Generalization
of
Integral Kernel
Operators
NOBUAKI OBATA DEPARTMENT OF MATHEMATICSSCHOOL
OF SCIENCE NAGOYA UNIVERSITY NAGOYA,464-01
JAPANIntroduction
In most literatures creation and annihilationoperators in
a
Fock spaceare
introducedas
operator-valued distributions though used in actual computation
as
if theywere
definedpointwisely. On the other hand, it is also possible to give
a
rigorous definition of suchfieldoperators at
a
point usinga
Gelfand tripleor
a
rigged Hilbert space,see e.g.,
[1], [2].The so-called white noise calculus initiated by Hida [3] offers
one
of such possibilities.The foundation of white noise calculus is
a
Schwartz type distribution theoryon a
Gaussian space $(E^{*}, \mu)$;
more
precisely, it is basedon a
particular choice ofa
Gelfandtriple:
$(E)\subset L^{2}(E*, \mu)\subset(E)^{*}$,
where $L^{2}(E*, \mu)$ is isomorphic to
a
Boson Fock space through the $\mathrm{W}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}_{-}\mathrm{I}\mathrm{t}\hat{\mathrm{o}}$-Segaliso-morphism. Then
a
pointwisely defined annihilation operator, which is also called Hida’sdifferential operator and is denoted by $\partial_{t}$, becomes
a
continuous operatoron
$(E)$; anda
pointwisely defined creation operator $\partial_{t}^{*}$ is
a
continuous operatoron
$(E)^{*}$.
In
a
seriesof
works $[10]-[12]$we
have establisheda
systematic theoryof
operatorson
Gaussian space in terms
of
white noise calculus. The key role has been played byan
integral
kemel operator of which
formal integral expression is givenas
$\int_{T^{\iota+m}}\kappa(_{S\cdots,S}1,l, t1, \cdots,t_{m})\partial*\ldots\partial_{S_{l}}^{*}\partial_{t_{1}}\cdots\partial t_{m}ds_{1}\cdots dS\iota dt_{1}\cdots dt_{m}S1$
’ (1)
where $\kappa$
is
a
distribution in $l+m$ variables. It should be emphasized strongly thatan
integral kernel $\kappa$
can
bea
distribution. In fact, the composition $\partial_{s_{1}s}^{*}\ldots\partial^{*}\mathrm{t}\partial t_{1}\ldots\partial_{t_{m}}$ is welldefined (namely, normally ordered product) and becomes
a
continuous operator from$(E)$into $(E)^{*}$
.
Moreover, the dependenceof the parameters $s_{j}$ and $t_{k}$ is smooth enough.The kernel distribution $\kappa$ in (1) being regarded
as a
scalar operator-valued distributon,we
are
led quite naturally toa
generalization withan
integral kernel beingan
operator-valued distribution. In this note
we
shall introducean
operator in the following form:Of course, this is a formal (but sometimes very descriptive) expression. For the precise
definition
we
need the characterization theoremfor operatorsymbols andsome
propertiesofoperator-valued distributions. Those results
are
obtained in $[10]_{-}[12]$.As application
we
discussan
operator-valued (or quantum) stochasticprocess ofHitsuda-Skorokhod type. We shall observe that the classical
case
discussed in [4] (see also [7], [8])is recovered
as
multiplication operator-valued processes. Our discussion is closely relatedto quantum stochastic calculus, in particular, to representation of quantum martingales,
see
[6], [9], [13], [14]. Furtherdetailed study in this direction will appearina
forthcomingpaper.
ACKNOWLEDGEMENTS. I
am very
grateful to Professors I. Kubo and H. Watanabefor
interesting discussion and comments.
1
White
noise
functionals
We employ the standard setup for white noise calculus $([5], [10]-[12])$ with the
same
notation
as
used there. Let $T$ be a topological space witha
Borelmeasure
$\nu(dt)=dt$which is thought of
as a
timeparameter space when it isan
interval,or
more
generallyas
a
field parameter space. Givena
positive selfadjoint operator $A$on
the real Hilbert space$H=L^{2}(T, \nu;\mathbb{R})$ with Hilbert-Schmidt inverse,
one
may forma
Gelfand triple: $E\subset H=L^{2}(\tau, \nu;\mathbb{R})\subset E^{*}$in the standard manner; namely, $E$ is the $C^{\infty}$-domain of $A$ equipped with the Hilbertian
norms
$|\xi|_{\mathrm{p}}=|A^{p}\xi|_{0}$ , $\xi\in H$
,
$p\in \mathbb{R}$,
where $|\cdot|_{0}$ is the
norm
of $H$.
Sucha
countably Hilbert space is calleda
standardCH-space,
see
[11]. Since $A^{-1}$ is of Hilbert-Schmidt type, $E$ becomesa
nuclear space. Thecanonical bilinear form
on
$E^{*}\cross E$ and the real inner product of $H$are
denoted by thesame
symbol $\langle\cdot, \cdot\rangle$ without contradiction.One
can
thinkof$E$and $E^{*}$as
spaces oftest and generalizedfunctionson
$T$, respectively.In order to keep the delta functions $\delta_{t}$ within
our
discussionwe
assume:
(H1) for each $\xi\in E$thereexists
a
uniquecontinuous function$\xi \mathrm{o}\mathrm{n}T\sim$such that $\xi(t)=\xi(t)\sim$for
v-a.e.
$t\in T$;(H2) for each $t\in T$
a
linearfunctional $\delta_{t}$ : $\xirightarrow\xi(t),$$\xi\sim\in E$, is continuous, i.e., $\delta_{t}\in E^{*};$(H3) the map $trightarrow\delta_{t}\in E^{*},$ $t\in T$, is continuous with respect to the strong dual topology
$\mathrm{o}\mathrm{f}E^{*}$
.
From
now
on
we
alwaysassume
that every element in $E$ isa
continuous functionon
$T$and do not
use
the symbol $\xi\sim$. For anotherreason we
needone
more
assumption:(S) inf$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{C}(A)>1$
.
We then put
$\delta=||A^{-1}||_{\mathrm{H}\mathrm{S}}<\infty$, $\rho=||A^{-1}||_{\mathrm{o}\mathrm{P}}=(\inf \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(A))^{-1}$ .
The obvious inequalities
$0<\rho<1$; $|\xi|_{\mathrm{P}}\leq\rho^{q}|\xi|_{p+}q$
are
used throughout withno
special notice.The Gaussian measure $\mu$ is by definition
a
probabilitymeasure on
$E^{*}$ of whichcharac-teristic function is:
$\exp(-\frac{1}{2}|\xi|_{0}2)=\int_{E^{*}}e^{i}(x,\epsilon\rangle\mu(dX),$ $\xi\in E$.
The probability space $(E^{*}, \mu)$ is called
a
Gaussian space. We put$(L^{2})=L^{2}(E^{*}, \mu;\mathbb{C})$
for simplicity.
The canonical bilinear form
on
$(E^{\otimes n})^{*}\cross(E^{\otimes n})$ is denoted by $\langle\cdot, \cdot\rangle$ again and its $\mathbb{C}-$bilinear extension to $(E_{\mathbb{C}}^{\otimes n})^{*}\cross(E_{\mathbb{C}}^{\otimes n})$ is also denoted by the
same
symbol. For $x\in E^{*}$ let:$x^{\otimes n}$: be defined
as a
unique element in$(E^{\otimes n})_{\mathrm{S}}*\mathrm{y}\mathrm{m}$satisfying
$\phi_{\xi}(X)\equiv\sum_{=n0}^{\infty}\langle:x^{\otimes n}:,$ $\frac{\xi^{\otimes n}}{n!}\rangle=\exp(\langle x, \xi\rangle-\frac{1}{2}\langle\xi, \xi\rangle)$, $\xi\in E_{\mathbb{C}}$
.
(3)This “normalized” exponential function $\phi_{\xi}$ is called
an
exponential vector. In particular,$\phi 0$ is the
vacuum.
As is well known, each $\emptyset\in(L^{2})$ is expressed in thefollowing
form: $\phi(x)=\sum_{=n0}^{\infty}\langle:X:,$$fn\otimes n\rangle$, $x\in E^{*}$, $f_{n}\in H_{\mathbb{C}}^{\otimes n}\wedge$, (4)where each $xrightarrow$ $\langle:x^{\otimes n}:, f_{n}\rangle$ and the
convergence
of the seriesare
understood in the$L^{2}$
-sense.
Expression (4) is referred toas
the Wiener-It\^o expansion of $\phi$. In that case,$|| \phi||_{0}^{2}\equiv\int_{E^{\mathrm{e}}}|\phi(x)|^{2}\mu(dX)=n=0\sum n!|f_{n}|^{2}\infty 0^{\cdot}$ (5)
Thus
we
havea
unitary isomorphism between $(L^{2})$ and the Boson Fock spaceover
$H_{\mathbb{C}}$,which is the celebrated $\mathrm{W}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}-\mathrm{I}\mathrm{t}_{\hat{\mathrm{O}}}$-Segal isomorphism.
The second quantized operator of $\mathrm{A}$, denoted by
$\Gamma(A)$, is
an
operator in $(L^{2})$defined
by
$\Gamma(A)\phi(x)=n\sum^{\infty}\langle:X^{\otimes}:,$$A^{\otimes}nfn\rangle=0n$ ,
where $\phi\in(L^{2})$ is given
as
in (4). Equipped with the maximal domain, $\Gamma(A)$ becomesa
positive selfadjoint operatoron
$(L^{2})$ andwe
obtaina
standard $\mathrm{C}\mathrm{H}$-space which will bedenoted by $(E)$. That $\Gamma(A)$ admits
a
Hilbert-Schmidtinverse is guaranteed byhypothesis(S). Therefore, $(E)$ becomes
a
nuclear Fr\’echet space andwe come
toa
complex Gelfandtriple:
$(E)\subset(L^{2})=L^{2}(E^{*}, \mu;\mathrm{c})\subset(E)^{*}$.
Elements in $(E)$ and $(E)^{*}$
are
calleda
test (white noise)functional
anda
generalized(white noise) functional, respectively. We denote by $\langle\langle\cdot, \cdot\rangle\rangle$ the canonical bilinear form
on
$(E)^{*}\cross(E)$ and by $||\cdot||_{p}$ the
norm
introduced from $\Gamma(A)$, namely,where$\phi$and $(f_{n})_{n=0}^{\infty}$
are
relatedas
in (4). Thus (5) isa
specialcase
of(6). As is easilyseen
from (6), $\emptyset\in(L^{2})$ belongs to $(E)$ if and only if$f_{n}\in E_{\mathbb{C}}^{\otimes n}\wedge$ for all
$n$ and $\sum_{n=0}^{\infty}n!|f_{n}|_{p}^{2}<\infty$
for all $p\geq 0$.
We
use a
similar (but formal) expressionfora
generalized whitenoise functional. Every$\Phi\in(E)^{*}$ is written
as
$\Phi(x)=\sum^{\infty}\langle n=0:X^{\otimes}:n,$ $F_{n\rangle}$ , (7)
where $F_{n}\in(E_{\mathbb{C}}^{\otimes n})^{*}\mathrm{s}\mathrm{y}\mathrm{m}$ and
$|| \Phi||_{-p}^{2}=n\sum_{=0}^{\infty}n!|F_{n}|_{-p}^{2}$ . (8)
By construction $||\Phi||_{-p}<\infty$ for
some
$p\geq 0$, and hence for all sufficiently large $p\geq 0$.
Expression (7) is also called the Wiener-It\^o expansionof $\Phi$. In that case,
$\langle\langle\Phi, \phi\rangle\rangle=\sum_{n=0}^{\infty}n!\langle F_{n},$ $fn)$ ,
where $\phi\in(E)$ and its Wiener-It\^o expansion is given
as
in (4).2
Integral kernel operators
For any $y\in E^{*}$ and $\phi\in(E)$
we
put$D_{y} \phi(x)=\lim_{arrow\theta 0}\frac{\phi(_{X+}\theta y)-\emptyset(_{X})}{\theta}$, $x\in E^{*}$
.
(9)It is known that the limit always exists and that $D_{y}\in \mathcal{L}((E), (E))$. Since the delta
functions $\delta_{t}$
are
elements in $E^{*}$ by hypotheses $(\mathrm{H}1)-(\mathrm{H}3)$,we
may define$\partial_{t}=D_{\mathit{5}_{t}}$, $t\in T$
.
This is called Hida’s
differential
operator. Obviously, $\partial_{t}$ isa
rigorouslydefined
annihi-lation operator at
a
point $t\in T$. It should betherefore
emphasized that $\partial_{t}$ is notan
operator-valued distribution but
a
continuous
operatorfor itself.
The creation operatoris by definition the adjoint $\partial_{t}^{*}\in \mathcal{L}((E)^{*}, (E)^{*})$ and
we come
to the so-called canonicalcommutation relation:
$[\partial_{S}, \partial_{t}]=0$, $[\partial_{s}^{*}, \partial_{t}^{*}]=0$, $[\partial_{s}, \partial_{t}^{*}]=\delta_{s}(t)I$, $s,t\in T$. (10)
The last relation is understood in
a
generalizedsense.
For $\phi,$$\psi\in(E)$ let
$\eta_{\phi,\psi}$ be
a
functionon
$T^{l+m}$ defined by$\eta_{\phi,\psi}(s_{1}, \cdots, s_{l}, t_{1}, \cdots, t_{m})=\langle\langle\partial_{s1}^{*}\cdots\partial_{sl}^{*}\partial_{tt}1\ldots\partial\phi,$$\psi m\rangle\rangle$
.
(11)Then $\eta_{\phi,\psi}\in E_{\mathbb{C}}^{\otimes(lm}+$) and $(\phi, \psi)rightarrow\langle\kappa, \eta_{\phi},\psi\rangle$ is
a
continuous bilinear formon
$(E)$for
$\mathrm{a}\mathrm{n}\mathrm{y}--\kappa\in(E_{\mathbb{C}}^{\otimes(l+m)})^{*}$
.
By general theory there existsa
unique continuous linear operator$rightarrow\iota_{m},(\kappa)\in \mathcal{L}((E), (E)^{*})$ such that
In other words, $–l,m-(\kappa)$ is defined through two canonical bilinear forms: $\langle\langle_{-}^{-}-_{l,m}(\kappa)\emptyset, \psi\rangle\rangle=\langle\kappa,$ $\langle\langle\partial^{*}\cdots\partial^{*}\partial_{t}\cdots\partial_{t}\emptyset,$$\psi S_{1}s_{\mathrm{t}}1m\rangle\rangle\rangle$ , $\phi,$$\psi\in(E)$.
This suggests
us
to employa
formal integral expression:–lm–,$( \kappa)=\int_{T^{l+m}}\kappa(S1, \cdots, S_{l,1}t, \cdots, t_{m})\partial_{s1s}^{*}\ldots\partial^{*}\partial_{t_{1}}\cdots\partial tmdS_{1}\cdots dS_{l}dt\iota 1\ldots dt_{m}$
.
We call $–l.m-(\kappa)$
an
integral kernel operator with kernel distribution $\kappa$.
It is noteworthythat $–l,m-(\kappa)$ is defined for any $\kappa\in(E_{\mathbb{C}}^{\otimes(+)}\iota m)^{*}$ and becomes
a
continuous operator in$L((E), (E)^{*})$. For any $p>0$ with $|\kappa|_{-p}<\infty$
we
have$||_{-}^{-}-\prime_{m},(\kappa)\phi||-p\leq Cl,m;p|\kappa|_{-}p||\emptyset||_{p}$ , $\phi\in(E)$, (13)
where
$c_{l,m;p}=\rho-\mathrm{p}$
(llm)
1m/2
$( \frac{\rho^{-p}}{-2pe\log\rho})^{1^{l}}+m$)$/2$
This estimate is useful. Recall that $|\kappa|_{-p}<\infty$ for all sufficiently large $p>0$
.
The kernel distribution is not uniquely determined due to relation (10); however, for
the uniqueness
we
only need to restrict ourselves to the subspace $(E_{\mathbb{C}}^{\otimes(l+}m))_{\mathrm{s}}^{*}\mathrm{y}\mathrm{m}(l,m)$of
all$\kappa\in(E_{\mathbb{C}}^{\otimes(+m)})^{*}l$ which is symmetric with respect to the first $l$ and the last $m$ variables
independently.
3
Symbol and Fock
expansion
$\mathrm{F}\mathrm{o}\mathrm{r}---\in \mathcal{L}((E), (E)^{*})$
a
functionon
$E_{\mathbb{C}}\cross E_{\mathbb{C}}$ defined by$—\wedge(\xi, \eta)=\langle\langle_{-}^{-}-\phi_{\xi}, \phi_{\eta}\rangle\rangle$
,
$\xi,$$\eta\in E_{\mathbb{C}}$, (14)is called the symbol $\mathrm{o}\mathrm{f}---$
.
Since the exponential vectors $\{\phi_{\xi;}\xi\in E_{\mathbb{C}}\}$spans
a
densesub-space of $(E)$, the synlbol
recovers
the operator uniquely. Foran
integral kernel operator,$–l,m-\overline{(}\kappa)(\xi, \eta)=\langle\kappa,$ $\eta^{\otimes l}\otimes\xi^{\otimes}m\rangle e^{\mathrm{t}\xi,\eta\}}$, (15)
or
equivalently,$\langle\langle_{-l,m}^{-}-(\kappa)\emptyset\epsilon, \phi_{\eta}\rangle\rangle=\langle\langle\langle\kappa,$ $\eta\otimes\otimes l\xi\otimes m\rangle\phi_{\xi},$ $\phi_{\eta}\rangle\rangle$ , (16)
where $\xi,$$\eta\in E_{\mathbb{C}}$ and $\kappa\in E_{\mathbb{C}}^{\otimes 1^{\iota}+}m$) It is
straightforward
tose.e
that $\ominus=---\wedge,$ $—\in$$\mathcal{L}((E), (E)^{*})$, possesses the following two properties:
(O1) For any $\xi,$ $\xi_{1},$
$\eta,$$\eta_{1}\in E_{\mathrm{C}}$
,
the function$z,$ $wrightarrow\ominus(z\xi+\xi 1, w\eta+\eta_{1})$, $z,$$w\in \mathbb{C}$,
is entire holomorphic;
(02) There exist constant numbers $C\geq 0,$ $K\geq 0$ and $p\in \mathbb{R}$such that
More important is that the
converse
is also true. Theorem$bl3.1$ Any
$\mathbb{C}$-valued
function
$\Theta$ on$E_{\mathbb{C}}\cross E\mathrm{c}_{\underline{\wedge}}satisfyin=\ominus g$conditions
$(Ol)$ and $(O\mathit{2})$
is the symbol
of
an
$operat_{\mathit{0}}r---\in \mathcal{L}((E), (E)^{*}),$ $i.e.$, –$\kappa_{l,m}\in(E_{\mathbb{C}}^{\otimes}m)_{\mathrm{S}}*\mathrm{C}(\iota,m)\mathrm{S}\mathrm{u}\mathrm{h}\mathrm{t}\mathrm{I}\mathrm{n}\mathrm{f}\mathrm{a}\mathrm{C}\mathrm{t},\ovalbox{\tt\small REJECT}_{+}^{\mathrm{i}\mathrm{v}}\mathrm{e})\mathrm{n}\mathrm{S}\mathrm{u}\mathrm{c}\mathrm{y}\mathrm{m}\mathrm{h}\mathrm{a}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{n}\ominus$
, there exists
a
unique family of kerneldistributions
$\ominus.(\xi, \eta)=,\sum_{0\iota_{m=}}^{\infty}\langle\langle---l,m(\kappa_{l,m})\phi\epsilon, \phi_{\eta}\rangle\rangle$ , $\xi,$$\eta\in E_{\mathbb{C}}$.
Moreover, the series
$– \phi-=l,\sum_{m=0}^{\infty}---_{\iota_{m}},(\kappa_{l,m})\emptyset$, $\phi\in(E)$, (17)
converges
in $(E)^{*}$, and therebywe
obtain $—\in \mathcal{L}((E), (E)^{*})$ of which symbol is $O-$.
Inparticular, the symbol $\mathrm{o}\mathrm{f}---\in \mathcal{L}((E), (E)^{*})$ satisfying (O1) and (02), the above argument
reproduces
an
$\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}---\mathrm{i}\mathrm{n}$terms of integral kernel operators. Expression (17) is calledthe Fock expansion$\mathrm{o}\mathrm{f}---$
.
In
some
practical problems operatorson
Fock spaceare
onlydefined
on
the exponentialvectors $\{\emptyset\epsilon;\xi\in E_{\mathbb{C}}\}$ due to the fact that they
are
linearly independent. Theorem 3.1 istherefore crucial for checking whether the operator
comes
intoour
framework.
In fact,our
later discussion will dependon
this point heavily. For detailed proof and furtherdiscussion
see
[10]. Herewe
do not mention anything about thecase
of $\mathcal{L}((E), (E))$ whichis also important from
some
applications. For complete informationsee
[11].4
Operator-valued
distributions
In [12]
we
studied $\mathcal{L}(\mathcal{E}, \mathcal{E}^{*})$-valued distributions in general, where $\mathcal{E}$ isa
standardCH-space. Here
we
recapitulatesome
results for $\mathcal{E}=(E)$.
Let $\{e_{j}\}_{j=}^{\infty}0$ be the normalized eigenfunctions
of
the operator $A$. For $\mathrm{i}=(\dot{i}_{1}, \cdots, i_{l})$ and$\mathrm{j}=(j_{1}, \cdots,j_{m})$
we
put$e(\mathrm{i})=e_{i_{1}}\otimes\cdots\otimes e_{i}l$
’ $e(\mathrm{j})=e_{j_{1}}\otimes\cdots\otimes e_{j_{m}}$
.
For
a
linear map $L:E_{\mathbb{C}}^{\otimes}(\iota+m)arrow \mathcal{L}((E), (E)^{*})$ and$p,$$q,$ $r,$$s\in \mathbb{R}$
we
put$||L|| \iota_{mp,q;},;r,s=\sup\dagger\sum_{\mathrm{i}_{\dot{\mathrm{d}}}}|\langle\langle L(e(\mathrm{i})\otimes e(\mathrm{j}))\emptyset, \psi)\rangle|2|e(\mathrm{i})|_{p}^{2}|e(\mathrm{j})|^{2}q$ ; $\phi,\psi\in(||\emptyset|||\psi|^{1}|-r\leq 1-s\leq 1E)\}^{1/2}$
By
definition
forany
$p,$ $q,$ $r,$$s\in \mathbb{R}$we
have$\sum_{\mathrm{i}_{\dot{\mathrm{d}}}}|\langle\langle L(e(\mathrm{i})\otimes e(\mathrm{j}))\emptyset, \psi\rangle\rangle|^{2}|e(\mathrm{i})|^{2}p|e(\mathrm{j})|_{q}^{2}\leq||L||^{2}\iota_{m;},p,q;r,s||\phi||2-S||\psi||_{-}^{2}r$ (18)
and
$||L||_{l,r}m;p,q;,S\leq\rho^{\iota}|p+\prime mqJ|L||_{l,q’}m;p+p’,q+;r+rS+’,S’$
For brevity
we
put$||L||_{p}=||L||_{l,p}m;p,p;p,$ ’ $||L||_{l,;}mp,q=||L||_{l,;p,q}m;p,q$
.
The next result will be useful, for the proof
see
[12].Proposition 4.1 Fora linear map $L:E_{\mathbb{C}}^{\otimes \mathrm{t}^{l}+m)}arrow \mathcal{L}((E), (E)^{*})$ the$foll_{ow}ingfour$
condi-tio$ns$ are equivalent:
(i) $L\in \mathcal{L}(E_{\mathbb{C}}^{\otimes}m)\mathcal{L}\{l+,((E), (E)*))$;
(ii) $\sup\{|\langle\langle L(\eta)\phi, \psi\rangle\rangle|;\eta\in E_{\mathbb{C}}\phi,\psi\in\otimes(E^{+})(lm,),$ $||\phi|||\eta|_{p}\leq \mathrm{P}\leq 1,$$|1|\psi||_{p}\leq 1\}<\infty$
for
some
$p\geq 0_{j}$(iii) $||L||_{-p}<\infty$
for
some
$p\geq 0_{i}$(iv) $||L||_{l,m;p},q;r,S<\infty$
for
some
$p,$ $q,$ $r,$$s\in \mathbb{R}$.In that case,
for
any$p,$ $q,$ $r,$$s\in \mathbb{R}$ we have$|\langle\langle L(\eta)\emptyset, \psi\rangle\rangle|\leq||L||_{l,r}m;-p,-q;-,-S|\eta|l,m;p,q||\phi||S||\psi||_{r}$ , (20)
and
$||L(\eta)\emptyset||-r\leq||L||l,m;-p,-q;-r,-s|\eta|_{l,q}m;p,||\phi||S$ , (21)
where $\eta\in E_{\mathbb{C}}^{\otimes(+\rangle}\iota m,$ $\phi,$$\psi\in(E)$.
Each $L\in \mathcal{L}(E_{\mathbb{C}}^{\otimes(m)}+, \mathcal{L}(l(E), (E)^{*}))$ is justifiably called
an
$\mathcal{L}((E), (E)^{*})$-valueddistri-bution
on
$T^{l+m}$. If $\mathcal{L}((E), (E)^{*})$were
a
Fr\’echet space,one
would havea
canonicaliso-morphism
$\mathcal{L}(E_{\mathbb{C}}^{\otimes(m)}, \mathcal{L}+((\iota E), (E)^{*}))\cong(E_{\mathbb{C}}^{\otimes(+}\iota m))*\otimes \mathcal{L}((E), (E)^{*})$
by the kernel theorem; however, $\mathcal{L}((E), (E)^{*})$ is not
a
Fr\’echet space. (It is known that$\mathcal{L}(\mathcal{E}, \mathcal{E}^{*})$ is Fr\’echet if and only if
$\mathcal{E}$
is
a
Hilbert space.)5
Generalization of integral kernel operators
With each $L\in \mathcal{L}(E_{\mathbb{C}}^{\otimes\langle m)}l+, \mathcal{L}((E), (E)^{*}))$
we
associatean
operator $—\in \mathcal{L}((E), (E)^{*})$ bythe formula:
$\langle(_{-}^{-}-\phi_{\xi}, \phi_{\eta}\rangle\rangle=\langle\langle L(\eta^{\otimes l}\otimes\xi\otimes m)\phi\epsilon,$ $\phi_{\eta}\rangle\rangle,$ $\xi,$$\eta\in E_{\mathbb{C}}$. (22)
We must check that the definition works; namely, conditions (O1) and (02) in
\S 3
are
tobe
verified
for $t$$\ominus(\xi, \eta)=\langle\langle L(\eta^{\otimes l}\otimes\xi\otimes m)\phi\epsilon,$ $\phi_{\eta}\rangle\rangle$ , $\xi,$$\eta\in E_{\mathbb{C}}$
.
(23)In fact, the verification of (O1) is straightforward.
As
for (O2), it follows from (20) inProposition 4.1 that
$|\ominus(\xi, \eta)|$ $\leq$ $||L||_{-\mathrm{p}}|\eta^{\otimes l}\otimes\xi^{\otimes}m|_{p}||\phi_{\xi}||_{p}||\phi\eta||_{p}$
Hence
one
may find $p\geq 0,$ $K\geq 0$ and $C\geq 0$ such that$|\ominus(\xi, \eta)|\leq C\exp I\iota’(|\xi|_{\mathrm{P}^{+}}^{2}|\eta|_{p}^{2})$ , $\xi,$$\eta\in E_{\mathbb{C}}$,
which shows (02). It then follows from the characterization theorem (Theorem 3.1) that
$\ominus$ is the symbol of
an
$\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}---\in \mathcal{L}((E), (E)^{*})$; namely, there existsa
unique operator $—\in \mathcal{L}((E), (E)^{*})$ satisfying (22). It is reasonable to write$—= \int_{T}\partial_{s}^{*}1\ldots\partial_{s\iota}*L(s1, \cdots, s\iota, t_{1}, \cdots, tm)\partial_{t_{1}}\cdots\partial tmd_{S_{1}}\cdots dS_{l}dt1\ldots dt_{m}$
.
(24)The above constructed $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}---\mathrm{i}\mathrm{s}$
a
generalizationofan
integral kernel operatorintro-duced in
\S 2,
compare (22) and (16).This genera,lization
occurs
inan
integral kernel operator. Let $\kappa\in(E_{\mathbb{C}}m))_{\mathrm{s}\mathrm{y}}^{*}\otimes(l+\mathrm{m}(l,m)$ andconsider
an
integral kernel$\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}_{\mathrm{o}\mathrm{r}}--_{l,m}-(\kappa)$ . Togo
furtherwe
need contraction of tensorproducts. For $g_{l}\in E_{\mathbb{C}}^{\otimes l}$ and $g_{n}\in E_{\mathbb{C}}^{\otimes n}$
we
define $\kappa\otimes^{l}(g_{l}\otimes g_{n})\in(E_{\mathbb{C}}^{\otimes(m+n)})*\mathrm{a}\mathrm{s}$a
uniqueelement satisfying
$\langle\kappa\otimes^{l}(gl\otimes gn), \zeta\rangle=\langle\kappa\otimes g_{n}, g_{l}\otimes\zeta\rangle$
,
$\zeta\in E_{\mathbb{C}}^{\otimes()}m+n$.Then $\kappa\otimes^{l}g$ is defined for any $g\in E_{\mathbb{C}}^{\otimes(l)}+m$ by continuity and is called
a
left contraction.Moreover, it is easily verified that
$|F\otimes^{\iota_{g}}|_{-p}\leq\rho^{2pn}|F|-p|g|p$ ’
$F\in(E_{\mathbb{C}}^{\otimes(+})\iota m)*$, $g\in E_{\mathbb{C}}^{\otimes(+n)}l$
.
(25)The right contraction $\kappa\otimes_{l}g$ is similar. For detailed argument
see
[11].Lemma 5.1 Fix integers $0\leq\alpha\leq l$ and $0\leq\beta\leq m$. Given $\kappa\in(E_{\mathbb{C}}^{\otimes(}l+m))_{\mathrm{s}\mathrm{y}}^{*}\mathrm{m}(l,m))$
$L_{0}(\eta 1, \cdots, \eta\alpha’\xi 1, \cdots, \xi\beta)=--l_{-}\alpha,m-\beta(-(\kappa\otimes\beta(\xi 1\otimes\cdots\otimes\xi_{\beta}))\otimes\alpha(\eta_{1}\otimes\cdots\otimes\eta_{\alpha}))$
becomes
a
continuous $(\alpha+\beta)$-linear mapfrom
$E_{\mathbb{C}}$ into $\mathcal{L}((E), (E)^{*})$.
PROOF. For simplicity
we
put$\lambda=(\kappa\otimes_{\beta(\xi}1\otimes\cdots\otimes\xi\beta))\otimes^{\alpha}(\eta 1\otimes\cdots\otimes\eta_{\alpha})$.
Take $p>0$ with $|\kappa|_{-\rho}<\infty$. Then by (25)
we
have$|\lambda|_{-p}\leq|\kappa|_{-p}|\xi_{1}|_{p}\cdots|\xi\beta||\eta 1|p\ldots|\mathrm{P}|_{p}\eta_{\alpha}$ . (26)
On the other hand, in view of (13)
we
have$|\langle\langle L_{0}(\eta_{1}, \cdots, \eta\alpha’\xi_{1}, \cdots, \xi\beta)\emptyset, \psi\rangle\rangle|\leq c_{l_{-}\alpha},m-\beta,p|\lambda|_{-}p||\emptyset||_{p}||\psi||p$ . (27)
Given bounded subsets $B_{1},$$B_{2}\subset(E)$,
we see
from (26) and (27) that$\sup$ $|\langle\langle L_{0}(\eta_{1}, \cdots,\eta\alpha’\xi_{1}, \cdots, \xi\beta)\emptyset, \psi\rangle\rangle|$
$\emptyset\in B_{1,\psi\in B_{2}}$
which implies the desired continuity of$L_{0}$
.
By Lemma 5.1 there exists$L\in \mathcal{L}(E_{\mathbb{C}}^{\otimes\{\beta)}\alpha+, \mathcal{L}((E), (E)^{*}))$ such that
qed
$L(\eta_{1^{\otimes}}\cdots\otimes\eta\alpha\otimes\xi_{1^{\otimes\cdots\otimes\xi}}\beta)=L0(\eta 1, \cdots, \eta\alpha’\xi 1, \cdot\cdot, ,\xi\beta)$
.
In other words,
$L(\eta_{1}\otimes\cdots\otimes\eta\alpha\otimes\xi 1\otimes\cdots\otimes\xi\rho)$
$=_{-l_{-}\alpha,m}--(-\beta(\kappa\otimes_{\beta}(\xi 1\otimes\cdots\otimes\xi_{\beta}))\otimes\alpha(\eta_{1}\otimes\cdots\otimes\eta_{\alpha}))$
.
(28)Theorem 5.2 (FUBINI TYPE) Fix integers $0\leq\alpha\leq l$ and $0\leq\beta\leq m$. Given $\kappa\in$
$(E_{\mathbb{C}}^{\otimes \mathrm{t}l+m)})^{*}$ let $L\in \mathcal{L}(E_{\mathbb{C}}^{\otimes \mathrm{t}}\alpha+\beta),$$\mathcal{L}((E), (E)^{*}))$ be
defined
as
in (28). Then,$–l,m-( \kappa)=\int_{T^{\alpha+\beta}}\partial*\ldots\partial_{S_{q}}^{*}L(_{S_{1,\alpha}}s_{1}\ldots,)s,t_{1}, \cdot*\cdot, t_{\beta}\partial_{t_{1}t}\ldots\partial ds_{1}\cdots dS\beta\alpha dt_{1}\cdots dt_{\beta}$
.
PROOF. The symbol oftheright hand side is $\langle\langle L(\eta^{\otimes\alpha}\otimes\xi^{\otimes\beta})\phi\xi, \phi_{\eta}\rangle\rangle$by definition (22).
In view of (28)
we
obtain$\langle\langle L(\eta^{\otimes\otimes}\otimes\alpha\xi\beta)\phi\epsilon,$ $\phi_{\eta}\rangle\rangle$ $=$ $\langle\langle_{-l-}^{-}-\alpha,m-\rho((\kappa\otimes\beta\xi^{\otimes\beta})\otimes^{\alpha\otimes}\eta)\alpha\phi\xi,$$\phi\eta\rangle\rangle$
$=$ $\langle(\kappa\otimes_{\beta\xi^{\otimes\beta}})\otimes^{\alpha}\eta,$$\eta-\alpha)\otimes\alpha\otimes \mathrm{t}l\otimes\xi\otimes(m-\beta)\rangle e\mathrm{t}^{\xi,\eta)}$
$=$ $\langle\kappa,$ $\eta\xi\otimes l_{\otimes}\otimes m\rangle e^{(}\xi,\eta\rangle$.
The last expression coincides with the symbol $\mathrm{o}\mathrm{f}_{-l,m}--(\kappa)$ by (15) and hence follows the
assertion. qed
The above result is essential to discuss “canonical form” of
an
adapted operator-valuedprocess. This topic will be discussed in
a
forthcoming paper.6
Operator-valued
Hitsuda-Skorokhod
integrals
In this section
we
take$T=\mathbb{R}$, $A=1+t^{2}- \frac{d^{2}}{dt^{2}}$, $E=S(\mathbb{R})$
.
According to the discussion in the previous section
we
havea
generalized integral kerneloperator:
$\int_{T}\partial_{l^{*}}L(t)dt$, $L\in \mathcal{L}(E_{\mathbb{C}}, \mathcal{L}((E), (E)^{*}))$
.
In this section
we
shall introducea
“stochastic integral” of theform:
$\int_{0}^{t}\partial_{s}^{*}L(s)dS$, $t\geq 0$
.
For that purpose $L$ should possess
a
stronger property that $L$ is continuously extendedto
a
linear map from $E_{\mathbb{C}}^{*}$ into $\mathcal{L}((E), (E)^{*})$. Note the natural inclusion relation$\mathcal{L}(E_{\mathbb{C}}^{*}, \mathcal{L}((E), (E)^{*}))\subset \mathcal{L}(E_{\mathbb{C}}, \mathcal{L}((E), (E)^{*}))$.
For $L\in \mathcal{L}(E_{\mathbb{C}}^{*}, \mathcal{L}((E), (E)^{*}))$
we
write $L_{s}=L(\delta_{s})$ for simplicity. Then $\{L_{s}\}$ is regardedLemma 6.1 Let $L\in \mathcal{L}(E_{\mathbb{C}}^{*}, \mathcal{L}((E), (E)^{*}))$. Then
for
any $f\in E_{\mathbb{C}}^{*}$ there exists an operator$M_{f}\in \mathcal{L}((E), (E)^{*})$ such that
$\langle\langle M_{f}\phi C, \phi_{\eta}\rangle\rangle=\langle\langle L(f\eta)\emptyset\epsilon, \phi_{\eta}\rangle\rangle$ , $\xi,$$\eta\in E_{\mathbb{C}}$
.
Moreover, $frightarrow M_{f}$ is continuous, $i.e.,$ $M\in \mathcal{L}(E_{\mathbb{C}}^{*}, \mathcal{L}((E), (E)^{*}))$
.
PROOF. First note that, for any $p\geq 0$ there exist $q>0$ and $A_{p,q}\geq 0$ such that
$|\xi\eta|_{p}\leq A_{\rho,q}|\xi|p+q|\eta|_{p+q}$, $\xi,$$\eta\in E_{\mathbb{C}}$.
Then, by duality
we
obtain$|f\eta|_{-}(p+q)\leq A_{\rho,q}|f|-p|\eta|_{p+q}$ , $\eta\in E_{\mathbb{C}}$, $f\in E_{\mathbb{C}}^{*}$. (29)
On the other hand, using the canonical isomorphism
$\mathcal{L}(E_{\mathbb{C}}^{*}, \mathcal{L}((E), (E)^{*}))\cong \mathcal{L}(E_{\mathbb{C}}^{*}, ((E)\otimes(E))^{*})$,
which
comes
from the kernel theorem,we
find $L^{*}\in \mathcal{L}((E)\otimes(E), E_{\mathbb{C}})$ such that$(\langle L(f)\emptyset, \psi\rangle\rangle=(f, L^{*}(\phi\otimes\psi)\rangle,$ $f\in E_{\mathbb{C}}^{*}$, $\phi,$$\psi\in(E)$
.
By continuity, for any $p\geq 0$ thereexist $q\geq 0$ and $B_{p,q}\geq 0$ such that
$|L^{*}(\emptyset\otimes\psi)|p\leq B_{p},q||\phi||_{\rho+}q||\psi||_{p+q}$, $\phi,$$\psi\in(E)$. (30)
We
now
consider$\ominus_{f}(\xi, \eta)=\langle\langle L(f\eta)\phi_{\xi}, \phi_{\eta}\rangle\rangle=\langle f\eta, L^{*}(\phi_{\epsilon}\otimes\phi_{\eta})\rangle$
.
Suppose $p\geq 0$ is given albitrarily. Take $q>0$ with property (29). In view of (30)
we
may find $r\geq 0$ such that
$|\ominus_{f}(\xi, \eta)|$ $\leq$ $|f\eta|_{-}(p+q)|L*(\emptyset\xi^{\otimes}\emptyset_{\eta})|_{p+}q$
$\leq$ $A_{p,q}|f|-p|\eta|p+qB+q,r|p|\phi\xi||_{p+}q+r||\phi_{\eta}||p+q+r$
$\leq$ $A_{p,q}B_{\rho+}r \rho^{r}q,|f|-p|\eta|_{p+q}+\Gamma\exp\frac{1}{2}(|\xi|_{p++r}^{2}q+|\eta|_{p+q+}2)r$
.
Consequently, for any$p\geq 0$
we
have found constants $C\geq 0,$ $K\geq 0$ and $s\geq 0$ such that$|\ominus_{f}(\xi, \eta)|\leq C|f|_{-p}\exp Ic(|\xi|_{p+S^{+}}^{2}|\eta|_{p+S}2)$ , $f\in E_{\mathbb{C}}^{*}$, $\xi,$$\eta\in E_{\mathbb{C}}$. (31)
Hence by the characterization theorem (Theorem 3.1), for any $f\in E_{\mathbb{C}}^{*}$ there exists
an
operator $\Lambda/I_{j}\in \mathcal{L}((E), (E)^{*})$ such that
$\langle\langle M_{f}\phi_{\xi}, \phi_{\eta}\rangle\rangle=\ominus_{f}(\xi, \eta)=\langle\langle L(f\eta)\phi\epsilon, \phi_{\eta}\rangle\rangle$
,
$\xi,$$\eta\in E_{\mathbb{C}}$.Obviously, $f\vdasharrow \mathbb{J}l_{f}$ is linear. Inequality (31) implies the continuity
on
the Hilbert space$\{f\in E_{\mathbb{C}}^{*}; |f|_{-p}<\infty\}$. Since $E_{\mathbb{C}}^{*}$ is the inductivelimit of such Hilbert spaces,
we
concludeThe operator $M_{f}$ constructed above is denoted by
$M_{f}= \int_{T}f(s)\partial*L_{s}dss$
.
In particular, for $f=1_{1^{0,t}1}$
we
write$\Omega_{t}\equiv\int_{0}^{t}\partial_{s}^{*}L_{s}d_{S}$, $t\geq 0$,
which forms
a
one-parameter family of operators in $\mathcal{L}((E), (E)^{*})$.
This is calledan
operator-valued integral
of
Hitsuda-Skorokhod type. To besure
we
rephrase thedefini-tion:
$\langle\langle\Omega_{t}\phi\epsilon, \phi_{\eta}\rangle\rangle=\langle\langle L(1[0,t]\eta)\phi\epsilon, \phi_{\eta})\rangle$, $\xi,$$\eta\in E_{\mathbb{C}}$
.
(32)It is interesting to observe how
our
operator-valued process $\{\Omega_{t}\}$ generalizes $\mathrm{t}_{\mathrm{J}}\mathrm{h}\mathrm{e}$Hitsuda-Skorokhod integral.
For that purpose
we
quote the definition of the Hitsuda-Skorokhod integral following[4]. Let $\Phi_{t}\in(E)^{*},$ $t\geq 0$, be given. Since $\partial_{t}^{*}\in \mathcal{L}((E)^{*}, (E)^{*})$ for any $t$, for
any
$\phi\in(E)$one
obtainsa
function: $trightarrow\langle\langle\partial_{t}^{*}\Phi_{t}, \phi\rangle\rangle$. Assume that the function is measurable and$\int_{0}^{t}|\langle\langle\partial^{*}\Phi ss’\phi\rangle\rangle|ds<\infty$, $t\geq 0$
.
Then, it is proved that there exists $\Psi_{t}\in(E)^{*},$ $t\geq 0$, uniquely such that
$\langle\langle\Psi_{t}, \phi\rangle\rangle=\int_{0}^{t}\langle\langle\partial_{s}*\Phi_{s}, \phi\rangle\rangle ds$ , $\phi\in(E)$.
The above obtained $\Psi_{t}$ is denoted by
$\Psi_{t}=\int_{0}^{t}\partial^{*}S\Phi_{s}dS$
and is called the
Hitsuda-Skorokhod
integral.As
is well known, theHitsuda-Skorokhod
integral coincides with the usual It\^o integral when the integrand $\{\Phi_{t}\}$ is
an
adapted $L^{2_{-}}$function with respect to the filtration generated by the Brownian motion
$B_{t}(x)=\langle x,$ $1_{[0,t]}\rangle$, $x\in E^{*}$, $t\geq 0$
.
In this connection
see
also [7], [8].We need
one more
remark. Each $\Phi\in(E)^{*}$ gives rise toa
continuous operator in$\mathcal{L}((E), (E)^{*})$ by lnultiplicationsince $(\phi, \psi)rightarrow\phi\psi$is
a
continuous bilinear map from $(E)\cross$$(E)$ into $(E)$. This identification extends to
a
natural inclusion relation $\mathcal{L}(E_{\mathbb{C}}^{*}, (E)^{*})\subset$ $\mathcal{L}(E_{\mathbb{C}}^{*}, \mathcal{L}((E), (E)^{*}))$.Now suppose
we
are
given $\Phi\in \mathcal{L}(E_{\mathbb{C}}^{*}, (E)^{*})$. Let$\tilde{\Phi}$
denote the corresponding
multipli-cation operator, i.e., $\tilde{\Phi}\in \mathcal{L}(E_{\mathbb{C}}^{*}, \mathcal{L}((E), (E)^{*}))$. Then
one
hasan
operator-valued integralof Hitsuda-Skorokhod type:
as
wellas
the Hitsuda-Skorokhod integral in the originalsense:
$\Psi_{t}=\int_{0}^{t}\partial_{s}*\Phi_{s}d_{S}$, $t\geq 0$. (34)
In fact, since the both maps $trightarrow\delta_{t}\in E^{*}$ and $trightarrow\partial_{t}\phi\in(E)$
are
continuous,so
is$trightarrow\langle\langle\partial_{t}^{*}\Phi_{t}, \emptyset\rangle\rangle$
.
Therefore $\Psi_{t}$ is well defined.Theorem 6.2 Forany$\Phi\in \mathcal{L}(E_{\mathbb{C}}^{*}, (E)^{*})$ let $\Omega_{t}$ be the operator-valued integral
of
Hitsuda-Skorokhod type
defined
as
in (33) and let $\Psi$ be the Hitsuda-Skorokhod integral in theoriginal sense
defined
as in (34). Then,$\Psi_{t}=\Omega_{t}\phi 0$, $t\geq 0$,
where $\phi_{0}$ is the
vacuum.
PROOF. By definition (32)
we
have$\langle\langle\Omega_{t}\emptyset 0, \phi\eta\rangle\rangle=\langle\langle\tilde{\Phi}(1_{[0,t}]\eta)\phi 0,$ $\emptyset\eta\rangle\rangle=\langle\langle\Phi(1_{[}0,t]\eta),$ $\phi_{\eta\rangle\rangle}$ .
In terms of the adjoint operator $\Phi^{*}\in \mathcal{L}((E), E_{\mathbb{C}})$ the last expression becomes
$\langle\langle\Phi(1[0,t]\eta),$ $\emptyset\eta\rangle\rangle=\langle 1_{[t]\eta}0,,$ $\Phi^{*}\phi\eta\rangle=\int_{0}^{t}\eta(s)(\Phi*\phi_{\eta})(S)d_{S}$
.
Moreover, note that
$\uparrow \mathfrak{j}(S)(\Phi*\phi_{\eta})(s)$ $=\eta(s)\langle\delta_{S}, \Phi^{*}\phi\eta\rangle=\eta(s)\langle\langle\Phi(\delta S), \phi_{\eta}\rangle\rangle$
$=$ $\langle\langle\Phi(\delta_{S}), \partial s\phi\eta\rangle\rangle=\langle\langle\partial_{S}*\Phi\psi s’\eta\rangle\rangle$
.
Consequently,
$\langle\langle\Omega_{t}\phi 0, \phi\eta\rangle\rangle=\int_{0}^{t}\langle\langle\partial_{s}^{*}\Phi_{s}, \phi\eta\rangle\rangle ds=\langle\langle\Psi_{\iota}, \phi_{\eta}\rangle\rangle$,
and
we come
to $\Omega_{t}\phi_{0}=\Psi_{t}$as
desired. qedReferences
[1] N. N. Bogolubov, A. A. Logunov and I. T. Todorov: “Introduction to
Axiomatic
Quantum Field Theory,” Benjamin, 1975.
[2] A. Grossman: Fields at a point, Commun. Math. Phys. 4 (1967),
203-216.
[3] T. Hida: “Analysis of Brownian Functionals,” Carleton Math. Lect. Notes,
no.
13,Carleton University, Ottawa, 1975.
[4] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: “White Noise,” Kluwer Academic,
[5] T. Hida, N. Obata and K. Sait\^o:
Infinite
dimensional rotations and Laplacians interms
of
white noise calculus, Nagoya Math. J. 128 (1992),65-93.
[6] R. L. Hudson and K. R. Parthasaraty: Quantum Ito’s
formula
and stochasticevolu-tions, Comlnun. Math. Phys. 93 (1984), 301-323.
[7] I. Kubo: Ito
formula for
generalizedBrowniari
functionals, in “Theory andApplica-tion of Random Fields (G. Kallianpured.),” pp. 156-166, Lect. Notes in Math. Vol.
49, Springer-Verlag, 1983.
[8] I. Kubo and S. Takenaka: Calculus
on
Gaussian white noise I-IV, Proc. JapanAcad.56A (1980),
376.-
$380_{;}$ 411-416; 57A (1981), 433-437;58A.
(1982),186-18..9.
[9] P. A. Meyer: “Quantum Probability for Probabilists,” Lect. $\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}\wedge$
in Math. Vol.
1538, Springer-Verlag, 1993.
[10] N. Obata: An analytic characterization
of
symbolsof
operatorson
white noisefunc-tionals, J. Math. Soc. Japan 45 (1993), 421-445.
[11] N. Obata: “Elements of White Noise Calculus,” Lect. Notes in Math.,
Springer-Verlag, to be published.
[12] N. Obata: Operator calculus on vector-valued white noise functionals, to appear in
J. Funct. AnaJ. 120 (1994).
[13] K. R. Parthasarathy: “An Introduction to Quantum Stochastic Calculus,”
Birk-h\"auser, 1993.
[14] K. R. Parthasarathy and K. B. Sinha: Stochastic integral representation