• 検索結果がありません。

Characteristics of Flow Rate Control by Using Magneto-Rheological Elastomers

N/A
N/A
Protected

Academic year: 2022

シェア "Characteristics of Flow Rate Control by Using Magneto-Rheological Elastomers "

Copied!
8
0
0

読み込み中.... (全文を見る)

全文

(1)

THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 50, NO.3October2009

Characteristics of Flow Rate Control by Using Magneto-Rheological Elastomers

Kazuhiko M

ATSUMURA*

, Masashi K

AWAGUCHI**

, Yuki S

ASATANI**

, Hiroshi Y

AMAGUCHI**

(Received July 9, 2009)

The purpose of this study is to verify the characteristics of a flow control device when the structure is actually installed in a section of pipe. In the present a magneto-rheological elastomers is prepared by mixing ferromagnetism fine particles and the silicone gel. The magneto-rheological elastomers with a tiny hole inherited from the manufacturing process is then installed in a section of a pipe. The flow rate, especially water in the present study, is controlled by applying magnetic field. The flow of water, represented with flow coefficient through the whole of elastomers, is effectively controlled by imposing magnetic field. In this flow control structure, the shape of the magneto-reological elastomers becomes an especially important factor. The influence on the flow of the working fluid when the length of the magneto-rheological elastomers passed the throttle is also investigated in the present research. It is found, with an assistance of CFD, that the elastomer is deformed to the down stream in the controlling section, resulting in strong effect on the flow coefficient.

-G[9QTFU : flow rate control㧘magneto-reological elastomers㧘ferromagnetism fine particles㧘magnetic field

ࠠ࡯ࡢ࡯࠼㧦

ᵹ㊂೙ᓮ⏛᳇☼ᒢᕈ૕ᒝ⏛ᕈᓸ☸ሶ⏛႐

⏛᳇☼ᒢᕈ૕ߦࠃࠆᵹ㊂೙ᓮ․ᕈ

᧻᧛๺ᒾ* 㧘Ꮉญᱜ༹** 㧘╣⼱㓶ၮ** 㧘ጊญඳม**

✜⸒

⃻࿷㧘ᄙߊߩᾲ㧘ᵹ૕ࠪࠬ࠹ࡓߢ૶↪ߐࠇߡ޿ࠆ ᯏ᪾ᑼᵹ㊂೙ᓮᑯߪ㧘৻⥸⊛ߦ᭴ㅧ޽ࠆ޿ߪ೙ᓮᯏ

᭴߇ⶄ㔀ߢ޽ࠅ㧘ᦝߦᵹ૕ߦࠃࠆ㛍㖸߇⊒↢ߔࠆ1-4)

╬ߩ໧㗴ࠍᛴ߃ߡ޿ࠆ㧚߹ߚ㧘ㆊ෰ߩ⎇ⓥߢᣂߒ޿

⹜ߺߣߒߡ⏛ᕈᵹ૕⤑5)ࠍ↪޿ߚᵹ㊂೙ᓮ6)߳ߩᔕ

↪߇น⢻ߢ޽ࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ㧚ߒ߆ߒߎߩᯏ

᭴ߢߪ⏛ᕈᵹ૕ߩ⏛႐଻ᜬജ߇ዊߐ޿ߚ߼㧘ᵹ㊂߇ ᄙߊߥࠆߣ㧘⏛ᕈᵹ૕⤑ߩ৻ㇱ߇㘧ᢔߒ㧘ߎࠇߦࠃ ࠅ⛉ࠅലᨐ߇ᷫዋߔࠆ໧㗴ὐ߇޽ࠆ㧚ߘߎߢᧄ⎇ⓥ

ߢߪߎࠇࠄߩ໧㗴ὐࠍ⸃᳿ߔࠆߚ߼ߦ㧘⏛ᕈᵹ૕⤑

ߩઍࠊࠅߦ㧘ᒝ⏛ᕈᓸ☸ሶߣಽᢔᇦߢ޽ࠆࠪ࡝ࠦ࡯

ࡦࠥ࡞ࠍᷙวߒߚ⏛᳇☼ᒢᕈ૕ࠍ↪޿ߚᣂߚߥᵹ㊂

೙ᓮᯏ᭴ࠍឭ᩺ߒ㧘ශട⏛႐߇ᵹࠇߩ․ᕈ㧘․ߦᵹ

㊂೙ᓮᑯߣߒߡߩᵹ㊂೙ᓮ․ᕈߦ෸߷ߔᓇ㗀ߦߟ޿

ߡᬌ⸛ࠍⴕߞߚ㧚

ᧄ⎇ⓥߢߪ㧘ߎߩᵹ㊂೙ᓮᯏ᭴ࠍ㊂↥઀᭽ߩᵹ㊂

೙ᓮᑯ߳ㆡ↪ߔࠆߚ߼ߩ㊀ⷐߥᬌ⸛㗄⋡ߩ৻ߟߣߒ ߡ㧘⏛᳇☼ᒢᕈ૕ߩᒻ⁁ࠍขࠅ਄ߍ㧘ߘߩਛߢ߽⛉

ࠅᯏ᭴ㇱࠍ᭴ᚑߔࠆ⏛᳇☼ᒢᕈ૕ߩ㐳ߐ߇㧘⛉ࠅᯏ

᭴ㇱߩᒻ⁁ᄌൻ෸߮⛉ࠅᯏ᭴ㇱࠍㅢㆊߔࠆ㓙ߩ૞േ

ᵹ૕ߩᵹࠇߦ෸߷ߔᓇ㗀ߦߟ޿ߡ⺞ᩏߒߚ㧚 ߘߎߢ㧘ᦨೋߦή⽶⩄ᤨߦ߅޿ߡ㧘ශട⏛႐ᒝߐ ࠍᄌൻߐߖߚ႐วߩゲᣇะ߆ࠄ⷗ߚ⛉ࠅᯏᓟㇱߩᒻ

⁁ߩนⷞൻࠍⴕ޿㧘ශട⏛႐ᒝߐߣ㐿ญᢿ㕙Ⓧߣߩ 㑐ଥߦߟ޿ߡ⺞ᩏߒߚ㧚ᰴߦ㧘ታ㛎෸߮ᢙ୯⸃ᨆࠃ ࠅᓧࠄࠇߚ૞േᵹ૕ᵹേᤨߦ߅ߌࠆ࡟ࠗࡁ࡞࠭ᢙ

* Pacific Industrial Co., Ltd , Godo-cho, Anpachi, Gifu

Telephone: +81-584-28-0144, Fax: +81-584-28-0130, E-mail: kzmatsum@pacific-ind.co.jp

**Department of Mechanical and Systems Engineering, Doshisha University, Kyoto

Telephone: +81-774-65-6462, Fax: +81-774-65-6831, E-mail: hyamaguc@mail.doshisha.ac.jp

(2)

Reߣᵹ㊂ଥᢙCvߣߩ㑐ଥࠍᲧセߔࠆߎߣߦࠃࠅඨ ᓘᣇะ߆ࠄ⷗ߚ⛉ࠅᯏ᭴ㇱߩᒻ⁁߇૞േᵹ૕ߩᵹࠇ ߩ᜼േߦ෸߷ߔᓇ㗀ߦߟ޿ߡ⺞ᩏߒߚ㧚ᦨᓟߦ㧘ߎ ࠇࠄߩ⚿ᨐ߆ࠄ⏛᳇☼ᒢᕈ૕ߩᵹ㊂೙ᓮᑯ߳ߩᔕ↪

ߩน⢻ᕈߦߟ޿ߡᬌ⸛ߒߚ㧚

ᵹ㊂೙ᓮᯏ᭴ߩේℂ

Fig.1

ߦᧄ⎇ⓥߦ߅ߌࠆᵹ㊂೙ᓮᯏ᭴ߩේℂ࿑ࠍ

␜ߔ㧚ߎࠇߪᵹ㊂೙ᓮታ㛎ߦ߅޿ߡ

Fig.2

ߩ࠹ࠬ࠻

࠮࡚ࠢࠪࡦࠍᒻᚑߔࠆ߽ߩߢ޽ࠅ㧘ਥߦࡄࠗࡊ㧘⏛

᳇☼ᒢᕈ૕㧘㔚⏛⍹߆ࠄ᭴ᚑߐࠇࠆ㧚ߎߩ࠹ࠬ࠻࠮

࡚ࠢࠪࡦߩ૞⵾ߦ޽ߚߞߡߪ㧘޽ࠄ߆ߓ߼ゲᣇะߦ

⛉ࠅᯏ᭴ㇱߣߥࠆዊⓣߩ޽޿ߚ⏛᳇☼ᒢᕈ૕ࠍ૞⵾

ߒ㧘ߘࠇࠍࡄࠗࡊߩਛߦ౉ࠇ࿕ቯߒߚ㧚⏛᳇☼ᒢᕈ

૕ߩ⛉ࠅᯏ᭴ㇱߪ㧘㔚⏛⍹ߦࠃࠅ⏛႐ࠍශടߔࠆߎ ߣߢ㧘ᒝ⏛ᕈᓸ☸ሶߦඨᓘᣇะߩ⏛᳇૕Ⓧജ߇૞↪

ߒ㧘ߘࠇߦࠃࠅ⏛᳇☼ᒢᕈ૕߇㔚⏛⍹஥ߦᒁ߈ነߖ ࠄࠇࠆߎߣߢ㐿ญߔࠆ㧚ߎߎߢ⏛᳇☼ᒢᕈ૕ߦ૞↪

ߔࠆන૏૕Ⓧᒰߚࠅߩ⏛᳇૕Ⓧജࡌࠢ࠻࡞fߪ㧘⏛

ൻࡌࠢ࠻࡞Mߣ⏛႐൨㈩ШHߣߩౝⓍ7)ߢએਅߩᑼ ߢ⴫ߐࠇࠆ㧚

f =M࡮ШШH

(1)

߹ߚ࠹ࠬ࠻࠮࡚ࠢࠪࡦߢߩ⏛᳇☼ᒢᕈ૕ߦ૞↪ߔ ࠆജߪ㧘㐿ᑯᤨߦ߅޿ߡߪශട㔚ᵹࠍ਄ߍࠆߎߣߢ㧘 ᐔဋ⏛ൻࡌࠢ࠻࡞Mߩᒝߐ߇Ⴧടߒ㧘⏛᳇૕Ⓧജ߇ Ⴧߔߎߣߦࠃࠅ⊒↢ߔࠆ㧚ߔߥࠊߜ⏛᳇☼ᒢᕈ૕ߦ ߪඨᓘᣇะߩᐔဋ⏛႐൨㈩H߇૞↪ߒ㧘⏛᳇☼ᒢ ᕈ૕ߦ௛ߊඨᓘᣇะߩᐔဋ⏛᳇૕Ⓧജfߦࠃࠅ㐿ญ ᢿ㕙Ⓧ߇Ⴧടߔࠆ㧚ㅒߦ㐽ᑯᤨߦߪශട⏛႐ࠍᷫዋ ߐߖࠆߎߣߦࠃࠅ㧘ࠪ࡝ࠦ࡯ࡦࠥ࡞ߩᓳరജࠍ೑↪

ߒ㧘⛉ࠅᯏ᭴ㇱߩ㐿ญᢿ㕙Ⓧߪᷫዋߔࠆ㧚ߘߩ⚿ᨐ㧘 ᵹࠇ႐ߦ⸳⟎ߐࠇߚ࠹ࠬ࠻࠮࡚ࠢࠪࡦߢߪ⛉ࠅᯏ᭴

ㇱߩ਄ᵹ஥ߣਅᵹ஥ߦᏅ࿶߇↢ߓ㧘ᵹ㊂೙ᓮ6)߇น

⢻ߣߥࠆ㧚

ᧄታ㛎ߢߪ

Fig.1

ߦ␜ߔ᭽ߦ㧘⏛᳇☼ᒢᕈ૕ߩ㐳 ߐࠍߘࠇߙࠇ

5[mm]

10[mm]

15[mm]

ߩ

3

⒳㘃ߦ⸳

ቯߒߚ㧚

(a)5[mm]

Pipe

Electromagnet Magneto-rheological elastomers

Throttle Magnetic field lines

Fig. 1. Principle of flow rate control structure Flow

5[mm]

(c)15[mm]

(b)10[mm]

10[mm]

15[mm]

(3)

ታ㛎ⵝ⟎

Fig.2

ߦታ㛎ⵝ⟎ߩ᭎⇛࿑ࠍ␜ߔ㧚૞േᵹ૕ߦߪ᳓

ࠍ↪޿㧘⸳ቯ᷷ᐲߪ

20[

͠

]

ߣߒߚ㧚․ߦ⛉ࠅᯏ᭴ㇱ

਄ᵹ஥ߢߪ㧘࠹ࠬ࠻࠮࡚ࠢࠪࡦ౉ญߦ߅޿ߡ⊒㆐ߒ ߚᵹࠇߣߥࠆࠃ߁ߦ㧘ࡉࠫࡀߩℂ⺰8)ߦၮߠ޿ߡഥ

⿛඙㑆ࠍ⸳ߌߚ㧚ࡐࡦࡊߦࠃࠅ૞േᵹ૕ࠍ㚟േߐߖ㧘 ࡈࡠ࡯࠻ᵹ㊂⸘ઃዻߩᑯߦࠃࠅᚲቯߩᵹ㊂ߦ⸳ቯߒ ߚ㧚߹ߚ㧘㔚⏛⍹ߦࠃࠅ⏛᳇☼ᒢᕈ૕ߦ⏛႐ࠍශട ߒᵹ㊂೙ᓮ߇ⴕࠊࠇࠆ㧚ߥ߅㔚⏛⍹ߪㅢ㔚ᤨߩ⊒ᾲ ߦࠃࠆ⛘✼⎕უ޽ࠆ޿ߪ⿠⏛ജߩૐਅࠍ㒐ᱛߔࠆߚ

߼㧘಄ළⵝ⟎ߦࠃࠅᏱᤨᒝ೙಄ළࠍⴕߞߚ㧚߹ߚ㧘

⛉ࠅᯏ᭴ㇱ೨ᓟߦ࿶ജ࠻࡜ࡦࠬ࠺ࡘ࡯ࠨ࡯ࠍขࠅઃ

ߌ㧘ኻ⽎ߣߔࠆ⛉ࠅᯏ᭴ㇱߩᏅ࿶ࠍ㧘ᦝߦ㔚⏛ᑼ♖

ኒᵹ㊂⸘ࠍ⛉ࠅᯏ᭴ㇱਅᵹ஥ߦ⸳⟎ߒ㧘ᵹ㊂ߩ♖ኒ

᷹ቯࠍⴕߞߚ㧚

4

⏛᳇☼ᒢᕈ૕ߣ࠹ࠬ࠻࠮࡚ࠢࠪࡦ ᒝ⏛ᕈᓸ☸ሶߣࠪ࡝ࠦ࡯ࡦࠥ࡞ߦࠃࠆ⛉ࠅᯏ

᭴ㇱ

⏛᳇☼ᒢᕈ૕ࠍ᭴ᚑߔࠆ᧚ᢱߣߒߡᒝ⏛ᕈᓸ☸ሶࠍ฽

߻ࠪ࡝ࠦ࡯ࡦࠥ࡞ࠍណ↪ߒߚ㧚ᧄ⎇ⓥߢ↪޿ߚಽᢔᒝ⏛

ᕈᓸ☸ሶߪ

Carbonyl SQ(BASF

␠⵾㧕ߢ޽ࠆ㧚☸ሶᒻ⁁ߪ

⃿⁁ߢ㧘ᐔဋ☸ᓘߪ੹࿁↪޿ߚࠨࡦࡊ࡞ࠍ᷹ቯߒߚ⚿ᨐ

5.4[P m]

ߢ޽ࠆ㧚߹ߚಽᢔᇦ૕ߪ⏛᳇૕Ⓧജߦࠃࠆᄢᄌᒻ

ࠍ ᓧ ࠆ ߚ ߼ ߦ 㧘 ࠪ ࡝ ࠦ ࡯ ࡦ ࠥ ࡞ ߦ ߪ

TSE3062

MOMENTIVE

␠⵾㧕ࠍ↪޿ߚ㧚ߥ߅㊎౉ᐲߪ

55

ߢ޽

ࠆ㧚⏛᳇☼ᒢᕈ૕ߩ૞⵾ᣇᴺߪ㧘ኈེߦᒝ⏛ᕈᓸ☸ሶߣ

ࠪ࡝ࠦ࡯ࡦࠥ࡞ࠍⷙቯߩ૕ⓍᲧ₸㧘ᧄ⎇ⓥߢߪઍ⴫୯ߣ ߒߡ

5:5

ߣߥࠆ᭽ߦᛩ౉ߒ㧘⌀ⓨ⣕ᵃᡬᜈⵝ⟎ࠍ↪޿ߡ

⌀ⓨ⣕ᵃߒߥ߇ࠄᡬᜈߔࠆ㧚ߘࠇࠍࡄࠗࡊߦᵹߒㄟࠎߛ ᓟ㧘ᕡ᷷ᮏߢടᾲ⎬ൻߐߖࠆ㧚

ߎߎߢ㧘ታ㛎ߦ૶↪ߔࠆ೨ߦ⏛᳇☼ᒢᕈ૕ߩဋ৻ᕈࠍ ᬌ⸽ߔࠆߚ߼㧘⿥ᷓᐲ

3D

ᒻ⁁᷹ቯ㗼ᓸ㏜ࠍ↪޿ߡ㧘ട ᾲ⎬ൻᓟߩౝㇱ⁁ᘒࠍ⏕⹺ߒߚ㧚ߘߩ⚿ᨐ㧘☸ሶߪ╬ᣇ ߦဋ৻ಽᢔߒ㧘ಝ㓸߽⷗ࠄࠇߕ㧘᳇ᵃ߽⏕⹺ߐࠇߥ߆ߞ ߚ㧚ࠃߞߡᒝ⏛ᕈᓸ☸ሶߩಽᢔ⁁ᘒߪ⦟ᅢߢ޽ࠆߎߣ߇

⏕⹺ߐࠇߚ㧚߹ߚᧄ⎇ⓥߦ߅ߌࠆ⛉ࠅᯏ᭴ㇱߩೋᦼ㐿ญ ᢿ㕙ⓍߪS

=4.9[mm

2

] 㧔

I2.5[mm]㧕ࠍណ↪ߒߚ㧚

ή⽶⩄ᤨߦ߅ߌࠆශട⏛႐ߦኻߔࠆ⛉ࠅᯏ᭴

ㇱߩᒻ⁁ᄌൻߩนⷞൻߣ㐿ญᢿ㕙Ⓧ

ή⽶⩄ᤨߦ߅ߌࠆ⛉ࠅᯏ᭴ㇱߩ㐿ญᢿ㕙Ⓧࠍ⹏ଔ ߔࠆߚ߼㧘⛉ࠅᯏ᭴ㇱ߇ශട⏛႐ߦኻߒߡ㐿㐽ߔࠆ 㓙ߩ㐿ญᢿ㕙Ⓧߩ᷹ቯࠍⴕߞߚ㧚᷹ቯᣇᴺߪ㧘⏛᳇

☼ᒢᕈ૕ߩ⛉ࠅᯏ᭴ㇱਅᵹ஥߆ࠄ㧘㜞ຠ૏࠺ࠫ࠲࡞

ࡆ࠺ࠝࠞࡔ࡜ߦࠃࠅ⛉ࠅᯏ᭴ㇱ਄ᵹ஥߆ࠄ㐿ญㇱߩ

⁁ᘒࠍ᠟ᓇߒߚᓟ㧘㐿ญᢿ㕙Ⓧߩ▚಴ࠍⴕߞߚ㧚

5

ታ㛎⚿ᨐ෸߮⠨ኤ

ή⽶⩄ᤨߦ߅ߌࠆශട⏛႐ߦኻߔࠆ⛉ࠅᯏ᭴

ㇱߩᒻ⁁ᄌൻߩนⷞൻߣ㐿ญᢿ㕙Ⓧ

Fig.3(a)

ߦ⏛᳇☼ᒢᕈ૕ߩฦ㐳ߐߦ߅ߌࠆශട⏛

႐ᒝߐHߣ㐿ญᢿ㕙Ⓧ

S

ߩ㑐ଥࠍ␜ߔ㧚ߎߎߢශട

⏛႐ᒝߐ H ߪゲᣇะ⏛႐ߩᦨᄢ୯ߣߒߚ㧚߹ߚ

Fig.3(b)

ߦઍ⴫଀ߣߒߡ⏛᳇☼ᒢᕈ૕ߩ㐳ߐ߇

10[mm]

ߢ 㧘 ශ ട ⏛ ႐ ߇ H=0[MA/m]ߣ H=0.282 Fig. 2. Experimental apparatus

Pump Reserve tank

Flow direction Float flow meter Pressure sensor

Flow meter

Pressure sensor Test section (Fig.1(a)(b)(c))

Valve Electromagnet

(4)

MA/m

㨉ߩᤨߩ㧘ή⽶⩄ᤨߦ߅ߌࠆゲᣇะ߆ࠄ⷗

ߚ⛉ࠅᯏ᭴ㇱߩนⷞൻ౮⌀ࠍ␜ߔ㧚

Fig.3(a)

߆ࠄ㧘㐳ߐ߇

10[mm]

ߩ⏛᳇☼ᒢᕈ૕߇ᦨ

߽㐿ญᢿ㕙Ⓧ߇ᄢ߈ߊ㧘ߘߩᦨᄢ㐿ญ㕙ⓍᲧߪ㧘ශ ട⏛ ႐

0

҇H҇

0.282[MA/m]

ߩ ▸ ࿐ߦ߅޿ ߡ㧘

21/4.9=4.3

ߣߥߞߚ㧚߹ߚ

Fig.3(b)

ߩ⚿ᨐ߆ࠄ㧘⛉ࠅ ᯏ᭴ㇱߩᒻ⁁ߪශട⏛႐ߩჇടߦ઻޿หᔃ౞⁁ߦ㐿 ญߒߡ޿ࠆߎߣ߇ಽ߆ߞߚ㧚

࡟ࠗࡁ࡞࠭ᢙ

Re

ߣᵹ㊂ଥᢙ

Cv

ߣߩ㑐ଥ

૞േᵹ૕ᵹേᤨߦ߅ߌࠆ㧘⛉ࠅᯏ᭴ㇱߩᵹ㊂೙ᓮ

․ᕈࠍ⹏ଔߔࠆߚ߼㧘࡟ࠗࡁ࡞࠭ᢙReߣᵹ㊂ଥᢙ Cvߣߩ㑐ଥߦߟ޿ߡ⺞ᩏߒߚ㧚ߥ߅࡟ࠗࡁ࡞࠭ᢙߣ ᵹ㊂ଥᢙߪฦޘ㧘ᑼ

(2)

ߣᑼ

(3)

9-11)ߢቯ⟵ߐࠇࠆ㧚

Re

=UUD/

P

(2)

(3)

ߎߎߢUߪ૞േᵹ૕㧔᳓㧕ߩኒᐲ㧘Uߪ૞േᵹ૕

㧔᳓㧕ߩઍ⴫ㅦᐲ㧘Dߪࠕࠢ࡝࡞ࡄࠗࡊߩౝᓘ㧘P ߪ૞േᵹ૕㧔᳓㧕ߩ☼ᐲ㧘㧽ߪ⛉ࠅᯏ᭴ㇱㅢㆊᓟߩ ᵹ㊂㧘dߪ⛉ࠅᯏ᭴ㇱߩౝᓘ㧘ӠPߪ࠹ࠬ࠻࠮ࠢࠪ

࡚ࡦ೨ᓟߩᏅ࿶ߢ޽ࠆ㧚

Fig.4

ߦ⛉ࠅᯏ᭴ㇱߩᵹ㊂೙ᓮ․ᕈߩታ㛎⚿ᨐࠍ

␜ߔ㧚ߎߎߢᮮゲ߇࡟ࠗࡁ࡞࠭ᢙRe㧘❑ゲߪᵹ㊂ଥ ᢙCvߢ޽ࠆ㧚ߎߩ⚿ᨐ߆ࠄ⏛᳇☼ᒢᕈ૕ߩ㐳ߐߩ ᅤ૗ߦ㑐ࠊࠄߕශട⏛႐ߩჇടߦ઻޿ᵹ㊂ଥᢙ߇ᄢ ߈ߊߥߞߡ޿ࠆߎߣ߇ಽ߆ࠆ㧚߹ߚශട⏛႐ߩჇട ߦ઻޿㧘

3

⒳㘃ߩ⏛᳇☼ᒢᕈ૕ߩᵹ㊂ଥᢙߩ୯ߩᏅ ߇ᄢ߈ߊߥࠆߎߣ߇ಽ߆ࠆ㧚ߎࠇߪශട⏛႐ߩჇട ߦ઻޿㧘⏛᳇☼ᒢᕈ૕ߩ㐿ญᢿ㕙Ⓧߩᄌᒻ㊂߇Ⴧട ߒ㧘ᦝߦߪ૞േᵹ૕ߩ᳓࿶ߦࠃࠆᄌᒻߩᓇ㗀ࠍࠃࠅ ฃߌ߿ߔ޿ߎߣࠍ␜ߒߡ޿ࠆ߽ߩߣᕁࠊࠇࠆ㧚ᦝߦ

⏛᳇☼ᒢᕈ૕ߩ㐳ߐ߇

10[mm], 5[mm], 15[mm]

ߩ㗅 ߦᵹ㊂ଥᢙ߇㜞޿ߎߣ߇ಽ߆ߞߚ㧚ߎࠇߪ㐳ߐ

10[mm]

ߩ⏛᳇☼ᒢᕈ૕߇

3

⒳㘃ߩਛߢߪᦨ߽㜞޿ᵹ

㊂೙ᓮ․ᕈࠍ᦭ߒߡ߅ࠅ㧘

Fig.3(a)

ߢ␜ߒߚ௑ะߣ৻

⥌ߒߡ޿ࠆ㧚ߎߩߎߣ߆ࠄή⽶⩄ᤨߦ߅ߌࠆශട⏛

႐ߣ㐿ญᢿ㕙Ⓧߣߩ㑐ଥߪ㧘૞േᵹ૕ߦ᳓ࠍ↪޿ߚ ႐วߩ࡟ࠗࡁ࡞࠭ᢙߣᵹ㊂ଥᢙߣߩ㑐ଥߣ⋧㑐㑐ଥ ߇޽ࠆߎߣ߇ಽ߆ߞߚ㧚

ߎߎߢ

Fig.4

ߦ߅ߌࠆฦශട⏛႐ߦߟ޿ߡ⠨ኤࠍ

ߔࠆߣ

Fig.4(a)

ߦ߅޿ߡ㧘ශട⏛႐ H=0.070[MA/m]

ߢߪ㧘

5[mm]

ߩ⏛᳇☼ᒢᕈ૕߇࡟ࠗࡁ࡞࠭ᢙRe

500

ߩ㗔ၞߢߪᵹ㊂ࠍ᷹ቯߔࠆߎߣ߇ߢ߈ߥ߆ߞߚ㧚ߎ ࠇߪ⏛᳇☼ᒢᕈ૕ߩ⛉ࠅᯏ᭴ㇱ਄ᵹ஥┵㕙߇᳓࿶ߦ ࠃߞߡᄌᒻߒ㧘⛉ࠅᯏ᭴ㇱߩⓣ߇Ⴇ߇ߞߡߒ߹ߞߚ ߚ ߼ ߣᕁ ࠊࠇ ࠆ

. Fig.4(b)

ߦ ߅ ޿ߡ 㧘ශ ട ⏛႐ H=0.141[MA/m]ߢߪ㧘

3

⒳㘃ߩ⏛᳇☼ᒢᕈ૕ߣ߽࡟

ࠗࡁ࡞࠭ᢙߩჇടߦ઻޿㧘ᵹ㊂ଥᢙߪ߶߷቟ቯߒߚ Ⴧട௑ะࠍ␜ߒߡ޿ࠆ㧚

Fig.4(c)

ߦ߅޿ߡ㧘ශട⏛႐ H=0.282[MA/m]ߢߪ㧘

15[mm]

ߩ⏛᳇☼ᒢᕈ૕ߪ㧘࡟ࠗࡁ࡞࠭ᢙߩჇടߦ઻

޿ᵹ㊂ଥᢙߪ✭߿߆ߦჇടߒߡ޿ࠆ߽ߩߩ㧘

10[mm]

ߩ⏛᳇☼ᒢᕈ૕ߦߟ޿ߡߪ㧘ૐ࡟ࠗࡁ࡞࠭ᢙ㗔ၞ

Re҇

800

㧕ߦ߅޿ߡᵹ㊂ଥᢙ߇ᕆỗߥჇട௑ะߦ

0 5 10 15 20 25

0.0 0.1 0.2 0.3

H[ MA/m]

S [mm

2

]

5mm 10mm 15mm

(a) Opening area due to applied magnetic field Fig.3(b)-1

Fig.3(b)-2

(b)-1 0[MA/m] (b)-2 0.282[MA/m]

U p D

d Q d

Cv 2'

) / ( 1

/ޓ㧙 2

Fig. 3. Visualization of throttle control section

(5)

޽ࠆߩߦኻߒ㧘㜞࡟ࠗࡁ࡞࠭ᢙ㗔ၞߦ߅޿ߡᵹ㊂ଥ ᢙߪ✭߿߆ߥჇട௑ะߦ޽ࠆߎߣ߇ಽ߆ࠆ㧚ߎࠇߪ㧘 ශട⏛႐ H=0.282[MA/m]ߩ᭽ߥ㜞޿ශട⏛႐ਅߦ ߅޿ߡߪ㧘⛉ࠅᯏ᭴ㇱߩ㐿ญᢿ㕙Ⓧ߇ᄢ߈ߊ㧘৻⥸

ߦࠝ࡝ࡈࠖࠬࠍ↪޿ߚᵹ㊂೙ᓮᑯߦ⷗ࠄࠇࠆࠃ߁ߦ

,

࡟ࠗࡁ࡞࠭ᢙ߇ૐ޿㗔ၞߢߪ㧘ጀᵹ߇ᡰ㈩⊛ߣߥࠅ

⛉ࠅᯏ᭴ㇱߦ߅ߌࠆ᷵ߩᓇ㗀ࠍᒝߊฃߌࠆߚ߼ߢ޽

ࠆߣᕁࠊࠇࠆ㧚߹ߚᵹ㊂ଥᢙߩᕆỗߥᄌൻߩ௑ะߪ㧘

⏛᳇☼ᒢᕈ૕ߩ⛉ࠅᯏ᭴ㇱ೨ᓟߢ↢ߓࠆ࿶ജᏅ'P ߦࠃࠆᄌᒻ߇ේ࿃ߣ⠨߃ࠄࠇࠆ㧚߹ߚ

5[mm]

ߩ⏛᳇

☼ᒢᕈ૕ߦ߅޿ߡߪ࡟ࠗࡁ࡞࠭ᢙߩჇടߦ઻޿৻⽾

ߒߡᵹ㊂ଥᢙ߇Ⴧടߒߡ޿ࠆ㧚ߎࠇߪ࡟ࠗࡁ࡞࠭ᢙ ߩჇടߦ઻޿㧘⛉ࠅᯏ᭴ㇱ਄ᵹ஥ߩ┵㕙߇᳓࿶ߦࠃ ߞߡᓟᣇ஥߳᛼ߒ߿ࠄࠇ㧘⛉ࠅᯏ᭴ㇱߩ㐿ญᢿ㕙Ⓧ

߇࡟ࠗࡁ࡞࠭ᢙߩჇടߦ઻޿㧘ᓢޘߦᄢ߈ߊߥࠅߎ ߩࠃ߁ߥ⚿ᨐߦߥߞߚ߽ߩߣ⠨߃ࠄࠇࠆ㧚

6 ᢙ୯ᵹ૕⸃ᨆ

⸃ᨆᣇᴺ

ᧄ⎇ⓥߦ߅޿ߡ㧘ᢙ୯ᵹ૕⸃ᨆߦ↪޿ߚ࠰ࡈ࠻࠙

ࠚࠕߪ

SCRYU/Tetra

㧔ࢃ࠰ࡈ࠻࠙ࠚࠕࠢ࡟ࠗ࠼࡞␠

⵾㧕޽ࠆ㧚૞േᵹ૕ߢ޽ࠆ᳓ߩ‛ᕈ୯ߪ㧘᳓᷷

20[

͠

]

ߦ ߅ ޿ ߡ 㧘 ኒ ᐲ ߪU 998.07[kg/m3

]

㧘 ☼ ᐲ ߪP㧩

1.016×10

-3

[Pa

s]

ߣߒߚ㧚ߎߎߢ㧘⛉ࠅᯏ᭴ㇱࠍㅢㆊ ߔࠆᵹࠇߪ㧘౉ญߢߩ࡟ࠗࡁ࡞࠭ᢙߪૐ޿߽ߩߩ㧘

⛉ࠅᯏ᭴ㇱߩ⋥ᓘࠍၮḰߣߒߚ႐วߩ࡟ࠗࡁ࡞࠭ᢙ ߪ㜞ߊߥࠅ㧘ੂᵹߦㆫ⒖ߔࠆ 9)ߣ⠨߃ࠄࠇࠆ㧚ᓥߞ ߡᧄ⸘▚ߦ߅޿ߡߪ㧘⛉ࠅᯏ᭴ㇱߢߩᵹࠇߪੂᵹߣ

઒ቯߒ㧘ੂᵹࡕ࠺࡞ߦߪᮡḰk-H12)ᴺࠍ↪޿ߚ㧚߹ߚ

࿶ജ⵬ᱜᑼߩ⸃ᴺߦߪୃᱜ

SIMPLEC

ᴺࠍ↪޿ߚ㧚

⸃ᨆᣇᴺߩᬌ⸽⚿ᨐ

⸃ᨆᣇᴺߩᅷᒰᕈࠍᬌ⸽ߔࠆߚ߼㧘㐿ญᢿ㕙Ⓧ

S=4.9[mm2

]

ߩ࿕ቯࠝ࡝ࡈࠖࠬࠍ↪޿㧘ታ㛎ߦࠃࠅ࡟

ࠗࡁ࡞࠭ᢙReߣᵹ㊂ଥᢙCvߣߩ㑐ଥࠍ᳞߼㧘೨⸥

6.1

ߩ⸃ᨆᣇᴺࠍ↪޿ߡ࡟ࠗࡁ࡞࠭ᢙRe=200

400, 800

1200

1600

1800

ߩว⸘

6

ὐߢᢙ୯ᵹ૕⸃ᨆ ࠍⴕߞߚ㧚

Fig.5

ߦߘߩ⚿ᨐࠍ␜ߔ㧚ߎߩ⚿ᨐ߆ࠄታ 㛎୯ߣ⸃ᨆ୯ߪ߶߷৻⥌ߒߡ޿ࠆߎߣ߇⏕⹺ߐࠇߚ㧚 ࠃߞߡ੹࿁⸳ቯߒߚᢙ୯ᵹ૕⸃ᨆᣇᴺߩᅷᒰᕈ߇ᬌ

⸽ߐࠇߚ㧚

0

2 4 6 8 10

0 500 1000 1500 2000

Re[-]

Cv[-]

5mm

䋨Exp.䋩

10mm

䋨Exp.䋩

15mm

䋨Exp.䋩

0

2 4 6 8 10

0 500 1000 1500 2000

Re[-]

Cv[-]

5mm 䋨 Exp. 䋩 10mm 䋨 Exp. 䋩 15mm 䋨 Exp. 䋩

0 2 4 6 8 10

0 500 1000 1500 2000

Re[-]

Cv [-]

5mm 䋨 Exp. 䋩 10mm 䋨Exp.䋩 15mm 䋨 Exp. 䋩

(a) H=0.070[MA/m]

(b) H=0.141[MA/m]

(c) H=0.282[MA/m]

Fig.. 4. Flow coefficient Cv

(6)

◲ᤃ⸃ᨆࡕ࠺࡞ߩ⸳ቯ

ᢙ୯ᵹ૕⸃ᨆߦ߅ߌࠆ⸃ᨆ᧦ઙߣߒߡ㧘ශട⏛႐ ߇H=0.070[MA/m]ߩᤨߦߪ㧘࡟ࠗࡁ࡞࠭ᢙRe=300 ߣ Re=800㧘 ශ ട ⏛ ႐ ߇ H=0.141[MA/m]ߣ H

=0.282[MA/m]ߩ႐วߦߪ࡟ࠗࡁ࡞࠭ᢙ

Re=300 ߣ

Re=1200ߣߒߚ㧚

⏛᳇☼ᒢᕈ૕߇⛉ࠅᯏ᭴ㇱ೨ᓟߦ૞↪ߔࠆ࿶ജᏅࠍ ฃߌߚ㓙ߦᄌᒻߔࠆᒻ⁁ࠍ㧘◲ᤃ⊛ߦࡕ࠺࡞ൻߔࠆߚ߼㧘

◲ᤃ⏕⹺ታ㛎ࠍⴕߞߚ㧚ౕ૕⊛ߦߪFig.2ߢ␜ߔ࠹ࠬ࠻࠮

࡚ࠢࠪࡦ߆ࠄᵹ㊂೙ᓮᑯࠍขࠅ಴ߒ㧘ή⏛႐⁁ᘒߦߡ⛉

ࠅᯏ᭴ㇱ਄ᵹ஥߆ࠄ᳓ࠍㅢㆊߐߖࠆߎߣߦࠃࠅ⏛᳇☼ᒢ ᕈ૕ߩᒻ⁁ࠍ⋡ⷞߦߡ◲ᤃ⊛ߦ⏕⹺ߒߚ㧚ߘߩ⚿ᨐ㧘⏛

᳇☼ᒢᕈ૕ߩ⛉ࠅᯏ᭴ㇱ਄ᵹ஥┵㕙߇᳓࿶ࠍฃߌߡᓟᣇ

߳ߣᄌᒻߒ㧘߆ߟ⛉ࠅᯏ᭴ㇱ਄ᵹ஥ߩ㐿ญᢿ㕙Ⓧ߇ዊߐ ߊߥࠅ㧘⛉ࠅᯏ᭴ㇱਅᵹ஥߳ⴕߊߦᓥߞߡ㐿ญᢿ㕙Ⓧ߇

ᄢ߈ߊߥࠆߎߣ߇⏕⹺ߐࠇߚ㧚ࠃߞߡ◲ᤃ⸃ᨆࡕ࠺࡞ߩ

૞ᚑߦ߅޿ߡߪ㧘ߎࠇࠄߩ੐⽎ࠍ⠨ᘦߒ㧘ή⽶⩄ᤨߦ߅ ߌࠆゲᣇะ߆ࠄ⷗ߚ㐿ญᢿ㕙ⓍࠍၮḰߣߒ㧘⏛᳇☼ᒢᕈ

૕ߩ૕Ⓧ߇৻ቯߣߥࠆࠃ߁⠨ᘦߒߥ߇ࠄ㧘߭ߕߺⷺᐲT1 ߣ࠹࡯ࡄ࡯ⷺᐲT2

10°

15°

ߩ

3

⒳㘃ߦ⸳ቯߒߚ㧚

7 ⚿ᨐ෸߮⠨ኤ

7.1 ታ㛎୯ߣ⸃ᨆ୯ߣߩᲧセ

Fig.7

ߦ࡟ࠗࡁ࡞࠭ᢙReߣᵹ㊂ଥᢙCvߣߩ㑐ଥߦ

ߟ޿ߡ㧘ታ㛎୯ߣ⸃ᨆ୯ߩᲧセࠍⴕߞߚ⚿ᨐࠍ␜ߔ㧚

(a)

߇ H =0.070[MA/m]

(b)

߇ H =0.141[MA/m]

(c)

߇ H= 0.282[MA/m]ߢ޽ࠆ㧚߹ߚ

Fig.4

ߣห᭽ߦ㧘ᮮ ゲߪ࡟ࠗࡁ࡞࠭ᢙRe㧘❑ゲߪᵹ㊂ଥᢙCvߢ޽ࠆ㧚 ߎߩ⚿ᨐ㧘ශട⏛႐H =0.141[MA/m]ߩ႐วߦ߅޿

ߡ࡟ࠗࡁ࡞࠭ᢙRe=300ߣ

1200

ߩ႐ว㧘޿ߕࠇߩ㐳 ߐߦ߅޿ߡ߽㧘ታ㛎୯ߣ⸃ᨆ୯ߪ߶߷৻⥌ߒߡ޿ࠆ㧚

߹ߚH =0.282[MA/m]ߩ႐ว㧘⏛᳇☼ᒢᕈ૕ߩ㐳ߐ߇

15[mm]

ߩ႐วߦ߅޿ߡߪ㧘ታ㛎୯ߣ⸃ᨆ୯ߪ߶߷৻

⥌ߒߡ޿ࠆ㧚߹ߚ

5[mm]

ߣ

10[mm]

ߩ႐ว㧘࡟ࠗࡁ࡞

࠭ᢙRe=1200ߦ߅޿ߡߪ㧘ታ㛎୯ߣ

CFD

ߩ୯ߪ߶

߷৻⥌ߒߡ޿ࠆ߇㧘࡟ࠗࡁ࡞࠭ᢙRe=300ߢߪ⸃ᨆ ୯ߩᣇ߇ታ㛎୯ࠃࠅ߽㜞޿୯ߣߥߞߡ޿ࠆߎߣ߇⏕

⹺ߢ߈ߚ㧚ߎࠇࠄߩශട⏛႐෸߮࡟ࠗࡁ࡞࠭ᢙߩ▸

࿐ߦ߅޿ߡ⃻ࠇࠆታ㛎୯ߣ⸃ᨆ୯ߩਇ৻⥌ߦߟ޿ߡ

⠨ኤߔࠆߣ㧘ᧄ⎇ⓥߢ↪޿ߚ⏛᳇☼ᒢᕈ૕߇㐳ዤߩ

⛉ࠅᯏ᭴ㇱߢ޽ࠆߎߣߣ㧘⏛᳇☼ᒢᕈ૕ߩᄌᒻߦࠃ ࠆ⋧ਸ਼ലᨐߦ઻޿㧘㕖Ᏹߦⶄ㔀ߥᵹࠇߦߥߞߡ޿ࠆ ߣ⠨߃ࠄࠇࠆ㧚଀߃߫⛉ࠅᯏ᭴ㇱ೨ᓟߢ㧘⏛᳇☼ᒢ ᕈ૕ߩᄌᒻߦࠃࠆ᷵߇⊒↢ߒߡ޿ࠆߎߣ߇⠨߃ࠄࠇ ࠆ߇㧘੹ᓟᦝߦ⹦ߒ޿ᬌ⸛߇ᔅⷐߣ⠨߃ࠆ㧚

0 2 4 6 8 10

0 500 1000 1500 2000

Re䌛-䌝

Cv-

5mm䋨Exp.䋩 10mm䋨Exp.䋩 15mm䋨Exp.䋩 5mm䋨CFD.䋩 10mm䋨CFD.䋩 15mm䋨CFD.䋩 0.0

0.5 1.0 1.5 2.0

0 500 1000 1500 2000

R e[-]

Cv[-]

Fixed orifice CFD

Fig.5 Flow coefficient Cv for fixed orifice

Fig. 6. Computational model

Magneto-rheological elastomers

Flow T

T

(a) H=0.070[MA/m]

(7)

8

ᢙ୯ᵹ૕⸃ᨆߦࠃࠆ࿶ജಽᏓ

⛉ࠅᯏ᭴ㇱౝㇱ෸߮ߘߩ೨ᓟߢߩ࿶ജಽᏓ⸃ᨆ

⚿ᨐߩઍ⴫଀ߣߒߡ㧘

Fig.8(a)

ߦශട⏛႐ H

=0.141

[MA/m]

㧘⏛᳇☼ᒢᕈ૕ߩ㐳ߐ߇

5[mm]

㧘࡟ࠗࡁ࡞࠭

Re=1200㧘ᵹ㊂ଥᢙCv=2.96ߩ႐วߩ⚿ᨐࠍ㧘

Fig.8(b)

ߦශട⏛႐H

=0.141[MA/m]

㧘⏛᳇☼ᒢᕈ૕ߩ

㐳ߐ߇

10[mm]㧘࡟ࠗࡁ࡞࠭ᢙ

Re=1200㧘ᵹ㊂ଥᢙ

Cv=4.17ߩ႐วߩ⚿ᨐࠍ㧘

Fig.8(c)

ߦශട⏛႐

H

=0.282[MA/m]㧘⏛᳇☼ᒢᕈ૕ߩ㐳ߐ߇ 15[mm]㧘࡟

ࠗࡁ࡞࠭ᢙRe=1200㧘ᵹ㊂ଥᢙCv=2.25ߩ႐วߩ⚿

ᨐࠍߘࠇߙࠇ␜ߔ㧚

ߎߩ⚿ᨐ߆ࠄ㧘⏛᳇☼ᒢᕈ૕߇޿ߕࠇߩ㐳ߐߦ߅

޿ߡ߽⛉ࠅᯏ᭴ㇱ౉ญઃㄭߢ㧘࿶ജ߇ૐ޿▎ᚲ߇⷗

ࠄࠇࠆ㧚ߎࠇߪ⏛᳇☼ᒢᕈ૕ߩ౉ญㇱߩᒻ⁁߇ࠪࡖ

࡯ࡊࠛ࠶ࠫߣߥߞߡ޿ࠆߚ߼ߢ޽ࠆߣ⠨߃ࠄࠇࠆ㧚

߹ߚ

3

⒳㘃ߩ⏛᳇☼ᒢᕈ૕ߩਛߢߪ㧘㐳ߐ߇

10[mm]

ߩ႐ว߇㧘⛉ࠅᯏ᭴ㇱ౉ญㇱߣ಴ญㇱߢߩᏅ࿶߇ૐ ߊ㧘⛉ࠅᯏ᭴ㇱㅢㆊᓟ㧘ᱜ࿶ߦ࿁ᓳߔࠆ〒㔌߇

18

mm

㨉ߣᦨ߽⍴޿ߎߣ߇ಽ߆ߞߚ㧚

0

2 4 6 8 10

0 500 1000 1500 2000

Re䌛-䌝

Cv-

5mmExp. 10mm䋨Exp.䋩 15mm䋨Exp.䋩 5mm䋨CFD.䋩 10mm䋨CFD.䋩 15mm䋨CFD.䋩

Fig. 7. Comparison between experimental results and Computational Fluid Dynamics results

Flow 㨇Pa㨉 Pressure

1200

800

1200 400 0

800 Magneto-

rheological elastomers

400

23[mm]

Flow 㨇Pa㨉 Pressure

700

467

700 234 0

467 Magneto-

rheological elastomers

234

18[mm]

(a) H=0.141[MA/m], Re=1200, sample length=5[mm], Cv=2.96

(b) H=0.141[MA/m]

(c) H=0.282[MA/m]

(b) H =0.141[MA/m], Re=1200, sample length=10[mm], Cv=4.17

0 2 4 6 8 10

0 500 1000 1500 2000

Re[-]

Cv[-]

5mm䋨Exp.䋩 10mm䋨Exp.䋩 15mm䋨Exp.䋩 5mm䋨CFD.䋩 10mm䋨CFD.䋩 15mm䋨CFD.䋩

(8)

⚿⺰

⏛᳇☼ᒢᕈ૕ࠍ↪޿ߚᵹ㊂೙ᓮᑯߩᵹ㊂೙ᓮᯏ᭴ߦߟ

޿ߡᣂߚߦឭ᩺ߔࠆߎߣࠍ⋡⊛ߣߒ㧘૞േᵹ૕ᵹേᤨߦ ߅޿ߡ⛉ࠅᯏ᭴ㇱߩో㐳߇⛉ࠅᯏ᭴ㇱߩᒻ⁁ᄌൻ෸߮ᵹ ࠇߩ᜼േߦ෸߷ߔᓇ㗀ߦߟ޿ߡ⺞ᩏߒ㧘⠨ኤߒߚ⚿ᨐ㧘 એਅߩ⍮⷗ࠍᓧߚ㧚

(1)

ශട⏛႐Hࠍᄌൻߐߖࠆߎߣߦࠃࠅ㧘⏛᳇☼ᒢ ᕈ૕⛉ࠅᯏ᭴ㇱߩೋᦼ㐿ญᢿ㕙Ⓧߩ㐿ญ೙ᓮ߇ น⢻ߢ޽ࠅ㧘⏛᳇☼ᒢᕈ૕ߩ㐳ߐߦࠃߞߡ㐿ญ

೙ᓮ▸࿐߇⇣ߥࠆߎߣ߇⏕⹺ߢ߈ߚ㧚

(2) 3

⒳㘃ߩ⏛᳇☼ᒢᕈ૕ߩਛߢߪ㧘㐳ߐ߇

10[mm]

ߩ߽ߩ߇ᦨ߽㐿ญᢿ㕙Ⓧ߇ᄢ߈ߊ㧘ߘߩᦨᄢ㐿 ญ㕙ⓍᲧߪ㧘ශട⏛႐

0

҇H҇

0.282

MA/m

㨉ߩ

▸࿐ߦ߅޿ߡ㧘

21/4.9=4.3

ߢ޽ߞߚ㧚߹ߚ㧘ࡅࠬ

࠹࡝ࠪࠬ߇ᦨ߽ዊߐ޿ߎߣ߇ಽ߆ߞߚ㧚

(3) ࡟ࠗࡁ࡞࠭ᢙRe

ߣᵹ㊂ଥᢙCvߣߩ㑐ଥ߆ࠄᓧࠄࠇ

ߚታ㛎⚿ᨐߪ㧘ή⽶⩄ᤨߦ߅ߌࠆශട⏛႐ߣೋᦼ 㐿ญᢿ㕙Ⓧߣߩ㑐ଥߣ⋧㑐㑐ଥߦ޽ࠆߎߣ߇ಽ ߆ߞߚ㧚

(4)

ታ㛎୯෸߮

CFD

ߦࠃࠆ⸃ᨆ୯ߩ⚿ᨐ߆ࠄ

3

⒳㘃 ߩ⏛᳇☼ᒢᕈ૕ߩਛߢߪో㐳߇

10[mm]߇ᦨ߽

ᵹ㊂೙ᓮ․ᕈ߇⦟޿ߎߣ߇ಽ߆ߞߚ㧚

ෳ⠨ᢥ₂

1) ⷰ㖸┙ਃ, ንჇ๺ብ, ૒⮮๺ᒄ,“▤ౝ᳇ᶧੑ⋧಄ᇦᵹ

ߩ⊒↢ߩ੍᷹ߣૐᷫ”, ਃ⪉㊀Ꮏᛛႎ , 28 , No.2, 135-142 (1991).

2) ᪢↰⍮Ꮘ, ਛ᧛ᤘਃ, ዊ࿖⎇૞, ⑔ፉᢅᒾ, ਅ಴ᣂ৻, 㐳੗⺈, ഞಷ⢻ᢥ,“⤘ᒛᑯߦ⿠࿃ߔࠆ಄ᇦ᳇ᶧੑ⋧ᵹ ߩᵹേૐᷫ”,ᣣᧄᯏ᪾ቇળ⺰ᢥ㓸(B✬), 59-557, 243-248 (1993).

3) ᪢↰⍮Ꮘ, ⑔ፉᢅᒾ, ਛ᧛ᤘਃ, ૒⮮⦟ᰴ, ᷓ㊁ᔀ, દ

⮮ᱜ᣿,“න৻ᄢ᳇⎔߇⛉ࠅࠍㅢㆊߔࠆߣ߈ߩ᳇ᶧੑ⋧

ᵹߩᵹേ㖸”, ᣣᧄᯏ᪾ቇળ⺰ᢥ㓸(B✬), 60-574, 56-63 (1994).

4) ⮮੗ᐽᒾ, ᧁ᧛❥↵, 㥲⮮㓉ਯ, ᧁ✎㓉ᒄ, ᧻᧛๺ᒾ,

“⤘ᒛᑯࠍㅢㆊߒߚ಄ᇦߩ᳇ᶧੑ⋧ᵹേ⃻⽎ߩนⷞൻ, 㧙╙2ႎ⤘ᒛᑯ⛉ࠅᯏ᭴ㇱߩૐ㛍㖸ൻ”, ᣣᧄ಄ಓⓨ

⺞ቇળ⺰ᢥ㓸, 23-4, 67-78 (2006).

5) H. Yamaguchi, Y. Suzuki and S. Shuchi, “Membrane Formation Process in Magnetic Fluid and Application for Aperture Control”㧘Journal of Thermophysics and Heat Transfer, 17-1, 82-88 (2002).

6) H. Yamaguchi, Y. Suzuki and S. Shuchi, “Application of Magnetic Fluid Membrane for Flow Control”㧘Journal of Thermophysics and Heat Transfer, 17-1, 89-94(2002).

7) R. E. Rosensweig, “Ferrohydrodynamics”, University Press, Cambridge, 13 (1985).

8) ਛጊᵏ༑, ᵹ૕ߩജቇ, (㙃⾫ၴ㧘᧲੩㧘2005)㧘p.101.

9)

Miki, M., Yamaguchi, H. and Honda, N., Flow Characteristics of a Spool Valve (1st Report, Evaluation of Flow Behavior by Experimentation with an Aid of Three Dimensional Numerical Analysis) (in Japanese), Transactions of Japan Society of Mechanical Engineers, Series B, .69-679, 561-567 (2003).

10) Miki, M., Yamaguchi, H., Tokunaga, H. and Ueno, D., Flow Characteristics of a Spool Valve (2nd Report, Modeling Method by Three-Dimensional Numerical Analysis and Evaluation of Flow Characteristics)(in Japanese), Transactions of Japan Society of Mechanical Engineers, Series B, 71-701, 38-39 (2005).

11) ᏒᎹᏱ㓶㧘᳓ജቇ࡮ᵹ૕ജቇ, (ᦺୖᦠᐫ, ᧲੩, 2004), p.29.

12) SCRYU/Tetra User's Guide Basic Edition (in Japanese), (2007), p.3-10.

(c) H=0.141[MA/m], Re=1200, sample length=15[mm], Cv=2.25

Fig. 8. Pressure distribution Flow

㨇Pa㨉 Pressure

2000 1333

2000 -668 0

1333 Magneto-

rheological elastomers

25[mm] 668

参照

関連したドキュメント

He 15 studied the flow that the disks start to rotate eccentrically and both the disks execute oscillations in the same direction while the disks are initially rotating about a

Thus, in this paper, we study a two-phase fluid model for blood flow through mild stenosed narrow arteries of diameter 0.02 mm–0.1 mm at low-shear rates γ < ˙ 10/sec treating

On the other hand, the magnitude of the cross-flow velocity increases with the increase in either suction pa- rameter or frequency parameter, while it increases near the

Nevertheless, when the turbulence is dominated by large and coherent structures, typically strongly correlated, the ergodic hypothesis cannot be assumed and only a probability

Pour tout type de poly` edre euclidien pair pos- sible, nous construisons (section 5.4) un complexe poly´ edral pair CAT( − 1), dont les cellules maximales sont de ce type, et dont

and that (of. standard relaxation time results for simple queues, e.g.. Busy Period Analysis, Rare Events and Transient Behavior in Fluid Flow Models 291. 8.. Lemma 4.8); see

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

Applying the conditions to the general differential solutions for the flow fields, we perform many tedious and long calculations in order to evaluate the unknown constant coefficients