• 検索結果がありません。

THE DISTRIBUTION OF CLASS NUMBERS OF PURE NUMBER FIELDS (Diophantine Problems and Analytic Number Theory)

N/A
N/A
Protected

Academic year: 2021

シェア "THE DISTRIBUTION OF CLASS NUMBERS OF PURE NUMBER FIELDS (Diophantine Problems and Analytic Number Theory)"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

THE DISTRIBUTION OF CLASS NUMBERS

OF PURE NUMBER FIELDS

MANFRED PETER

Much is known about the statistical distribution ofclass numbers ofbinary quadratic

forms and quadratic fields. Let $d\equiv 0,1\mathrm{m}\mathrm{o}\mathrm{d} 4$and $d$ not aperfect square. Define $h(d)$

as

the number of equivalence classes of primitive binaryquadratic forms with discriminant

$d$ (and positive definite in case $d<0$). For $d>0$, let $\epsilon_{d}:=(u_{d}+v_{d}\sqrt{d})/2$, where

$(u_{d}, v_{d})$ is the fundamental solution of Pell’s equation$u^{2}-dv^{2}=4$

.

If$d$ is afundamental

discriminant then $h(d)$ is also the class number of$\mathbb{Q}(\sqrt{d})$ in the

narrow

sense.

Gaufi [5] conjectured and Mertens [9] and Siegel [11] later proved that

$\sum_{0<d\leq x}h(d)\log\epsilon_{d}\sim\frac{\pi^{2}}{18\zeta(3)}x^{3/2}$, $\sum_{0>d\geq-x}h(d)\sim\frac{\pi}{18\zeta(3)}x^{3/2}$

.

Chowla and Erdos [3] proved that there is acontinuous distribution function $F$ such that

for all $z\in \mathbb{R}$

と慝

$\frac{1}{x/2}\#\{0<d\leq x|\frac{h(d)1\mathrm{o}\mathrm{g}\epsilon_{d}}{d^{1/2}}\leq e^{z}\}=F(z)$,

$\lim_{xarrow\infty}\frac{1}{x/2}\#\{0>d\geq-x|\frac{h(d)\pi}{|d|^{1/2}}\leq e^{z}\}=F(z)$

.

Elliott [4] showed that $F\in C^{\infty}(\mathrm{R})$ and it has the characteristic function

$\Psi(t)=\prod_{p}(\frac{1}{p}+\frac{1}{2}(1-\frac{1}{p})(1-\frac{1}{p})^{-\dot{|}t}+\frac{1}{2}(1-\frac{1}{p})(1+\frac{1}{p})^{-\dot{|}t})$, $t\in \mathbb{R}$

Barban [1] proved that for $q\in \mathrm{N}$, the $q$ -th moment$\beta_{q}$ of$F(\log z)$ exists and that $\lim_{xarrow\infty}\frac{1}{x/2}\sum_{0<d\leq x}(\frac{h(d)1\mathrm{o}\mathrm{g}\epsilon_{d}}{d^{1/2}})^{q}=\beta_{q}=\sum_{n\geq 1}\frac{\varphi(n)d_{q}(n^{2})}{2n^{3}}$,

$\lim_{xarrow\infty}\frac{1}{x/2}\sum_{0>d\geq-x}(\frac{h(d)\pi}{|d|^{1/2}})^{q}=\beta_{q}$ ,

where $\varphi$ is Euler’s totient function and $d_{q}(n)$ is the number of ways one

can

write

$n$ as

aproduct of $q$ positive integers. For all these results,

error

term estimates

can

be given

(see [2], [6], [10], [12], [13]).

It

seems

that for number fields ofhigherdegree,

no

analoguous results are known. The

Brauer-Siegel Theorem (see, e.g., [8], Chapter XVI) gives arough idea of the size of the class number timesthe regulator: Let $k$ range over asequence of number fields which

are

galois

over

$\mathbb{Q}$ such that $n/\log darrow \mathrm{O}$, where $n:=[k:\mathbb{Q}]$ is the degree and $d=dk/q$ is the

数理解析研究所講究録 1319 巻 2003 年 193-197

(2)

MANFRED PETER

absolute discriminant of $k$. Let $h_{k}$ be the class number of$k$ and $R_{k}$ its regulator. Then $\frac{1\mathrm{o}\mathrm{g}(h_{k}R_{k})}{1\mathrm{o}\mathrm{g}d^{1/2}}arrow 1$.

When looking for

more

precise information

on

the value distribution of

$\frac{h_{k}R_{k}}{d^{1/2}}$,

we run into the problem of how to effectively parametrize number fields. This problem is avoided in the present paper by choosing aspecial class of number fields: Let 1be

a

fixed rational prime and

$S_{l}:=$

{

$m\in \mathrm{N}\backslash \{1\}|m$ is $/$

-power-free}.

For $m\in Si$, define the pure number field $k_{m}:=\mathbb{Q}(\sqrt[l]{m})$ where the radical is choosen in

$\mathbb{R}^{+}$

.

Let $r(m):=\mathrm{r}\mathrm{e}\mathrm{s}_{s=1}\zeta_{k_{m}}(s)$ where $\zeta_{k_{m}}$ is the Dedekind zeta function of $k_{m}$

.

Then $r(m)= \frac{h_{k_{m}}R_{k_{m}}}{d_{k_{m}}^{1/2}}c(l)$, $c(l)=\{\begin{array}{ll}2 l=2(2\pi)^{(l-1)/2} l\geq 3\end{array}\}$

and $d_{k_{m}}\wedge\vee K(m)^{l-1}$, where $K(m)$ is the squarefree kernel of $m$. For $m\in \mathrm{N}\backslash Si$, define

$r(m):=0$

.

Theorem. There is a distribution

function

$F\in C^{\infty}(\mathrm{R})$ such that

for

all $z$ $\in \mathbb{R}_{J}$

$\lim_{xarrow\infty}\frac{\#\{m\in S_{l}|m\leq x,r(m)\leq e^{z}\}}{\#\{m\in S_{l}|m\leq x\}}=F(z)$ .

Furthermore,

$\lim_{xarrow\infty}\frac{1}{\#\{m\in S_{1}|m\leq x\}}\sum_{m\in S_{l}m\leq x}r(m)^{q}=\int_{\mathrm{R}+}z^{q}dF(\log z)$

for

all $q\in \mathrm{N}$

.

The characteristic

function

$\Psi(t)$

of

$F$ is an Euler product whose

factors

depend on $t\in \mathrm{R}$

.

In order to give

an

idea of the proof let

us

first review the method for the well-known case $l=2$. For $m>1$ squarefree, Dirichlet’s class number formula gives

$\zeta_{\mathrm{q}\sqrt{m})}(s)=\zeta(s)L(s, \chi_{d})$,

where

$d=\{\begin{array}{lll}m m \equiv \mathrm{l}\mathrm{m}\mathrm{o}\mathrm{d}44m m \equiv 2,3\mathrm{m}\mathrm{o}\mathrm{d}4\end{array}\}$

isthediscriminant of$\mathbb{Q}(\sqrt{m})$ and$\chi_{d}$is the Jacobi character forthemodulus$|d|$

.

Therefore $r(m)=L(1, \chi_{d})=\sum_{n\geq 1}\frac{\chi_{d}(n)}{n}=\prod_{p}(1-\frac{\chi_{d}(p)}{p^{s}})^{-1}|_{s=1}$.

The idea of proofis

as

follows: For $q\geq 1$, the function $r$ is approximated in the g-th

mean by functions $R_{p}$, $P\in \mathrm{N}$, such that

$||r-R_{P}||_{q}arrow 0$

as

$Parrow\infty$. (1)

(3)

CLASS NUMBERS OF PURE NUMBER FIELDS

Here

$||f||_{q}:=( \lim\sup\frac{1}{x}\sum_{m\leq x}|f(m)|^{q})^{1/q}xarrow\infty\in[0, \infty]$

for $f$ : $\mathrm{N}arrow \mathrm{C}$. The functions $R_{P}$ are partial products of the Euler product above, i.e.

$R_{P}(m):= \prod_{p\leq P}(1-\frac{\chi_{d}(p)}{p})^{-1}$

They

are

periodic in $m$ since for$p>2$,

we

have

$\chi_{d}(p)=(\frac{d}{p})=\{\begin{array}{llllll}1 x^{2}\equiv d \mathrm{m}\mathrm{o}\mathrm{d} p \mathrm{s}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e},p \parallel d-1 x^{2}\equiv d \mathrm{m}\mathrm{o}\mathrm{d} p \mathrm{u}\mathrm{n}\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e} 0 p|d \end{array}\}$

Since periodic functions have limit distributions astandard procedure shows the

same

for $r$. In fact the procedure in this last step is somewhat different since

we

also want to

show the smoothness of$F$.

The approximation (1) could be done with character sum estimates. More suitable for generalizations is the following method which

uses

contour integration and

zero

density

estimates. Let $\mathcal{K}$ be the rectangle with vertices $2+iT$, $\gamma+iT$, $\gamma-iT$ and $2-iT$, and

$N$,$T\geq 1$ and $1/2<\gamma<1$ free parameters. The Residue Theorem gives

$\frac{1}{2\pi i}\int_{\mathcal{K}}L(s, \chi_{d})\Gamma(s-1)N^{s-1}ds=L(1, \chi_{d})$.

Since the $\Gamma$-function decays exponentially in vertical strips offinite width the limit $Tarrow$

$\infty$ together with Mellin’s inversion formula gives

$L(1, \chi_{d})=\frac{1}{2\pi i}\int_{2-\dot{\iota}\infty}^{2+i\infty}-\frac{1}{2\pi i}\int_{\gamma-i\infty}^{\gamma+i\infty}=\sum_{n\geq 1}\frac{\chi_{d}(n)}{n}e^{-n/N}-I(m, N)$.

Ifwe

assume

the Generalized Lindel\"of Hypothesis

$L(s, \chi_{d})\ll_{\epsilon}(d(1+|\Im s|))^{\epsilon}$ (2) for $\gamma$ $\leq\Re s\leq 1$ and $m>1$ squarefree,

we

easily get the estimate

$I(m, N)\ll_{\epsilon}d^{\epsilon}N^{\gamma-1}$. (3)

Hereitisimportant thattheexponentof$d$

can

be made arbitrarilysmall and the exponent

of $N$ is negative.

Without any assumption this procedure can be immitated

as

follows: If $L(s, \chi_{d})$ has

no

zeros

in the rectangle

$\{s\in \mathbb{C}|\Re s\geq\gamma-\epsilon, |\Im s|\leq(\log x)^{2}\}$, (4)

then the usual combination ofthe Borel-Carath\’eodory Theorem and Hadamard’s Three Circles Theorem gives (2) for $\gamma\leq\Re s\leq 2$ and $|\triangleright ss|$ $\underline{<}(\log x)^{2}/2$. Using the exponential

decay of the$\Gamma$-function

on

$|\Im s|\geq(\log x)^{2}/2$we againget (3). Ifthere is

azero

of$L(s, \chi_{d})$

in the rectangle (4) all

we can

say isthat

$I(m, N)\ll d’+N^{\epsilon}$

.

(4)

MANFRED PETER

Now

zero

density estimates

can

be used to show that the second

case

does not happen too often, i.e.

$\#$

{

$1<m\leq x|m$ squarefree,$L$($s$,$\chi_{d}$) has

azero

in the rectangle (4)}

$\ll_{\epsilon}x^{1-\mathrm{c}(\gamma)+\epsilon}$

with

some

constant $c(\gamma)>0$

.

In the $q$-th

mean we

have the approximation

$\sum_{n\geq 1}\frac{\chi_{d}(n)}{n}e^{-n/N}\approx\sum_{n\leq N}\frac{\chi_{d}(n)}{n}$

.

Choosing $N$

as

asmall power of$x$ proves the statement (1).

In the general

case

$l\geq 2$

we

have, for $\Re s>1$,

$\zeta_{k_{m}}(s)=\prod_{p}\prod_{\mathrm{p}1p}(1-\frac{1}{p^{f(\mathfrak{p}/p)s}})^{-1}$

$= \prod_{p\mathfrak{p}|p:}\prod_{f(\mathfrak{p}/p)\geq 2}(1-\frac{1}{p^{f(\mathfrak{p}/p)s}})^{-1}\prod_{p}(1-\frac{1}{p^{s}})^{-\chi(m,p)}\zeta(s)$ ,

where $f(\mathfrak{p}/p):=[O_{k_{m}}/\mathfrak{p} : \mathbb{Z}/p\mathbb{Z}]$ is the residue class degree of$\mathfrak{p}$ and $\chi(m,p):=\#\{\mathfrak{p}|p|f(\mathfrak{p}/p)=1\}-1$.

Thus

$r(m)= \prod_{p\mathfrak{p}|p:}\prod_{f(\mathfrak{p}/p)\geq 2}(1-\frac{1}{p^{f(\mathrm{p}/p)}})^{-1}(1-\frac{1}{l})^{-\chi(m,l)}\prod_{p\neq l}$

$(\begin{array}{l}1-\underline{\mathrm{l}}p^{s}\end{array})|_{s=1}$.

In order to get the almost periodicity of the partial products of this Euler product

we

exploit the relation between the splitting ofrational primes $p$ in $k_{m}$ and the splitting of

$X^{l}-m$in $\mathrm{F}_{p}[X]$ and $\mathbb{Q}_{p}^{1\mathrm{n}\mathrm{r}\mathrm{a}\mathrm{m}}[X]$

.

Here $\mathfrak{B}^{\mathrm{n}\mathrm{r}\mathrm{a}\mathrm{m}}$ is themaximalunramified extension of$\mathbb{Q}_{p}$.

The following lemmas give the necessary information.

Lemma. For$p\neq l$, we have

$\chi(m,p)=\#\{x\mathrm{m}\mathrm{o}\mathrm{d} p|x^{l}\equiv m\mathrm{m}\mathrm{o}\mathrm{d} p\}-1$

.

In particular, the function $\chi(\cdot,p)$ is -periodic and $\sum_{m\mathrm{m}\mathrm{o}\mathrm{d} p}\chi(m,p)=0$,

which

serves as

asubstitute for the orthogonality relation for characters.

Lemma. Let$p$ be a prime, $m\in S_{l}$ and $b\in \mathrm{N}_{0}$ such that$p^{b}||m$. Then the

factor

$\prod_{\mathfrak{p}|p:f(\mathfrak{p}/p)\geq 2}(1-\frac{1}{p^{f(\mathfrak{p}/p)}})^{-1}$

is constant on the residue class $m\mathrm{m}\mathrm{o}\mathrm{d} p^{b(1-1)+\mathrm{I}\mathrm{o}\mathrm{r}\mathrm{d}_{\mathrm{p}}l+1}$.

Bothlemmas

are

usedto show the almost periodicityof$R_{P}$inthegeneral

case.

In order

to prove the approximation (1)

we

use the following

zero

density estimate ofKawada [7].

(5)

CLASS NUMBERS OF PURE NUMBER FIELDS

Theorem. For sufficiently small $\eta>0$, we have

$m\in S_{l}m\leq 2x\mathrm{I}N(m;1-\eta, T)\ll(xT)^{1-}"$, $x\geq T\geq 1$,

where $N(\ldots)$ is the number

of

zeros

of

$(_{k_{m}}(s)((s)^{-1}$ in the rectangle $[1-\eta, 1]\cross[-T, T]$.

REFERENCES

M.B. BARBAN, The “LargeSieve” method and its applications in the theory of numbers, Russian

Math. Surveys $2(1966)$,49-103

F. CHAMIZO, H. IWANIEC, On the Gaufi meanvalue formula for class numbers, Nagoya Math. J.

151(1998), 199-208

S. CHOWLA, P. ERD\"OS, Atheoremon the distribution of vfiues of$\mathrm{L}$-series, J. Indian Math. Soc.

15(1951), 11-18

P.D.T.A. ELLIOTT, On thedistributionofthe values of quadratic $\mathrm{L}$-series in the half-plane $\sigma>$

$1/2$, Invent,math. 21(1973), 319-338

C.F. Gauss, Disquisitiones Arithmeticae, Leipzig1801

M. JUTILA, On character sums and classnumbers, J. Number Th. $5(1973)$, 203-214

K. KAWADA, Azero densityestimateforDedekind zeta functions ofpure extensionfields, Tsukuba J. Math. 22(1998),357-369

S. LANG, Algebraic NumberTheory,GraduateTexts in Mathematics 110,Springer, New York1994

F. MERTENS, Uber einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math.

77(1874), 289-338

10] T. SHINTANI, Onzeta-functions associated with the vector space of quadratic forms, J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 22(1975), 25-65

11] C.L. SIEGEL, The averagemeasureof quadraticforms with givendetemin at and signature,Ann.

ofMath. 45(1944), 667-685

12] I.M. VINOGRADOV, On the number of integerpoints in asphere, Izv. Akad. Nauk SSSR,Ser. Mat. [1] M.B. BARBAN, The “LargeSieve” method and its applications in the theory

Math. Surveys $2(1966)$,49-103

[2] F. CHAMIZO, H. IWANIEC, On the Gaufi meanvalue fomula for class num

151(1998), 199-208

[3] S. CHOWLA, P. ERD\"OS, Atheoremon the distribution of vfiues of L-series

15(1951), 11-18

[4] P.D.T.A. ELLIOTT, On thedistributionofthe values of quadratic L-series

1/2, Invent,math. 21(1973), 319-338

[5] C.F. Gauss, Disquisitiones Arithmeticae, Leipzig1801

[6] M. JUTILA, On character sums and classnumbers, J. Number Th. $5(1973)$,

[7] K. KAWADA, Azero densityestimateforDedekind zeta functions ofpure exl

J. Math. 22(1998),357-369

[8] S. LANG, Algebraic NumberTheory,GraduateTexts in Mathematics 110,Sp

[9] F. MERTENS, \"Uber einige asymptotische Gesetze der Zahlentheorie, J.

77(1874), 289-338

10] T. SHINTANI, Onzeta-functions associated with the vector space of$\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}\mathrm{r}_{\dot{\mathrm{t}}}$

Univ. Tokyo Sect. IA Math. 22(1975), 25-65

11] C.L. SIEGEL, The averagemeasureof quadraticforms with givendetemina\lrcorner

ofMath. 45(1944), 667-685

12] I.M. VINOGRADOV, On the number of integerpoints in asphere, Izv. Akad. 27(1963),957-968

13] D. WOLKE, Moments of class numbersIII, J. NumberTh. $4(1972)$, 523-531

MATHEMATISCHES INSTITUT, ALBERF-LUDWIGS-UNIVERSIT\"AT, ECKERSTR. 1,$\mathrm{D}$-79104FREIBURG

$E$-mail address: manfred.peterbath.$\mathrm{u}\mathrm{n}\mathrm{i}$-freiburg.de

参照

関連したドキュメント

Erd˝ os, Some problems and results on combinatorial number theory, Graph theory and its applications, Ann.. New

On the other hand, conjecture C for a smooth projective variety over a finite field allows to compute the Kato homology of X s in (1-3), at least in the case of semi- stable

de la CAL, Using stochastic processes for studying Bernstein-type operators, Proceedings of the Second International Conference in Functional Analysis and Approximation The-

[3] JI-CHANG KUANG, Applied Inequalities, 2nd edition, Hunan Education Press, Changsha, China, 1993J. FINK, Classical and New Inequalities in Analysis, Kluwer Academic

Definition An embeddable tiled surface is a tiled surface which is actually achieved as the graph of singular leaves of some embedded orientable surface with closed braid

The Main Theorem is proved with the help of Siu’s lemma in Section 7, in a more general form using plurisubharmonic functions (which also appear in Siu’s work).. In Section 8, we

is the Galols group of the maximal p-extenslon kP/k which is unramlfled outside p and This shows that every central embedding problem E ro for Gk(p) has finite p-I. exponent,

The theory of log-links and log-shells, which arise from the local units of number fields under consideration (Section 5), together with the Kummer theory that relates