ࢳ࢚࣮ࣝࢸࣝࢆຍ࠼࡚ 30 ศ㛫ᨩᢾࡋࡓ㸬ᨩ ᢾ⤊஢ᚋ㸪⏕ᡂࡋࡓⷧ㯤Ⰽࡢಶయࢆℐྲྀࡋ㸪ṧ´ࢆ

ࢪ࢚ࢳ࢚࣮ࣝࢸࣝ (3™5 mL)࡛Ὑίࡋ㸪┿✵ୗ࡛஝

⇱ࡍࡿࡇ࡜࡟ࡼࡗ࡚㸪┠ⓗ࡜ࡍࡿ㘒యࡀᚓࡽࢀࡓ㸬 ᚓࡽࢀࡓ㘒యࡣ≉࡟⢭〇ࡍࡿࡇ࡜࡞ࡃ㸪ࡑࡢࡲࡲḟ ࡢ཯ᛂ࡟౑⏝ࡋࡓ㸬

[(p-cymene)RuCl(DppBz)]Cl㸸Light Yellow Solid

1H NMR (300 MHz, CDCl3) G (ppm) = 0.82 (6H, d, J = 6.9 Hz, (CH3)2CH), 1.86 (3H, s, CH3), 2.46 (1H, septet, J

= 6.9 Hz, (CH3)2CH), 6.04 (2H, d, J = 9.6 Hz, ArH of p-cymene), 6.29 (2H, d, J = 9.0 Hz, ArH of p-cymene), 7.03-7.10 (4H, m, ArH), 7.29-7.89 (16H, m, ArH).

31P NMR (125 MHz, CDCl3) G (ppm) = 66.0.

FAB-MS (m/z) 717 [MCl]+.

>SF\PHQH5X27I'SS%]@27I

ࣇ࣮࣒ࣞࢻࣛ࢖ᚋ㸪࢔ࣝࢦࣥࢆ඘ሸࡋࡓ୕ཱྀ཯ᛂ ᐜჾ࡟㸪2.3.1࡛ᚓࡽࢀࡓ[(p-cymene)RuCl(DppBz)]Cl㸪 AgOTf (0.1380 g, 0.5 mmol)㸪CHCl3 (15 mL)ࢆຍ࠼㸪 ຍ⇕㑏ὶୗ㸪4.5 ᫬㛫཯ᛂࡉࡏࡓ㸬཯ᛂ⤊஢ᚋ㸪࢔

ࣝࢦࣥୗ࡛ࢭࣛ࢖ࢺࣃࢵࢻࢆ㏻ࡌ࡚ AgClℐูࡋ㸪 ℐᾮࢆ࠾ࡼࡑ0.3 mL⛬ᗘ࡟࡞ࡿࡲ࡛ῶᅽ␃ཤࡋࡓࠋ 5 mLࡢࢪ࢚ࢳ࢚࣮ࣝࢸࣝࢆຍ࠼㸪ᐊ ࡛30ศ㛫ᨩ ᢾࡋࡓᚋ㸪⏕ᡂࡋࡓᶳⰍࡢಶయࢆℐྲྀࡋ㸪ࢪ࢚ࢳࣝ

࢚࣮ࢸࣝ (3™10 mL)࡛Ὑίࡋࡓ㸬᭱ᚋ࡟㸪┿✵ୗ࡛

஝⇱ࡍࡿࡇ࡜࡟ࡼࡗ࡚㸪┠ⓗ࡜ࡍࡿ㘒యࡀᚓࡽࢀࡓ㸬 X⥺⤖ᬗᵓ㐀ゎᯒ⏝ࡢ༢⤖ᬗࡣ㸪ࢡ࣒ࣟࣟ࣍ࣝ࡜

࣊࢟ࢧࣥ࠿ࡽᚓࡓ㸬

[(p-cymene)RuOTf(DppBz)]OTf㸸Orange Solid

1H NMR (300 MHz, CDCl3) G (ppm) = 0.78 (6H, d, J = 6.9 Hz, (CH3)2CH), 2.03 (3H, s, CH3), 2.16 (1H, septet, J

= 6.9 Hz, (CH3)2CH), 6.08 (4H, s, ArH of p-cymene), 6.75-6.77 (4H, m, ArH), 7.11-7.69 (16H, m, ArH).

31P NMR (125 MHz, CDCl3) G (ppm) = 61.6.

19F NMR (282 MHz, CDCl3) G (ppm) = -78.4, -78.5.

FAB-MS (m/z) 831 [MOTf]+.

>SF\PHQH5X27I'SS%]@27I ࢆ⏝࠸ࡓࢫࢳ

ࣞࣥ࡬ࡢ࣊ࢸࣟồ᰾๣ࡢ௜ຍ཯ᛂ

඾ᆺ౛࡜ࡋ࡚㸪N-࣓ࢳࣝࢺࢩࣝ࢔࣑ࢻ࡜ࢫࢳࣞࣥࡢ

཯ᛂࢆ♧ࡍ㸹80 mLࡢࢩࣗࣞࣥࢡࢳ࣮ࣗࣈࢆࣇ࣮ࣞ

࣒ ࢻ ࣛ ࢖ ࡋ 㸪 ࢔ ࣝ ࢦ ࣥ ࢆ ඘ ሸ ࡋ ࡓ ᚋ 㸪 [(p-cymene)RuOTf(DppBz)]OTf (19 mg, 0.02 mmol)㸪 N-࣓ࢳࣝࢺࢩࣝ࢔࣑ࢻ (0.1852 g, 1 mmol)㸪ࢫࢳࣞࣥ

(0.27 mL, 2.5 mmol)㸪ࢡ࣒ࣟࣟ࣍ࣝ (2 mL)ࢆຍ࠼ࡓ㸬

཯ᛂΰྜ≀ࢆຍ⇕㑏ὶୗ㸪48᫬㛫཯ᛂࡉࡏࡓᚋ㸪⁐

፹ࢆῶᅽ␃ཤࡋ㸪ࢩࣜ࢝ࢤ࣒ࣝ࢝ࣛࢡ࣐ࣟࢺࢢࣛࣇ

࢕࣮ (ᒎ㛤⁐፹㸹࣊࢟ࢧࣥ㸸㓑㓟࢚ࢳࣝ = 4 : 1) ࡟

࡚┠ⓗ≀ࢆ༢㞳ࡋࡓ㸬

N-methyl-N-(1-phenylethyl)tosylamide㸸White Solid

1H NMR (300 MHz, CDCl3) G (ppm) = 1.28 (3H, d, J = 6.9 Hz, CH3), 2.43 (3H, s, ArCH3), 2.56 (3H, s, N-CH3), 5.28 (1H, q, J = 6.9 Hz, CH), 7.19-7.35 (7H, m, ArH), 7.73 (2H, d, J =8.1 Hz, ArH).

13C NMR (75 MHz, CDCl3) : G (ppm) 142.9, 139.7, 137.0, 129.6, 128.3, 127.4, 127.1, 126.9, 54.7, 28.4, 21.6, 15.2.

FAB-MS (m/z) 289 [M]+.

⤖ᯝ࠾ࡼࡧ⪃ᐹ

௨๓ࡼࡾ஧౯ࡢࣝࢸࢽ࣒࢘ゐ፹ࢆ⏝࠸ࡓ᳨ウࢆ

⾜ࡗ࡚ࡁࡓࡀ㸪࠸࠿࡞ࡿሙྜ࡟࠾࠸࡚ࡶ஧౯ࡢࣝࢸ ࢽ࣒࢘㘒యࡶゐ፹๓㥑య࡜ࡋ࡚᭷ຠ࡟ࡣാ࠿࡞࠿

ࡗࡓ㸬ᡃࠎࡣ㸪ࡇࡢせᅉࢆ࢝ࢳ࢜ࣥᛶࣝࢸࢽ࣒࢘㘒 య࡟ࡋࡓ㝿ࡢⰾ㤶᪘⁐፹࡟ࡼࡿ⁐፹࿴ࡀ୙άᛶ໬

ᘬࡁ㉳ࡇࡋ࡚࠸ࡿ࡜⪃࠼ࡓ㸬ࡍ࡞ࢃࡕ㸪ⰾ㤶᪘ᛶ⁐

፹ࢆ⏝࠸ࡿ࡜㸪AgOTf࡜ࡢ࢔ࢽ࢜ࣥ஺᥮࡟ࡼࡾⓎ⏕

ࡋࡓ࢝ࢳ࢜ࣥᛶࣝࢸࢽ࣒࢘㘒యࡀⰾ㤶᪘⣔⁐፹࡟

ࡼࡗ࡚ࢧࣥࢻ࢖ࢵࢳᆺࡢࣝࢸࣀࢭࣥ㘒య࡬࡜ኚ໬

ࡋ㸪ゐ፹࡜ࡋ࡚ࡢᶵ⬟ࢆᯝࡓࡉ࡞ࡃ࡞ࡿࡓࡵ࡛࠶ࡿ

࡜ண ࡋࡓ (Scheme 3)㸬

Scheme 3. Predicted Deactivation of Ru Catalysis by Aromatic Solvents.

ࡑࡇ࡛㸪N㸫࣓ࢳࣝࢺࢩࣝ࢔࣑ࢻ࡜ࢫࢳࣞࣥ࡜ࡢ

཯ᛂࢆࣔࢹࣝ཯ᛂ࡜ࡋ㸪ୖグࡢࡼ࠺࡞㈇ࡢຠᯝࡀ࡞

(4)

࠸࡜ண ࡉࢀࡿࢡ࣒ࣟࣟ࣍ࣝࢆ⁐፹࡜ࡋ࡚㸪㘒యࡢ

⁐ゎᗘ࠾ࡼࡧᏳᐃᛶࢆᮇᚅࡋ࡚ࢸࢺࣛࢡࣟࣟࣅࢫ(p 㸫ࢩ࣓ࣥ)ࢪࣝࢸࢽ࣒࢘㘒య [(p-cymene)RuCl2]2 ࢆ ゐ፹๓㥑య࡜ࡋ࡚㑅ᐃࡋ㸪཯ᛂ᮲௳ࡢ᳨ウࢆ⾜ࡗࡓ㸬 ࡑࡢ⤖ᯝࢆ㸪Table 1࡟♧ࡍ㸬

Table 1. Optimization of Reaction Conditionsa

Entry Ligand Yield (%)b

1 PPh3 32

2 Dppm 46 3 Dppe 84 4 Dppp 85 5 Dppb 83 6 DppBz 83

a) Reaction conditions: N-methyltosylamide (1mmol), styrene (2.5 mmol), catalyst (0.02 mmol Ru), CHCl3 (2 mL), at reflux, for 18 h. b) Isolated yield.

Table 1࠿ࡽ᫂ࡽ࠿࡞ࡼ࠺࡟㸪ண᝿ࡋࡓ㏻ࡾ࡟஧౯

ࡢࣝࢸࢽ࣒࢘㘒య࡛ࡶ⁐፹࡟ࡼࡗ࡚ゐ፹ࡀኻάࡉ

ࢀ࡞ࡅࢀࡤ㸪ప཰⋡࡞ࡀࡽࡶ཯ᛂࡣ᭷ព࡟㐍⾜ࡍࡿ

(Entry 1)㸬ࡉࡽ࡟㸪㓄఩Ꮚࢆ஧ᗙࡢ࣍ࢫࣇ࢕ࣥ㓄఩

Ꮚ࡜ࡍࡿࡇ࡜࡛㸪80%௨ୖࡢ㧗཰⋡࡛┠ⓗ≀ࡀᚓࡽ

ࢀࡓ (Entries 2-6)㸬ࡇࢀࡽࡢ⤖ᯝࡣ㸪༢ᗙ㓄఩Ꮚࡢ ࢺࣜࣇ࢙ࢽࣝ࣍ࢫࣇ࢕ࣥ (PPh3) ࢆ⏝࠸ࡓሙྜ, ཯ ᛂ୰࡟ࣝࢸࢽ࣒࢘࠿ࡽࡢ㓄఩Ꮚࡢゎ㞳ࡀ㉳ࡇࡾ㸪ᇶ

㉁࡛࠶ࡿࢫࢳࣞࣥࡢⰾ㤶⎔ࡀ㸪ⰾ㤶᪘⣔ࡢ⁐፹࡜ྠ

ᵝࡢゐ፹ኻάຠᯝࢆࡶࡓࡽࡋࡓࡓࡵ࡛࠶ࡿ࡜⪃࠼

ࡽࢀࡿ㸬Table 1ࡢ⤖ᯝࡼࡾ㸪஧౯ࡢࣝࢸࢽ࣒࢘ゐ፹

⣔ࡶ୕౯ࡢࣝࢸࢽ࣒࢘ゐ፹⣔࡜ྠ➼㸪࠶ࡿ࠸ࡣࡑࢀ

௨ୖࡢゐ፹άᛶࢆ᭷ࡍࡿࡇ࡜ࡀ♧၀ࡉࢀࡓ㸬 ḟ࡟㸪ᡃࠎࡣ⣔୰࡟Ⓨ⏕ࡋ࡚࠸ࡿゐ፹άᛶ✀ࡢゎ

᫂࡟ྲྀࡾ⤌ࢇࡔ㸬௒ᅇࡢゐ፹཯ᛂ࡛ࡣ㸪཯ᛂࡢ๓ẁ 㝵࡜ࡋ࡚[(p-cymene)RuCl2]2࡟AgOTf ࢆస⏝ࡉࡏࡓ

ᚋ㸪DppBzࢆຍ࠼ࡿ࡜࠸࠺ゐ፹ㄪ〇㐣⛬ࡀ࠶ࡿ㸬ࡑ

ࡇ࡛㸪ࡑࡢྛẁ㝵ࢆ1H, 19F࠾ࡼࡧ31P NMRࢆ⏝࠸

࡚㸪⣔୰࡛Ⓨ⏕ࡋ࡚࠸ࡿࣝࢸࢽ࣒࢘㘒యࡢゎ᫂ࢆ࠾

ࡇ࡞ࡗࡓ (Table 2)㸬[(p-cymene)RuCl2]2࡟ࢺࣜࣇࣝ࢜

࣓ࣟࢱࣥࢫࣝ࣍ࣥ㓟㖟 (AgOTf) ࢆ㔜ࢡ࣒ࣟࣟ࣍ࣝ

୰࡟࡚ 3 ᫬㛫཯ᛂࡉࡏࡓᚋ㸪DppBz ࢆస⏝ࡉࡏ㸪 NMRゎᯒࢆ⾜ࡗࡓ㸬Table 2࠿ࡽ᫂ࡽ࠿࡞ࡼ࠺࡟㸪

AgOTf ࡟ࡼࡗ࡚ฎ⌮ࡍࡿࡇ࡜࡟ࡼࡾ㸪 p-ࢩ࣓ࣥ⎔

ୖࡢࣉࣟࢺࣥࡀ᫂ࡽ࠿࡟ప☢ሙࢩࣇࢺࡋ࡚࠸ࡿࡇ

࡜㸪[(p-cymene)RuCl2]2 ⏤᮶ࡢࢩࢢࢼࣝࡀほ ࡉࢀ

࡞ ࠸ ࡇ ࡜ ࡀ 1H NMR ࠿ ࡽ ☜ ㄆ ࡉ ࢀ 㸪 [(p-cymene)RuCl2]2ࡣูࡢ㘒య࡬࡜ኚ໬ࡋ࡚࠸ࡿࡇ

࡜ࡀ♧၀ࡉࢀࡓ㸬ࡲࡓ㸪ࡑࡢᚋࡢDppBzࢆ⏝࠸ࡓฎ

⌮࡟࠾࠸࡚㸪31P NMR࡛ࡣ㸪ࣝࢸࢽ࣒࢘࡟㓄఩ࡋ࡚

࠸ࡿ࡜⪃࠼ࡽࢀࡿ DppBz⏤᮶ࡢࣆ࣮ࢡࡀ61.6 ppm

࡟☜ㄆࡉࢀࡓ㸬 ༢ᗙࡢPPh3ࢆ⏝࠸ࡓ㝿ࡢ໬Ꮫࢩࣇ

ࢺ್ (26 ppm) ࡟ẚ࡭࡚኱ࡁࡃప☢ሙࢩࣇࢺࡋ࡚࠸

ࡿࡓࡵ㸪DppBzࢆ⏝࠸ࡓ㘒యࡣ஧ࡘࡢࣜࣥཎᏊ࡜ࣝ

ࢸࢽ࣒࢘ࢆྵࡴ஬ဨ⎔ᵓ㐀ࢆྲྀࡗ࡚࠸ࡿࡇ࡜ࡀ♧

၀ࡉࢀࡿ9)㸬ࡉࡽ࡟㸪19F NMR࡟࠾࠸࡚㸪-78.4 ppm, -78.5 ppm࡟࡯ࡰ1 : 1ࡢ✚ศẚ࡛஧ᮏࡢࢩࣥࢢࣞࢵ

ࢺࡀ☜ㄆ࡛ࡁࡓ㸬ࡇࡢࡇ࡜࠿ࡽ㸪୍ࡘࡢOTfࡣࣝࢸ ࢽ࣒࢘࡟㓄఩ࡋ࡚࠾ࡾ㸪ࡶ࠺୍᪉ࡢOTfࡣ࢝࢘ࣥࢱ

࣮࢔ࢽ࢜ࣥ࡜ࡋ࡚Ꮡᅾࡋ࡚࠸ࡿࡇ࡜ࡀ♧၀ࡉࢀࡓ㸬 ௨ୖࡢ⤖ᯝࡼࡾ㸪ୖ㏙ࡢゐ፹ㄪ〇ẁ㝵ࢆ⤒ࡿࡇ࡜࡟

ࡼࡗ࡚㸪 [(p-cymene)Ru(OTf)(DppBz)]OTf ࡞ࡿ㘒య ࡀᙧᡂࡉࢀ࡚࠸ࡿࡇ࡜ࡀண᝿ࡉࢀࡿ㸬

Table 2. Chemical Shifts of Catalyst Generated in situ.

Conditions Chemical Shifts (ppm)

1H NMR 19F NMR 31P NMR Material 5.33, 5.46

After Step 1 5.76, 5.90 -77.5 (br)

After Step 2 6.08 -78.4, -78.5 61.6

(5)

FAB-MSࢫ࣌ࢡࢺ࡛ࣝࡢゎᯒࡣࡑࡢண᝿ࢆ⿬௜ࡅ

ࡿࡶࡢ࡜࡞ࡾ㸪[(p-cymene)Ru(OTf)(DppBz)]+ࡢࣇࣛ

ࢢ࣓ࣥࢺ࢖࢜ࣥࣆ࣮ࢡࡢ831 m/z ࡀ☜ㄆࡉࢀࡓ㸬୍

᪉㸪୙⣧≀࡜ࡋ࡚AgX (X = OTf or Cl) ࡜DppBzࡢ 1 : 2㘒య࡜⪃࠼ࡽࢀࡿ Ag(DppBz)+ࡢศᏊ࢖࢜ࣥࣆ

࣮ࢡ (1001 m/z)ࡶ☜ㄆࡉࢀࡓ㸬

௨ୖ, NMR࠾ࡼࡧMSࢫ࣌ࢡࢺࣝ࡟ࡼࡿゎᯒ࠿ࡽ

⪃ ࠼ ࡽ ࢀ ࡿ ᪂ つ ࡢ ࢝ ࢳ ࢜ ࣥ ᛶ ࣝ ࢸ ࢽ ࢘ ࣒ 㘒 య [(p-cymene)Ru(OTf)(DppBz)]OTf ࡢྜᡂ࣭༢㞳ࢆヨ

ࡳࡓ㸬

Scheme 4. Two Step Preparation of

[(p-cymene)Ru(OTf)(DppBz)]OTf.

Scheme 4࡟♧ࡋࡓᵝ࡟㸪㖟㘒య [Ag(DppBz)2]Xࡢ

⏕ ᡂ ࢆ 㑊 ࡅ ࡿ ࡓ ࡵ ࡟ 㸪 ࡲ ࡎ[(p-cymene)RuCl2]2 ࡜ DppBzࢆ཯ᛂࡉࡏ㸪[(p-cymene)RuCl(DppBz)]Clࢆㄪ

〇ࡋࡓ㸬ḟ࠸࡛㸪ᚓࡽࢀࡓ㘒యࢆᑠ㐣๫ࡢ AgOTf

࡛ฎ⌮ࡋࡓᚋ㸪ࢪ࢚ࢳ࢚࣮ࣝࢸ࡛ࣝࡼࡃὙίࡍࡿࡇ

࡜࡛㸪┠ⓗࡢ㘒య [(p-cymene)Ru(OTf)(DppBz)]OTf ࡀᚓࡽࢀࡓ㸬ᚓࡽࢀࡓ㘒యࡢNMR࠾ࡼࡧMSࢫ࣌

ࢡࢺࣝࡣୖ㏙ࡢ⣔୰Ⓨ⏕ᐇ㦂࡛ᚓࡽࢀࡓ್࡜ࡼࡃ

୍⮴ࡋࡓ㸬ࡲࡓ㸪ᖾ࠸࡟ࡶᚓࡽࢀࡓ㘒యࡢ༢⤖ᬗࢆ

ࢡ࣒ࣟࣟ࣍ࣝ/࣊࢟ࢧࣥ࠿ࡽࡢ෌⤖ᬗ࡟ࡼࡗ࡚ㄪ〇 ࡍࡿࡇ࡜ࡀ࡛ࡁ㸪X⥺⤖ᬗᵓ㐀ゎᯒ࡟ࡼࡗ࡚ࣝࢸࢽ

࣒࢘࡬ࡢྛ㓄఩Ꮚࡢ㓄఩ᙧᘧࡣࢫ࣌ࢡࢺࣝゎᯒ࠿

ࡽண᝿ࡋࡓࡶࡢ࡟୍⮴ࡋࡓ (Fig 1)㸬

༢㞳ࡋࡓ㘒య[(p-cymene)Ru(OTf)(DppBz)]OTf ࢆ

⏝࠸࡚㸪ࢡ࣒ࣟࣟ࣍ࣝ୰㸪ຍ⇕㑏ὶୗ㸪 p-࢚ࢳࣝᏳ ᜥ㤶㓟㸪2-ࣇ࢙ࢽ࢚ࣝࢱࣀ࣮ࣝ㸪N-࣓ࢳࣝࢺࢩࣝ࢔

Fig 1. ORTEP Structure of

[(p-cymene)Ru(OTf)(DppBz)]OTf.

Scheme 5. Addtion of Heteroatom Nucleophiles onto Styrene Using [(p-cymene)Ru(OTf)(DppBz)]OTf.

࣑ࢻ࡜ࢫࢳࣞࣥࡢ཯ᛂࢆ⾜ࡗࡓ (Scheme 5)㸬ࡑࡢ⤖

ᯝ㸪࠸ࡎࢀࡢሙྜࡶ┠ⓗ⏕ᡂ≀ࡀⰋዲ࡞཰⋡࡛ᚓࡽ

ࢀࡓ㸬ࡇࢀࡽࡢ⤖ᯝࡣ㸪⣔୰࡛ࡣ࢝ࢳ࢜ࣥᛶࣝࢸࢽ

࣒࢘㘒య [(p-cymene)Ru(OTf)(DppBz)]OTf ࡀⓎ⏕

ࡋ㸪ࡑࡢࡀ࢜ࣞࣇ࢕ࣥ࡬ࡢ࣊ࢸࣟồ᰾๣ࡢ࢜ࣞࣇ࢕

ࣥ࡬ࡢ௜ຍ཯ᛂࢆ㐍⾜ࡉࡏ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡍࡿ

ࡶࡢ࡛࠶ࡿ㸬

(6)

㸲㸬⤖ㄽ

ᡃࠎࡣ㸪஧౯ࡢ࢝ࢳ࢜ࣥᛶࣝࢸࢽ࣒࢘㘒యࡀ࣊ࢸ

ࣟồ᰾๣ࡢ࢜ࣞࣇ࢕ࣥ࡬ࡢ௜ຍ཯ᛂ࡟ᑐࡍࡿゐ፹ άᛶࢆ᭷ࡍࡿࡇ࡜ࢆぢฟࡋࡓ㸬ࡑࡢ୰࡛㸪වࡡ࡚࠿

ࡽࡢᠱ᱌࡛࠶ࡗࡓ⣔୰࡛Ⓨ⏕ࡋ࡚࠸ࡿゐ፹άᛶࢆ

᭷ࡍࡿࣝࢸࢽ࣒࢘✀ࡢᵓ㐀Ỵᐃ࠾ࡼࡧࡑࡢ༢㞳࡟

ࡶᡂຌࡋࡓ㸬

ᮏ◊✲ࢆ㐙⾜ࡍࡿ࡟࠶ࡓࡾ㸪῝࠸᝟⇕ࢆࡶࡗ࡚ᚚ ᣦᑟ࣭ᚚ㠴᧡ࢆୗࡉࡗࡓఀ⸨჆ᙪᩍᤵࡣ㸪2006 ᖺ 12᭶23᪥࡟㏽ཤࡉࢀࡓ㸬ࡇࡢሙࢆ೉ࡾ࡚㸪῝ࡃឤ ㅰࡢពࢆ⾲ࡋ㸪ᚚෞ⚟ࢆ࠾♳ࡾࡍࡿ࡜࡜ࡶ࡟㸪ྠᩍ

ᤵ࡟ᮏㄽᩥࢆᤝࡆࡿ㸬

ᮏ◊✲ࡢ୍㒊ࡣ㸪ࠕ⌮ᕤᏛ◊✲ᡤ 2008 ᖺᗘྠᚿ

♫኱Ꮫ⌮ᕤᏛ◊✲ᡤ◊✲ຓᡂ㔠 (ಶே)ࠖࡢᨭ᥼ࢆཷ

ࡅࡓ㸬ࡇࡇ࡟グࡋ࡚㸪ㅰពࢆ⾲ࡍࡿ㸬

㸳㸬ཧ⪃ᩥ⊩

1) a) B. M. Trost, “The Atom Economy--A Search for Synthetic Efficiency,” Science, 254, 1471 (1991).

b) B. M. Trost, “Atom Economy - A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way,” Angew. Chem. Int. Ed. Engl., 34(3), 259 (1995).

2) ඵᔱᘓ᫂㸪⸨ඖ⸅㸪ࠕ᭷ᶵࣉࣟࢭࢫ໬Ꮫࠖ㸪pp.51- 69 (኱᪥ᮏᅗ᭩, ᮾி, 1997)㸬

3) J. Shmidt, W. Hafner, R. Jira, R. Sieber, J.

Sedlmeier, A. Siebel, “The Oxidation of Olefins with Palladium Chloride Catalyst,” Angew. Chem. Int. Ed.

Engl., 1 (2), 80- 88 (1962).

4) a) K. Hori, H. Kitagawa, A. Miyoshi, T. Ohta, I.

Furukawa, “Transition Metal-Catalyzed Cyclization of 2-Allylphenol to 2,3-Dihydro-2-methylbenzofuran without ȕ-Elimination,” Chem. Lett. 1083-1084 (1998). b) T. Ohta, Y. Kataoka, A. Miyoshi, Y. Oe, I. Furukawa, Y. Ito, “Ruthenium-Catalyzed Intramolecular Cyclization of Hetero-Functionalized Allylbenzene,” J. Organomet. Chem. 692, 671-677 (2007).

5) Y. Ito, R. Kato, K. Hamashima, Y. Kataoka, Y. Oe,

T. Ohta, I. Furukawa, “Intramolecular Cyclization of Phenol Derivatives with C=C Double Bond in a Chain,” J. Organomet. Chem. 692, 691-697 (2007).

6) a) Y. Oe, T. Ohta, Y. Ito, “Ruthenium-Catalyzed Addition Reaction of Carboxylic Acids across Olefins without E-Hydride Elimination,” Chem.

Commun. 1610-1611 (2004). b) Y. Oe, T. Ohta, Y.

Ito, “Ruthenium-Catalyzed Addition Reaction of Alcohols across Olefins,” Synlett, 179-181 (2005).

7) Dppm = Bis(diphenylphosphino)methane Dppe = 1,2-Bis(diphenylphosphino)ethane Dppp = 1,3-Bis(diphenylphosphino)propane Dppb = 1,4-Bis(diphenylphosphino)butane DppBz = 1,2-Bis(diphenylphosphino)benzene

8) H. Emma, S. J. Shimpson, “Synthesis and Characterisation of [(K6-cymene)Ru(L)X2] Compounds: Single Crystal X-ray Structure of [(K6-cymene)Ru{P(OPh)3}Cl2] at 203 K,”

Polyhedron, 23 (17), 2695-2707 (2004).

9) P. E. Garrou, “'R Ring Contributions to 31P NMR Parameters of Transition-Metal-Phosphorus Chelate Complexes,” Chem. Rev. 81 (3), 229-266 (1981).

参照

関連したドキュメント

Methods suggested in this paper, due to specificity of problems solved, are less restric- tive than other methods for solving general convex quadratic programming problems, such

Littlewood decomposition on partitions Multiplication- addition theorem for SC, even case Signed refinements The odd case.. Multiplication-addition theorems for

If D ( ρ ) ≥ 0, the existence of solutions to the initial-value problem for (1.1) is more or less classical [24]; however, the fine structure of traveling waves reveals a variety

proof of uniqueness divides itself into two parts, the first of which is the determination of a limit solution whose integral difference from both given solutions may be estimated

Next, we prove bounds for the dimensions of p-adic MLV-spaces in Section 3, assuming results in Section 4, and make a conjecture about a special element in the motivic Galois group

1,2 Extensive research by Negishi showed that the best results (reaction rate, yield, and stereoselectivity) are obtained when organozincs are coupled in the presence of Pd

An important property of nonlocal reaction-diffusion equations equations is that they have solutions in the form of periodic travelling waves [3], [7], [8], [10].. Such solutions do

Then, the dynamics on the fast (η = t/ε) and slow (t) time scales are given by the classical MMH kinetics mechanism, with the fast reactions occurring on the fast scale and the