• 検索結果がありません。

ON SOME REMARKS ABOUT ANALYTIC DIFFERENTIALS OF HIGHER ORDER OF A COMPACT RIEMANN SURFACE

N/A
N/A
Protected

Academic year: 2021

シェア "ON SOME REMARKS ABOUT ANALYTIC DIFFERENTIALS OF HIGHER ORDER OF A COMPACT RIEMANN SURFACE"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

     ON soME REMARKS ABouT姻ALYTICp田E迎TIAts

     OF HIGHER ORDER OF A COMPACT RIEMANN SURFACE

       Toshio. MATSUMOTO        ,(Received(iCt・ber 1.・1988;Rgyi・ed・Nbvember 29,1988).../一      §1. Ilitroduction.       .      Let X be a comPact Riemann surface of genus g≧2, Ak be the complex vector space of analytic differentials of t)1)e k on X, Aut(X)be the group of auto− morphisms on X, and Fix〔h〕 be the fixed points of hεAut〔X〕. To each point PεX, there is a set of integers      ・     .         ’          1=Y1<Y2<◆°’<Yd(k)≦2k(9−1)+1

・u・h・h・tY・be…9・t・th・S蜘・n・e・f皿d・n・y・f・here ex・・tr・輌戦』Wi・h

a zero of order Y−l at P, where      .

         d(k〕=1(、k.i〕〔、.、〕 1熟;B.

The sequence is called the k−gap sequence at P, the non−negative integer        t     d(k〕

         Wk〔P)=i=・〔Y」・う)・ .11  ・

i,ca11・d「 狽?Ek−th w・ight・t P. P・XiS call・d・k−W・ier・t・ass ’ o・iit dn X if「

wk(P)>0. It is known that      「         .『.  ’

         Wk〔9〕;鍵〔P)=t(;畿ご:1〕・ll㌫

for any given X of genus g.      We shall denote by 〔k−WP)X the set of]ぐ一Weierstrass p.oints on X. Xwill be ca11・d k−a119・m・ip if wk〔P)=;f°「eveワPε〔k’WP〕X.・lhl f°ll°wing Tesults

are known.      ’      t/

     Theorem A. Let X be a 1−allge皿ein co㎎act Riemam surface of』genus g≧2, hεAut〔X)be of prime order N≠3,5. Then either Fix(h)⊂〔1−WP〕X or Fix(h〕n〔1−WP〕x =φ.      .

147

(2)

148

     The・’・皿B・..L・ぱbe a 2−a119・皿・in・・mPact ki・壁㎜su・face・f、g・nu・g≧2・ hεAut(X〕be of prime order N≠3. Then either Fix(h)c(2−WP)X of’.

Fi・〔h〕A:(2㊥X・φ∴. t. tt:.:二. ”  

・・.

E .../t

The fomer was proved by Lewittes in 1963, the latter by Duina in 1978. For a k−allgemein compact Riemann surface, k≧3, the analogous results were not known. Our reults are as follows.      Theore皿1.  Let X be a k−allgemeih cdmpact Rie血ann surface of genus g≧2, 3≦](≦7,hεAut(X) be of prime order N with t>O fixed points・ If Qne. of the        Fix〔h)⊂〔k−wP)x  or  Fix〔h〕((k−wP)x一φ.following cases holds, then either          (1〕.          〔2)          〔3)’          (4)       〔5)      Theorem 2. k≧2,hεAut(X)

either

k=3, ・N≠5.     .』i

k=4,N≠7.

k=5, N≠3,11.. k=6, N≠11, 13, 17. k;7, N≠11,13. Fix〔h)⊂〔k−WP)X      §2.Proof of Theorem 1,      Let X be a k−allge皿ein compact Riemann surface of prime order N with t>O fixed points.

Weierstrass points

k−Weierstrass points that Pε〔k−WP)X,          k=dN+k, When k≧2, Duma showed that only one of the .Case[1]

case

case. 匹]

we shall consider the   Let X be a .k−qllgemein compact Ri㎝am sqrface of.genus g≧2, be of pri皿e order N with t>O fixed polnts. If N>4k二5, then         or  Fix(h)∧(k−WP〕X=φ・        力        2.        of gelms g.≧..2, hεAut(h)be        Th・n・there are ・xacqy Wk〔9)    ・n,x・㎝訓k〔9)−s.‡・a㎜1tip1・・f N.if・i・. th・n帥・「°f.      in Fix(h〕. Assume that there are points P,QεFix(h〕 such  Q¢(1(−WP〕x. Write ^‘@(2k−i)〔9−1)−qN・r,0≦食≦N−1,0≦・≦N二1.        following cases is possible・       へ  r=.0,』N+・1.=ぜ2k, N≧3.・   .        .   ’

1≦食.Q.。≧N.、,、R、N∴2’≦t三・・.,”N’、.,.い.;

      N+1−2k R・・.。≧N・・2,2・fe・〉.・N・1,2≦t・一禦一,.−N≧5.、.        2k−N−1       cases.

(3)

2.1 case[1]      L・t2k−・・P錐・P多・…幽,ぬer・’P、,P、,・r・,lh are・di・ti・r・ numbers and  ∫↓1,∫↓2,.・・,父rm are positive integers. Then,          Pζ・呼・….㎞・・2(dN・R)−1・2R−1〔鳳N)・ Since N…2h・・d・・N㎜・t b…ng・・{P、1・’P、 ’・…・lh}・Th・ref・re・ for k=3, 7 for k=4’, 3 for k=5, 11 for k=6, and 13.for k=7.      2.2   case  [珂 odd prime N㎜st be 5      Now we shall show that t≠2. If t=2, then, r=N+1−2食, i.e.,        へ          (2k.−1〕〔g−1) 三 1−2k  (mod. N〕.      ’ . It follows that        A          (2k−1〕g ≡ (2k−1〕+(1−2k) ≡.0  〔mod. N〕.

Therefore,      .

         Wk〔9)一(2k−i)9〔2k−・〕〔9−・)2・0.〔・・d. N).. On the other hand, since there is only.二〇ne krWeierstrass points in Fix(h), Wk〔g〕−1must be a multiple of N,砲ich is a contradictioh.      Hence t≠2, and we may assume that t≧3. Then,       A      A      〕皇

         3≦t− 2「^≦2〔N−4,〕・2・2k−4^,   .・・.

       N+1−2k    N+1−2k       N+1−2k .1        ハ and this implies that N≦4k−5. So we can replace the ass㎜ption in case[田by

.〔2−2−1〕3≦t−2「.,

  .  、       N+.1−2k   、      、        ム      (2−2−2〕  0<r≦N−1−k,       .  tt      (2−2−3〕  max{5,2R}≦N≦4食一5.       』      Suppose now that k=3. SinCe N≧5, we have 食=3. Then, from 〔2−2−3), it must be N=7. Therefore, we obtain (i)t=r=3 from〔2−2−1〕and 〔2’2−2).       へ      Suppose now that ](=4. Since N≧5, we have k=4. Then, from (2−2−3), it must be N=.ll. Therefore, we obtain (ii〕 t=3,r=6 fro皿 〔2−2−1〕and(2−2−2).        へ      SupPose.now that k=5・ If N=5,、then k〒0, so 〔2−2−3〕 ca皿Qt hold・   ・ If N≧7, then喪=5. From (2・−2「3〕, it rnust. be N=11・or N〒13, When N=11, we obtain 〔i亘〕 t=r=3, (iv〕 t『r〒4, and 〔v〕t=rFs from〔2−2−!) apd 〔2−2−2). Similarly, we obtain 〔vi)t=3,r=6 when N=13.

(4)

150

.T・. MATSUMOTO  ’        へ             SupPose now that k;6.  If N=5, then k=1, so 〔2−2−3) cannot hold・’1・If N『≧7, ・k・n㊧・6・F・㎝〔2−.2−5).i・㎜・a・N=,13・rNロ・rN=19・F・・IF.、〔.2’2−1〕・nd (2−2−2),.we oもtain 6亘〕’t=T」3i(殖)t=r=4, 〔iX)t=r」5,』(x)t=rゴ6 when N=13,

(Xi.)t・3,。・9ぬ。。 N・17,㈹t・3,。・12寵e・’N三19.1.・・    ご:’

     SupP・se n・w th・t k・7.1.f N・’5, then㊧一2,・・〔2二2」3〕ca・⑳t’h・1q.>If N・7, ・h・n食・0,・・.(2−2−3)ca皿・ゆlq,. t・g・・f N≧1・,・・th・n葦・7ぽ・m.,(2.−Z−、3)・ it皿st b・N・.17・r N・19・r N・23・F・・m、〔2.ご2三1)・and〔Z−2−2)・wr.・bj aip. .・ 顧)t=3,r=6, 〔㎞)t=4,r=8曲en N=17, (>ctt) t=3,r=9 when N=19, (麺) t=3,r=15 when N=23.      、   ・ ・   .

ω㈲㈹旬ω回㈲㈹㈱ω㈲⑰⑪⑰㈲圃

k

3455556666667777

N

7111133333797793

 111111111111112

Table 1.・ t

3334533456333433

      .    一 −  

r

3634563456926895

...−

9(mod;N〕

3、  5 5  . 10  4  6 6     . 12 5 ! 11  8 9   『 、  8 16    .  9 11 Wk・〔9)     6     4  ・ 1     6     1     8     2』    10     8‘     6     2 ’>

@ 4

   16     4     7    14 〔m6d. N)・      It is shown in Table l that the cases (i),(ii〕,〔t〕,(W〕,匝),〔iX),〔x),{海), 6匝),6⑩,(W〕,6畦) camot occur, since none of the numbers珊(〔9)−s,s=1,2,…  ,t−1, is a multiple of N in each case of th㎝.       ・ ’ .      2.3   case [町     N・・W・・haU…w・h・tt’1・・.,・ft・・,中・nN−r〒2R−N・・,1i・・i・.、’...          (2k−1)〔g−1) ≡1−2食 .(mod. N)...   .        . 、.. 、、    . It follows that(.2k−1)g三〇・〔mod. N). Therefore, Wl((g〕』三〇 〔md. N).・一・..・ On the other hand, since there is㎝1y one k−Weierstrass pointS in Fix(h),閲 Wk(9)−1must be a multiple of N,曲ich is a conltradiction二  ・        ・』幽     Hence t≠.2, and we may ass血ne that t≧3. .Then,        ’      :.』  ・−.       ’

         3≦t・器・器・

(5)

and this i∬plies that 2(§−2)≧3〔2食一N−1),i:e.,.・3N≧4食+1. So we can replace the assumption in gaSe.1珂.by   、.      ・  .、 .,         ,     、、     ,.

      〔2−3−・)13≦七つ1措・』『‘:・..∴・1.、∵

      〔2−3−2〕N・2−R’≦t,』   一・』 「・』.:..』.1;’「「二』・       (・,3−・〕...max{,,・!liti・}、N、、R.、.       ’‘   3 − 『・      If・R≦14;’it iS・1・aT thaf there i・n・p・ime・n・mber・N・ati・fyi・g(2−3−3). So we have nothing in case l珂if k=3 0r】(=4.      SupPose now that k=5. If N=5, then食=O, so 〔2−3−3) camot hold. If N≧7,we have食=5. Then, from 〔2−3−3), it must be N=7. Therefore, we obtain 〔i〕t=3,r=4 fr㎝(2−3−1〕and(2−3−2).      Suppose now that k=6. If N=5, then㊧=1, so (2−3−3) camot hold. If N≧7,then 2=6. However, there is no prime number N satisfying 〔2−3−3)in this case.      Suppose now that k=7. If N=5, then食=2, so (2−3−3) camot hold. If N=7,then§=0, so (2−3−3〕 cannot hold, too. ‘If N≧11, we have§=7. Then, from (2−3−3), it mulst be N=11. From (2−3−1) and 〔2−3−2〕,we obtain (ii) t=3,r=8, ㈹ t=4,r=7, and 〔iv) t=5,r=6.       Tt由1e 2.

      kNtrg〔mod・N〕Wk〔9)〔mod・N)

      〔i)573436

      〔ii) 711 3 8 5  

1

      〔hi”) 7114710  6 

      (iv) 711564  1

     1t is shom in.Table 2 that the cases (i),(茸i) cannot occur, s ince none of the n㎜bers W](〔g〕−s,s=1,2,…,t−1, is a multiple of N in each case of them.       This completes the proof of Theorem 1. And this also completes the proof  of Theorem 2, since we have already shown in 2.1, 2.2, 2.3 that it must be .     N≦max{2皇一1,4㊧一5}≦max{2k−1,4k−5}=4k−5 when k≧2.     Ac㎞owledgement. The Author wishes to e)Φress his Prof. R. Tsuj i for his advice and encouragement. SinCere gratitUde tO

(6)

152

T..MCATsu,・xrro        REFERENCES [1]A.Duma :Ho1㎝orphe Differentiale h6herer Ordnung auf kong)acten        氾e㎜schen F15chen. Sc㎞iftenreihe der血iv.臨ster,2.        Serie. Heft 14 (1978). [2]J.Lewittes : Automorphisrns of compact Riemam surfaces・Amer・J・of        Math. 85,734−752 〔1963〕.        DEPARnm OF MA[fHEMATICS        、       SCIENCE UNIVERSITY OF TOKYO t ︶ 

参照

関連したドキュメント

Key words: Multivalently analytic functions, Hadamard product (or convolution), Differential subordination, Hypergeometric functions, Fractional Differintegral operator,

Abstract: In this paper, we investigate the uniqueness problems of meromorphic functions that share a small function with its differential polynomials, and give some results which

We derive closed formulas for the Arakelov-Green func- tion and the Faltings delta-invariant of a compact Riemann surface1. 2000 Mathematics Subject Classification: 14G40,

The key point is the concept of a Hamiltonian system, which, contrary to the usual approach, is not re- lated with a single Lagrangian, but rather with an Euler–Lagrange form

Abstract The representation theory (idempotents, quivers, Cartan invariants, and Loewy series) of the higher-order unital peak algebras is investigated.. On the way, we obtain

In this paper, we use the above theorem to construct the following structure of differential graded algebra and differential graded modules on the multivariate additive higher

For a higher-order nonlinear impulsive ordinary differential equation, we present the con- cepts of Hyers–Ulam stability, generalized Hyers–Ulam stability,

In this paper, we obtain strong oscillation and non-oscillation conditions for a class of higher order differential equations in dependence on an integral behavior of its