• 検索結果がありません。

JJ II

N/A
N/A
Protected

Academic year: 2022

シェア "JJ II"

Copied!
26
0
0

読み込み中.... (全文を見る)

全文

(1)

volume 3, issue 5, article 77, 2002.

Received 8 May, 2002;

accepted 5 November, 2002.

Communicated by:F. Qi

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

NEW UPPER AND LOWER BOUNDS FOR THE CEBYŠEV FUNCTIONALˇ

P. CERONE AND S.S. DRAGOMIR

School of Communications and Informatics Victoria University of Technology

PO Box 14428 Melbourne City MC 8001 Victoria, Australia EMail:pc@matilda.vu.edu.au URL:http://rgmia.vu.edu.au/cerone EMail:sever@matilda.vu.edu.au

URL:http://rgmia.vu.edu.au/SSDragomirWeb.html

c

2000Victoria University ISSN (electronic): 1443-5756 048-02

(2)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Abstract

New bounds are developed for the ˇCebyšev functional utilising an identity in- volving a Riemann-Stieltjes integral. A refinement of the classical ˇCebyšev in- equality is produced forfmonotonic non-decreasing,gcontinuous andM(g;t, b)−

M(g;a, t)≥0,fort∈[a, b]whereM(g;c, d)is the integral mean over[c, d].

2000 Mathematics Subject Classification:Primary 26D15; Secondary 26D10.

Key words: ˇCebyšev functional, Bounds, Refinement.

Contents

1 Introduction. . . 3 2 Integral Inequalities . . . 6 3 More on ˇCebyšev’s Functional . . . 13

References

(3)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

1. Introduction

For two given integrable functions on[a, b],define the ˇCebyšev functional ([2, 3,4])

(1.1) T(f, g) := 1 b−a

Z b a

f(x)g(x)dx

− 1 b−a

Z b a

f(x)dx· 1 b−a

Z b a

g(x)dx.

In [1], P. Cerone has obtained the following identity that involves a Stieltjes integral (Lemma 2.1, p. 3):

Lemma 1.1. Let f, g : [a, b] → R, where f is of bounded variation and g is continuous on[a, b],then theT (f, g)from (1.1) satisfies the identity,

(1.2) T (f, g) = 1

(b−a)2 Z b

a

Ψ (t)df(t),

where

(1.3) Ψ (t) := (t−a)A(t, b)−(b−t)A(a, t), with

(1.4) A(c, d) :=

Z d c

g(x)dx.

(4)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Using this representation and the properties of Stieltjes integrals he obtained the following result in bounding the functionalT (·,·)(Theorem 2.5, p. 4):

Theorem 1.2. With the assumptions in Lemma1.1, we have:

(1.5) |T(f, g)|

≤ 1

(b−a)2 ×













 sup

t∈[a,b]

|Ψ (t)|Wb a(f), LRb

a|Ψ (t)|dt, forL−Lipschitzian;

Rb

a |Ψ (t)|df(t), forf monotonic nondecreasing, whereWb

a(f)denotes the total variation off on[a, b].

Cerone [1] also proved the following theorem, which will be useful for the development of subsequent results, and is thus stated here for clarity. The no- tationM(g;c, d)is used to signify the integral mean ofg over[c, d].Namely,

(1.6) M(g;c, d) := A(c, d)

d−c = 1 d−c

Z d c

f(t)dt.

Theorem 1.3. Letg : [a, b]→Rbe absolutely continuous on[a, b],then for (1.7) D(g;a, t, b) :=M(g;t, b)− M(g;a, t),

(5)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

(1.8) |D(g;a, t, b)| ≤





























b−a 2

kg0k, g0 ∈L[a, b] ; h(t−a)q+(b−t)q

q+1

i1q

kg0kp, g0 ∈Lp[a, b], p >1, 1p +1q = 1;

kg0k1, g0 ∈L1[a, b] ; Wb

a(g), g of bounded variation;

b−a 2

L, g isL−Lipschitzian.

Although the possibility of utilising Theorem1.3to obtain bounds onψ(t), as given by (1.3), was mentioned in [1], it was not capitalised upon. This aspect will be investigated here since even though this will provide coarser bounds, they may be more useful in practice.

A lower bound for the ˇCebyšev functional improving the classical result due to ˇCebyšev is also developed and thus providing a refinement.

(6)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

2. Integral Inequalities

Now, if we use the functionϕ : (a, b)→R, (2.1) ϕ(t) :=D(g;a, t, b) =

Rb

t g(x)dx b−t −

Rt

ag(x)dx t−a , then by (1.2) we may obtain the identity:

(2.2) T (f, g) = 1

(b−a)2 Z b

a

(t−a) (b−t)ϕ(t)df(t). We may prove the following lemma.

Lemma 2.1. If g : [a, b]→ Ris monotonic nondecreasing on[a, b],thenϕas defined by (2.1) is nonnegative on(a, b).

Proof. Since g is nondecreasing, we have Rb

t g(x)dx ≥ (b−t)g(t)and thus from (2.1)

(2.3) ϕ(t)≥g(t)− Rt

ag(x)dx

t−a = (t−a)g(t)−Rt

ag(x)dx

t−a ≥0,

by the monotonicity ofg.

The following result providing a refinement of the classical ˇCebyšev inequal- ity holds.

(7)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Theorem 2.2. Let f : [a, b] → Rbe a monotonic nondecreasing function on [a, b]and g : [a, b] → R a continuous function on [a, b] so thatϕ(t) ≥ 0for eacht ∈(a, b).Then one has the inequality:

(2.4) T(f, g)≥ 1 (b−a)2

Z b a

(t−a)

Z b t

g(x)dx

−(b−t)

Z t a

g(x)dx

df(t)

≥0.

Proof. Sinceϕ(t)≥0andf is monotonic nondecreasing, one has successively T (f, g) = 1

(b−a)2 Z b

a

(t−a) (b−t)

" Rb

t g(x)dx b−t −

Rt

ag(x)dx t−a

# df(t)

= 1

(b−a)2 Z b

a

(t−a) (b−t)

Rb

t g(x)dx b−t −

Rt

ag(x)dx t−a

df(t)

≥ 1

(b−a)2 Z b

a

(t−a) (b−t)

Rb

t g(x)dx

b−t −

Rt

ag(x)dx t−a

df(t)

≥ 1

(b−a)2

Z b a

(t−a) (b−t)

Rb

t g(x)dx

b−t −

Rt

ag(x)dx t−a

df(t)

= 1

(b−a)2

Z b a

(t−a)

Z b t

g(x)dx

−(b−t)

Z t a

g(x)dx

df(t)

≥0

(8)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

and the inequality (1.5) is proved.

Remark 2.1. By Lemma2.1, we may observe that for any two monotonic non- decreasing functions f, g : [a, b] → R, one has the refinement of ˇCebyšev in- equality provided by (2.4).

We are able now to prove the following inequality in terms of f and the functionϕdefined above in (2.1).

Theorem 2.3. Let f : [a, b] → R be a function of bounded variation andg : [a, b] → R an absolutely continuous function so that ϕ is bounded on (a, b). Then one has the inequality:

(2.5) |T (f, g)| ≤ 1

4kϕk

b

_

a

(f),

whereϕis as given by (2.1) and

kϕk:= sup

t∈(a,b)

|ϕ(t)|.

Proof. Using the first inequality in Theorem1.2, we have

|T (f, g)| ≤ 1

(b−a)2 sup

t∈[a,b]

|Ψ (t)|

b

_

a

(f)

= 1

(b−a)2 sup

t∈[a,b]

|(t−a) (b−t)ϕ(t)|

b

_

a

(f)

(9)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

≤ 1

(b−a)2 sup

t∈[a,b]

[(t−a) (b−t)] sup

t∈(a,b)

|ϕ(t)|

b

_

a

(f)

≤ 1 4kϕk

b

_

a

(f),

since, obviously,supt∈[a,b][(t−a) (b−t)] = (b−a)4 2.

The case of Lipschitzian functionsf : [a, b]→Ris embodied in the follow- ing theorem as well.

Theorem 2.4. Let f : [a, b] → R be anL−Lipschitzian function on[a, b] and g : [a, b]→Ran absolutely continuous function on[a, b].Then

(2.6) |T(f, g)|













L(b−a)6 3 kϕk if ϕ ∈L[a, b] ;

L(b−a)1q [B(q+ 1, q+ 1)]1q kϕkp, p > 1, 1p + 1q = 1 if ϕ ∈Lp[a, b] ;

L

4 kϕk1, if ϕ ∈L1[a, b],

wherek·kpare the usual Lebesguep−norms on[a, b]andB(·,·)is Euler’s Beta function.

Proof. Using the second inequality in Theorem1.2, we have

|T (f, g)| ≤ L (b−a)2

Z b a

|Ψ (t)|dt= L (b−a)2

Z b a

(b−t) (t−a)|ϕ(t)|dt.

(10)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Obviously Z b

a

(b−t) (t−a)|ϕ(t)|dt ≤ sup

t∈[a,b]

|ϕ(t)|

Z b a

(t−a) (b−t)dt

= (b−a)3

6 kϕk. giving the first result in (2.6).

By Hölder’s integral inequality we have Z b

a

(b−t) (t−a)|ϕ(t)|dt ≤ Z b

a

|ϕ(t)|pdt

1

pZ b

a

[(b−t) (t−a)]qdt

1 q

=kϕkp(b−a)2+1q [B(q+ 1, q+ 1)]1q . Finally,

Z b a

(b−t) (t−a)|ϕ(t)|dt ≤ sup

t∈[a,b]

[(b−t) (t−a)]

Z b a

|ϕ(t)|dt

= (b−a)2 4 kϕk1 and the inequality (2.6) is thus completely proved.

We will use the following inequality for the Stieltjes integral in the subse-

(11)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

quent work, namely

(2.7)

Z b a

h(t)k(t)df(t)



















 sup

t∈[a,b]

|h(t)|Rb

a |k(t)|df(t) Rb

a |h(t)|pdf(t)p1 Rb

a |k(t)|qdf(t)1q , wherep >1, 1p +1q = 1 sup

t∈[a,b]

|k(t)|Rb

a |h(t)|df(t),

providedf is monotonic nondecreasing andh, kare continuous on[a, b]. We note that a simple proof of these inequalities may be achieved by using the definition of the Stieltjes integral for monotonic functions. The following weighted inequalities for real numbers also hold,

(2.8)

n

X

i=1

aibiwi









 max

i=1,n

|ai|

n

P

i=1

|bi|wi

n P

i=1

wi|ai|p

p1 n P

i=1

wi|bi|q 1q

, p > 1, 1p + 1q = 1,

(12)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

whereai, bi ∈Randwi ≥0,i∈ {1, . . . , n}.

Using (2.7), we may state and prove the following theorem.

Theorem 2.5. Let f : [a, b] → Rbe a monotonic nondecreasing function on [a, b].Ifg is continuous, then one has the inequality:

(2.9) |T(f, g)|

















1 4

Rb

a|ϕ(t)|df(t)

1 (b−a)2

Rb

a [(b−t) (t−a)]qdf(t)1q Rb

a|ϕ(t)|pdf(t)1p , p > 1, 1p + 1q = 1;

1

(b−a)2 sup

t∈[a,b]

|ϕ(t)|Rb

a (t−a) (b−t)df(t). Proof. From the third inequality in (1.5), we have

|T (f, g)| ≤ 1 (b−a)2

Z b a

|Ψ (t)|df(t) (2.10)

= 1

(b−a)2 Z b

a

(b−t) (t−a)|ϕ(t)|df(t). Using (2.7), the inequality (2.9) is thus obtained.

(13)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

3. More on ˇ Cebyšev’s Functional

Using the representation (1.2) and the integration by parts formula for the Stielt- jes integral, we have (see also [4, p. 268], for a weighted version) the identity, (3.1) T(f, g) = 1

(b−a)2 Z b

a

(b−t) Z t

a

(u−a)dg(u)

df(t)

+ Z b

a

(t−a) Z b

t

(b−u)dg(u)

df(t)

. The following result holds.

Theorem 3.1. Assume that f : [a, b] → R is of bounded variation and g : [a, b] → Ris continuous and of bounded variation on[a, b].Then one has the inequality:

(3.2) |T(f, g)| ≤ 1

2

b

_

a

(g)

b

_

a

(f).

Ifg : [a, b]→Ris Lipschitzian with the constantL >0,then

(3.3) |T (f, g)| ≤ 4

27(b−a)L

b

_

a

(f).

Ifg : [a, b]→Ris continuous and monotonic nondecreasing, then (3.4) |T(f, g)|

≤ 1

(b−a)2 (

sup

t∈[a,b]

(b−t)

(t−a)g(t)− Z t

a

g(u)du

(14)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

+ sup

t∈[a,b]

(t−a) Z b

t

g(u)du−g(t) (b−t) ) b

_

a

(f)

































 1 b−a

( sup

t∈[a,b]

(t−a)g(t)− Z t

a

g(u)du

+ sup

t∈[a,b]

Z b t

g(u)du−g(t) (b−t) )

×

b

_

a

(f),

1 4

( sup

t∈[a,b]

g(t)− 1 t−a

Z t a

g(u)du

+ sup

t∈[a,b]

1 b−t

Z b t

g(u)du−g(t) ) b

_

a

(f). Proof. Denote the two terms in (3.1) by

I1 := 1 (b−a)2

Z b a

(b−t) Z t

a

(u−a)dg(u)

df(t) and by

I2 := 1 (b−a)2

Z b a

(t−a) Z b

t

(b−u)dg(u)

df(t). Taking the modulus, we have

|I1| ≤ 1

(b−a)2 sup

t∈[a,b]

(b−t)

Z t a

(u−a)dg(u)

b _

a

(f)

(15)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

and

|I2| ≤ 1

(b−a)2 sup

t∈[a,b]

(t−a)

Z b t

(b−u)dg(u)

b _

a

(f). However,

sup

t∈[a,b]

(b−t)

Z t a

(u−a)dg(u)

≤ sup

t∈[a,b]

"

(b−t) (t−a)

t

_

a

(g)

#

≤ sup

t∈[a,b]

[(b−t) (t−a)] sup

t∈[a,b]

t

_

a

(g)

= (b−a)2 4

b

_

a

(g)

and, similarly,

sup

t∈[a,b]

(t−a)

Z b t

(b−u)dg(u)

≤ (b−a)2 4

b

_

a

(g).

Thus, from (3.1),

|T (f, g)| ≤ |I1|+|I2| ≤ 1 2

b

_

a

(g)

b

_

a

(f)

and the inequality (3.2) is proved.

(16)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Ifg isL−Lipschitzian, then we have

Z t a

(u−a)dg(u)

≤L Z t

a

(u−a)du= L(t−a)2 2 and

Z b t

(b−u)dg(u)

≤L Z b

t

(b−u)du= L(b−t)2 2 and thus

|I1| ≤ 1

2 (b−a)2L sup

t∈[a,b]

(b−t) (t−a)2

b

_

a

(f), and

|I2| ≤ 1

2 (b−a)2L sup

t∈[a,b]

(t−a) (b−t)2

b

_

a

(f). Since

sup

t∈[a,b]

(b−t) (t−a)2

=

b−a+ 2b 3

a+ 2b

3 −a

2

= 4

27(b−a)3, then

|I1| ≤ 2 (b−a)

27 L

b

_

a

(f) and, similarly,

|I2| ≤ 2 (b−a)

27 L

b

_

a

(f).

(17)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Consequently

|T(f, g)| ≤ |I1|+|I2| ≤ 4 (b−a)

27 L

b

_

a

(f) and the inequality (3.3) is also proved.

Ifg is monotonic nondecreasing, then

Z t a

(u−a)dg(u)

≤ Z t

a

(u−a)dg(u) = (t−a)g(t)− Z t

a

g(u)du and

Z b t

(b−u)dg(u)

≤ Z b

t

(b−u)dg(u) = Z b

t

g(u)du−g(t) (b−t). Consequently,

|I1| ≤ 1

(b−a)2 sup

t∈[a,b]

(b−t)

(t−a)g(t)− Z t

a

g(u)du b

_

a

(f)

1

b−asupt∈[a,b]h

(t−a)g(t)−Rt

ag(u)dui Wb

a(f),

1

4supt∈[a,b]h

g(t)− t−a1 Rt

ag(u)dui Wb

a(f), and

|I2| ≤ 1

(b−a)2 sup

t∈[a,b]

(t−a) Z b

t

g(u)du−g(t) (b−t) b

_

a

(f)

(18)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

1

b−asupt∈[a,b]

hRb

t g(u)du−g(t) (b−t) iWb

a(f),

1

4 supt∈[a,b]

h 1 b−t

Rb

t g(u)du−g(t) iWb

a(f), and the inequality (3.4) is also proved.

The following result concerning a differentiable functiong : [a, b]→Ralso holds.

Theorem 3.2. Assume that f : [a, b] → R is of bounded variation and g : [a, b]→Ris differentiable on(a, b).Then,

(3.5) |T (f, g)| ≤ 1

(b−a)2

b

_

a

(f)

×





































supt∈[a,b]

h

(b−t) (t−a)kg0k[a,t],1i + supt∈[a,b]h

(b−t) (t−a)kg0k[t,b],1i

if g0 ∈L1[a, b] ;

1 (q+1)1q

n

supt∈[a,b]h

(b−t) (t−a)1+1q kg0k[a,t],pi + supt∈[a,b]h

(t−a) (b−t)1+1q kg0k[t,b],pio

if g0 ∈Lp[a, b], p >1, 1p +1q = 1;

1 2

n

supt∈[a,b]h

(b−t) (t−a)2kg0k[a,t],∞i + supt∈[a,b]h

(t−a) (b−t)2kg0k[t,b],∞io

if g0 ∈L[a, b]

(19)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

b

_

a

(f)×









1

2kg0k[a,b],1 if g0 ∈L1[a, b] ;

2q(q+1)(b−a)1q (2q+1)1q+2

kg0k[a,b],p if g0 ∈Lp[a, b], p >1, 1p +1q = 1;

4(b−a)

27 kg0k[a,b],∞ if g0 ∈L[a, b], where the Lebesgue norms over an interval[c, d]are defined by

khk[c,d],p :=

Z d c

|h(t)|pdt

1 p

, 1≤p <∞ and

khk[c,d],∞ :=ess sup

t∈[c,d]

|h(t)|. Proof. Sinceg is differentiable on(a, b),we have

Z t a

(u−a)dg(u) (3.6)

=

Z t a

(u−a)g0(u)du









(t−a)kg0k[a,t],1 Rt

a(u−a)qdu1q

kg0k[a,t],p, p >1, 1p + 1q = 1;

Rt

a(u−a)dukg0k[a,t],∞

(20)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

=









(t−a)kg0k[a,t],1

(t−a)1+ 1q (q+1)1q

kg0k[a,t],p, p > 1, 1p + 1q = 1;

(t−a)2

2 kg0k[a,t],∞

and, similarly,

(3.7)

Z b t

(b−u)dg(u)









(b−t)kg0k[t,b],1

(b−t)1+ 1q (q+1)1q

kg0k[t,b],p, p >1, 1p +1q = 1;

(b−t)2

2 kg0k[t,b],∞. With the notation in Theorem3.1, we have on using (3.6)

|I1| ≤ 1 (b−a)2

b

_

a

(f)· sup

t∈[a,b]









(b−t) (t−a)kg0k[a,t],1

(b−t)(t−a)1+ 1q (q+1)1q

kg0k[a,t],p, p > 1, 1p + 1q = 1;

(b−t)(t−a)2

2 kg0k[a,t],∞

and from (3.7)

|I2| ≤ 1 (b−a)2

b

_

a

(f)· sup

t∈[a,b]









(t−a) (b−t)kg0k[t,b],1

(t−a)(b−t)1+ 1q (q+1)

1

q kg0k[t,b],p, p >1, 1p +1q = 1;

(t−a)(b−t)2

2 kg0k[t,b],∞.

(21)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Further, since

|T (f, g)| ≤ |I1|+|I2|, we deduce the first inequality in (3.5).

Now, observe that sup

t∈[a,b]

h

(b−t) (t−a)kg0k[a,t],1i

≤ sup

t∈[a,b]

[(b−t) (t−a)] sup

t∈[a,b]

kg0k[a,t],1

= (b−a)2

4 kg0k[a,b],1;

sup

t∈[a,b]

"

(b−t) (t−a)1+1q (q+ 1)1q

kg0k[a,t],p

#

≤ 1

(q+ 1)1q sup

t∈[a,b]

h

(b−t) (t−a)1+1qi sup

t∈[a,b]

kg0k[a,t],p

=Mqkg0k[a,b],p where

Mq := 1 (q+ 1)1q

sup

t∈[a,b]

h

(b−t) (t−a)1+1qi .

Consider the arbitrary functionρ(t) = (b−t) (t−a)r+1, r >0.Thenρ0(t) = (t−a)r[(r+ 1)b+a−(r+ 2)t]showing that

sup

t∈[a,b]

ρ(t) =ρ

a+ (r+ 1)b r+ 2

= (b−a)r+2(r+ 1)r+1 (r+ 2)r+2 .

(22)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Consequently,

Mq = q

(q+ 1)1q

·(b−a)2+1q (q+ 1)1+1q (2q+ 1)2+1q

= q(q+ 1) (b−a)2+1q (2q+ 1)2+1q

.

Also, sup

t∈[a,b]

"

(b−t) (t−a)2

2 kg0k[a,t],∞

#

≤ 1 2 sup

t∈[a,b]

(b−t) (t−a)2 sup

t∈[a,b]

kg0k[a,t],∞

= 2 (b−a)3

27 kg0k[a,b],∞. In a similar fashion we have

sup

t∈[a,b]

h

(t−a) (b−t)kg0k[t,b],1i

≤ (b−a)2

4 kg0k[a,b],1;

sup

t∈[a,b]

"

(t−a) (b−t)1+1q (q+ 1)1q

kg0k[t,b],p

#

≤ q(q+ 1) (b−a)2+1q (2q+ 1)2+1q

kg0k[a,b],p, and

sup

t∈[a,b]

"

(t−a) (b−t)2

2 kg0k[t,b],∞

#

≤ 2 (b−a)3

27 kg0k[a,b],∞

and the last part of (3.5) is thus completely proved.

(23)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Lemma 3.3. Letg : [a, b]→Rbe absolutely continuous on[a, b]then for (3.8) ϕ(t) =M(g;t, b)− M(g;a, t),

withM(g;c, d)defined by (1.6),

(3.9) kϕk





















b−a 2

kg0k, g0 ∈L[a, b] ;

b−a (β+1)

1 β

kg0kα, g0 ∈Lα[a, b], α >1, α1 +β1 = 1;

kg0k1, g0 ∈L1[a, b] ; Wb

a(g), g of bounded variation;

b−a 2

L, g isL−Lipschitzian, and forp≥1

(3.10) kϕkp

































b−a 2

1+1p

kg0k, g0 ∈L[a, b] ;

Rb a

h(t−a)β+(b−t)β β+1

iβp dt

1p

kg0kα,

g0 ∈Lα[a, b], α >1, α1 +β1 = 1;

(b−a)1pkg0k1, g0 ∈L1[a, b] ; (b−a)1pWb

a(g), g of bounded variation;

b−a 2

1+1p

L, g isL−Lipschitzian.

(24)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

Proof. Identifying ϕ(t) withD(g;a, t, b)of (1.7) produces bounds for |ϕ(t)|

from (1.8). Taking the supremum overt ∈[a, b]readily gives (3.9), a bound for kϕk.

The bound forkϕkpis obtained from (1.8) using the definition of the Lebesque p−norms over[a, b].

Remark 3.1. Utilising (3.9) of Lemma 3.3 in (2.5) produces a coarser upper bound for |T(f, g)|. Making use of the whole of Lemma3.3 in (2.6) produces coarser bounds for (2.6) which may prove more amenable in practical situa- tions.

Corollary 3.4. Let the conditions of Theorem2.3hold, then

(3.11) |T(f, g)| ≤ 1 4

b

_

a

(f)





























b−a 2

kg0k, g0 ∈L[a, b] ;

b−a (β+1)

1 β

kg0kα, g0 ∈Lα[a, b], α >1, α1 +β1 = 1;

kg0k1, g0 ∈L1[a, b] ; Wb

a(g), g of bounded variation;

b−a 2

L, g isL−Lipschitzian.

Proof. Using (3.9) in (2.5) produces (3.11).

Remark 3.2. We note from the last two inequalities of (3.11) that the bounds produced are sharper than those of Theorem 3.1, giving constants of 14 and 18

(25)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

compared with 12 and 274 of equations (3.2) and (3.3). Forg differentiable then we notice that the first and third results of (3.11) are sharper than the first and third results in the second cluster of (3.5). The first cluster in (3.5) are sharper where the analysis is done over the two subintervals[a, x]and(x, b].

(26)

New Upper and Lower Bounds for the ˇCebyšev Functional P. Cerone and S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of26

J. Ineq. Pure and Appl. Math. 3(5) Art. 77, 2002

http://jipam.vu.edu.au

References

[1] P. CERONE, On an identity for the Chebychev functional and some rami- fications, J. Ineq. Pure. & Appl. Math., 3(1) (2002), Article 4. [ONLINE]

http://jipam.vu.edu.au/v3n1/034_01.html

[2] S.S. DRAGOMIR, Some integral inequalities of Grüss type, Indian J. of Pure and Appl. Math., 31(4) (2000), 397–415.

[3] A.M. FINK, A treatise on Grüss’ inequality, Th.M. Rassias and H.M. Sri- vastava (Ed.), Kluwer Academic Publishers, (1999), 93–114.

[4] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

参照

関連したドキュメント

In this paper we develop the semifilter approach to the classical Menger and Hurewicz properties and show that the small cardinal g is a lower bound of the additivity number of

ˇ Sremr, On nonnegative solutions of a periodic type boundary value problem for first order scalar functional differential

The nonlinear impulsive boundary value problem (IBVP) of the second order with nonlinear boundary conditions has been studied by many authors by the lower and upper functions

Our main result below gives a new upper bound that, for large n, is better than all previous bounds..

Erd˝ os, Some problems and results on combinatorial number theory, Graph theory and its applications, Ann.. New

In 1965, Kolakoski [7] introduced an example of a self-generating sequence by creating the sequence defined in the following way..

Next, we prove bounds for the dimensions of p-adic MLV-spaces in Section 3, assuming results in Section 4, and make a conjecture about a special element in the motivic Galois group

P˚ uˇ za, Upper and lower solutions of boundary value problems for functional differential equations and theorems of functional differential inequalities.. ˇ Sremr, Some boundary