• 検索結果がありません。

問題 1. 以下の関数 f (x) の高階導関数 f (n) (x) (n ≥ 1) を求めよ.

N/A
N/A
Protected

Academic year: 2021

シェア "問題 1. 以下の関数 f (x) の高階導関数 f (n) (x) (n ≥ 1) を求めよ."

Copied!
2
0
0

読み込み中.... (全文を見る)

全文

(1)

微分積分学 I 演習問題 5

問題 1. 以下の関数 f (x) の高階導関数 f (n) (x) (n 1) を求めよ.

(1) f (x) = c (定数関数) (2) f (x) = x 2

(3) f (x) = x 4 + x 3 + x 2 + x + 1 (4) f (x) = e x

(5) f (x) = log(x + 1) (6) f (x) = cos x (7) f (x) = cosh x (8) f (x) = x 1

x + 1 (9) f (x) = 1

x + 1 (10) f (x) = 2

x 2 1

問題 2. f (x) = tan x とし, 関数 g m (x) と h m+1 (x) を以下によって定める:

f (2m+1) (x) = g m (x)

cos 2m+2 x , (m 0) f (2m) (x) = h m (x)

cos 2m+1 x . (m 1) このとき, 以下の問いに答えよ.

(a) g m (x) を, h m (x) と h 0 m (x) を用いて表せ. 同様に h m+1 (x) を, g m (x) と g m 0 (x) を用いて表せ.

(b) f (n) (x), (n = 1, 2, . . . , 5) を求めよ.

(2)

2

微分積分学

I

演習問題

5

問題 1 の解答:

(1) f (n) (x) = 0 (n 1).

(2) f (n) (x) =

 

2x (n = 1) 2 (n = 2) 0 (n 3)

(3) f (n) (x) =

 

 

 

 

 

4x 3 + 3x 2 + 2x + 1 (n = 1) 12x 2 + 6x + 2 (n = 2)

24x + 6 (n = 3)

24 (n = 4)

0 (n 5)

(4) f (n) (x) = e x

(5) f (n) (x) = ( 1) n 1 (n 1)!(x + 1) n

(6) f (n) (x) =

 

 

 

cos x (n = 4m)

sin x (n = 4m + 1)

cos x (n = 4m + 2) sin x (n = 4m + 3) (7) f (n) (x) =

{ cosh x (n = 2m) sinh x (n = 2m + 1) (8) f (n) (x) = 2( 1) n 1 n!(x + 1) n 1 (9) f (n) (x) = ( 1) n

2 n

(2n + 1)!

2n! (x + 1)

2n21

(10) f (n) (x) = ( 1) n n!

{ 1

(x 1) n+1 1 (x + 1) n+1

}

= ( 1) n n! (x + 1) n+1 (x 1) n+1 (x 2 1) n+1 問題 2 の解答:

(a) f (n+1) (x) = (f (n) (x)) 0 を計算して次を得る:

g m (x) = h 0 m (x) cos x + (2m + 1)h m (x) sin x, h m+1 (x) = g 0 m (x) cos x + (2m + 2)g m (x) sin x.

(b) g 0 (x) = 1 から始めて h 1 , g 1 , h 2 , g 2 を順番に計算すると次のようになる:

h 1 (x) = 2 sin x, g 1 (x) = 2 + 4 sin 2 x,

h 2 (x) = 16 sin x + 8 sin 3 x, g 2 (x) = 16 + 88 sin 2 x + 16 sin 4 x.

従って f (1) (x), . . . , f (5) (x) は以下の通りである:

f (1) (x) = 1 cos 2 x , f (2) (x) = 2 sin x

cos 3 x , f (3) (x) = 2 + 4 sin 2 x

cos 4 x , f (4) (x) = 16 sin x + 8 sin 3 x

cos 5 x , f (5) (x) = 16 + 88 sin 2 x + 16 sin 4 x

cos 6 x .

参照

関連したドキュメント

In this paper we analyze some problems related to quadratic transformations in the variable of a given system of monic orthogonal polynomials (MOPS).. The first problem to be

In this section, we establish a purity theorem for Zariski and etale weight-two motivic cohomology, generalizing results of [23]... In the general case, we dene the

We prove a continuous embedding that allows us to obtain a boundary trace imbedding result for anisotropic Musielak-Orlicz spaces, which we then apply to obtain an existence result

This research was supported by Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (10KJB110003) and Jiangsu Uni- versity of Science and

This paper is a sequel to [1] where the existence of homoclinic solutions was proved for a family of singular Hamiltonian systems which were subjected to almost periodic forcing...

In the second section, we study the continuity of the functions f p (for the definition of this function see the abstract) when (X, f ) is a dynamical system in which X is a

(The Elliott-Halberstam conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve- ments in Huxley’s results, which for r ≥ 2 are weaker than the result

Algebraic curvature tensor satisfying the condition of type (1.2) If ∇J ̸= 0, the anti-K¨ ahler condition (1.2) does not hold.. Yet, for any almost anti-Hermitian manifold there