• 検索結果がありません。

$$-number systems and algebraic independence (Analytic Number Theory and Surrounding Areas)

N/A
N/A
Protected

Academic year: 2021

シェア "$$-number systems and algebraic independence (Analytic Number Theory and Surrounding Areas)"

Copied!
5
0
0

読み込み中.... (全文を見る)

全文

(1)

158

$\langle q, r\rangle$

number

systems

and algebraic independence

By

Shin-ichiro Okada and Iekata

Shiokawa

Keio University, Yokohama, Japan

This is an announcement ofour results in [9].

let $q$ and $r$ are integers with $q\geq 2$ and $0\leq r\leq q-$ $1$. In the $\langle$q,$r\rangle$number

system, every integer $n\in \mathbb{Z}$ is uniquely expressed with base

$q$ and digits $-r$, 1

-$r$,$\cdots$ , 0, $\cdots$ ,$q-1$ - $r$; namely,

$n= \sum_{h=0}^{k}\mathit{5}_{hq}^{h}$, $\delta_{k}\in$ $\{ -r, 1 -r, \cdots, q- l・r\}$, $\delta_{k}\neq 0$ if $n\neq 0,$ (1) where$\mathbb{Z}$

should be replaced by $\mathrm{x}_{-}\mathrm{o}$ and $\mathrm{x}_{-}\mathrm{o}$ if$r=0$ and $r=q-1,$ respectively. Th

$\mathrm{e}$

usual$q$-adic expansion is the$\langle$q,$0\rangle$ number system. Symmetrically, inthe

$\langle q, q-1-r\rangle$

number system $-n$ is uniquely expressed as

$n= \sum_{h=0}^{k}(-\delta_{h})q_{:}^{h}$ (2)

where $5_{h}$ are as above (cf. [3], [5]).

Furthermore, taking the negative base $-q$, we have the $\langle-q, r\rangle$ number system,

in which every $n\in \mathbb{Z}$is uniquely expressed as

$n= \sum_{h=0}^{l}\epsilon_{h}(-q)^{h}$, $:_{h}\in$

{

-$r$,$1-r$,$\cdot$

.

.

’q-l-r}, $\epsilon_{l}\neq 0$ if$n\neq 0$ (3)

(without exception on $r$). In the $\langle-q, q-1-r\rangle$ number system, we have also a$\mathrm{n}$

expansion of $-n$ similar to (2).

An arithmetical function $ar(n)$ : $\mathbb{Z}arrow \mathbb{C}$is called

$\langle$q,$r\rangle$-linear, ifthere is an$\alpha$ $\in \mathbb{C}$

such that

$a_{r}(nq+t)=\alpha a_{r}(n)+a_{r}(t)$ (4)

(2)

159

for any rt $\in \mathbb{Z}$ and $t\in \mathbb{Z}$ with $-r\leq t\leq q-1-r,$ where $\mathbb{Z}$ is replaced by

$\mathrm{L}_{0}$

and $\mathbb{Z}_{\leq 0}$ if $r=0$ and $r=q-$ 1, respectively. By definition, $\mathrm{a}\mathrm{r}(0)=0$. Using the expansion (1), we have

$a_{r}(n)= \sum_{h=0}^{k}a_{r}(\delta_{h})\alpha^{h}’$. (5)

and so $ar(n)$ is determined by the

coefficient

$\alpha$ and the initial vector

$a_{r}=$ $(\mathrm{a}\mathrm{r}(-\mathrm{r}), \mathrm{a}\mathrm{r}(1-r)$,. .. ,$\mathrm{a}\mathrm{r}(0)$

$\ldots$ , $ar(g-1-r))$. (6)

It follows from (2) and (5) that

$k$

$a_{q-1-r}$(– n) $=E$$a_{q-1-\mathrm{r}}(-\delta_{h})\alpha^{h}$. $(7)$

$h=0$

An arithmetical function $b_{r}(n)$ : $\mathbb{Z}arrow$

Cis

called (

$-q,$$r\rangle$-linear, ifthereis

a73

$\in\alpha$

such that

$b_{r}(n(-q)+t)=$ $\mathrm{b}\mathrm{r}(\mathrm{n})+br(n)$ (8)

for any $n\in$ $\mathbb{Z}$and $t\in \mathbb{Z}$with $-r\leq t\leq$ q-l-r. We have

$6\mathrm{r}(0)=0$ and

$b_{f}$$(n)= \sum_{h=0}^{l}b_{r}(\epsilon_{h})\beta_{:}^{h}$ (9)

using the expression (3), so that $b_{r}$(n) is determined by the coefficient $\beta$ and the

initial vector

$b_{r}=$ $(\mathrm{a}\mathrm{r}(-\mathrm{r}), b_{\mathrm{r}}(1-r)$,

$\ldots$ ,$b_{r}(0)$,$\ldots$ : $b_{r}(q-1-r))$.

For $b_{q-1-\mathrm{r}}(n)_{:}$ we have an expression similar to (7)

Examples. Wegive some examples of $\langle$q,$r\rangle$-linear functions using theexpression

(1) of$n\in$

z

where $\mathbb{Z}$

should be replaced by $\mathrm{x}_{0}$ and

$\mathrm{a}_{-}\mathrm{o}$ if $r=0$ and

$r=/-1$

,

respectively.

1. The sum

of

digits

function

in the ($\mathrm{g},$ $r\rangle$ number system defined by $s_{(q,\mathrm{r}\rangle}(n)=$

$\mathrm{x}\mathrm{H}_{=0}\delta_{h}$ is $\langle q,r\rangle$-linear with the coefficient 1 and the initialvector (

$-\mathrm{r},$$1-r$,.

.

’ ,$q-$

$1-r)$. Delange[l] proved for the ordinary $q$-adic sum of digits function $sq(n)$ $=$

$s\langle q,0$}$(n)$ that

(3)

180

where $F(x)$ is a continuous, nowhere differentiable function of period 1, whose

Foureir coefficients are given explicitly. Flajolet and Ramshaw [3] and Grabner and Thuswaldner[4] studied these phenomena in the $\langle q, r\rangle$ number systems and in the

$-q$ adic ones, respectively

2. For any given $t=-r$,$1-r$,$\cdot\cdot \mathrm{t}$ ,q-l-r,

$e_{tr}(n)$ denotes the number of the

digits $t$ appearing in the (

$\mathrm{g},$$r\rangle$-expansion (1 ) of$n\in \mathbb{Z}$ which is $\langle q, r\rangle$-linear with the

coefficient 1 and the initial conditions $etr(s)=1$ if $s=t_{1}.=0$ other wise. Flajolet

and Ramshaw[3] proved Delange-type results for $e_{tr}(n)(-r\leq t\leq q-1-r)$ and

applied them to the study of the summeatory functions of $\mathrm{S}\{9,\mathrm{r})$ $=Iit_{=-r}^{-1-r}te_{tr}(n)$

.

3. The radical inverse

function

in the $\langle$q,$r$) number system defined by

$\phi_{\langle q,r\rangle}(n)=\sum_{h=0}^{k}\delta_{h}q^{-h-1}$ is $\langle$q,$r\rangle$-linear with the coefficient $q^{-1}$ and the initial

vec-tor $q^{-1}(-r, 1-r, \ldots, q-1-r)$. Furthermore, for any given permutation $\sigma$ of

{

$-r$,1-r,

.

.

.

,q-l-r} with $0^{\sigma}=0,$ the generalized radical inverse

function

de-fixed by $\mathrm{E}_{\langle q}^{\sigma},\mathrm{a}(n)$ $= \sum_{h=0}^{k}\delta_{h}^{\sigma}q^{-h-1}$ is $\langle$

$q$,$r)$-linear with the coefficient $q^{-1}$ and the

initial vector $q^{-1}((-\mathrm{r} , (1- r).\ldots , (q-1-r)^{\sigma})$ (cf. [8] Chapter 3).

4. For any given $p\in \mathbb{Z}$ with $|p|\geq$ g, the bases change function

$)_{\mathrm{p}qr}$(n) is defined

by $\gamma_{pqr}(n)=$ $\mathrm{E}h=0k\delta_{hp}^{h}$, which is (

$\mathrm{g},$$r\rangle$-linear with the coefficient

$p$ and th$\mathrm{e}$ initial

vector $(-r, 1-r, . . . , q-1 - r)$ (cf. [2]).

5. The linear function $cn(c\in \mathbb{C}^{\mathrm{x}})$ is $\langle q,r\rangle$-linear with the coefficient

$q$ and th$\mathrm{e}$

initial vector $c$($-\mathrm{r}$,$1-r$,

$\ldots$ , q-l-r).

Examples of $(-q, r)$-linear functions can be constructed similarly as above by

using the expression (3).

Recently, Kurosawa and the second named author[6] gave a necessarily and suf-ficient condition for the generating functions of $\langle$q,$0\rangle$-linear functions and $\langle$-q,$0\rangle$

-linear ones to be algebraically independent over $\mathfrak{U}z$). We note that the generating

function of $a(n)=cn$ given in Example 5 is

$\frac{z}{(1-z)^{2}}\in\alpha_{z})$

.

We state our theorems. Let $\alpha_{j}$,$\beta_{i}\in \mathbb{C}^{\mathrm{x}}(1\leq i\leq I)$ satisfy

$\alpha_{i}\neq\alpha_{j}$, $\beta_{i}l$’ $\beta_{j}$ $(i\neq j, 1\leq i, /\cdot\leq I)$

.

(11)

For any fixed $q$, let $a_{ilr}(n)(1\leq l\leq m(i))$ and $b_{\dot{|}lr}(n)(1\leq l\leq n(i))$ be $(\mathrm{g},$$r\rangle-$

linear functions and $\langle$-q,$r$)-linear ones with coefficients

$\alpha_{i}$ and $\beta.\cdot$, respectively. We

consider the generating functions

(4)

181

$g_{i} \iota_{\Gamma}(.z)=\sum_{n=0}^{\infty}b_{ilr}(n)z_{:}^{n}$ $g_{ilr}^{*}( \approx)=\sum_{n=0}^{1\mathrm{x}}.b_{ilr}(-n)z^{n}$,

which converge in $|$

’$|<1$ by (4) and (8). We put

$a_{ilr}=$ $(a_{ilr}(-r), a_{ilr}(1-r)$,$\ldots$ ,$a_{ilr}(q-1-r))$,

$b_{ilr}=$ $(b_{ilr}(-r), b_{lr}.\cdot(1-r)$,

.

.

.

,$b_{*lr}.(q-1-r))$.

For any vector $\mathrm{c}=$ $(\mathrm{c}_{1}, c_{2}, \cdots, c_{q})$, we write $\mathrm{F}$

$=(c_{q}, c_{q-1}, \cdots, c_{1})$. $b_{ilr}=$ $(b_{ilr}(-r), b_{l}.\iota_{r}(1-r)$,

.

.$\iota$ ,$b_{*lr}.(q-1-r))$.

For any vector $\mathrm{c}=$ $(\mathrm{c}_{1}, c_{2}, \cdots, c_{q})$, $\iota \mathrm{v}\mathrm{e}$ $\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{c}=arrow(c_{q}, c_{q-1}, \cdots, c_{1})$ .

Theorem 1.1. The

functions

$A{}_{l}C(z)$ $(1\leq i\leq I, 1\leq l\leq m(i),$$0\leq r<q-$ $1)$,

$f_{ilr}^{*}(z)$ ($1\leq i\leq I,$$1\leq l\leq$ n(i)}$0<r\leq q-1$), gtlr(z) and $g_{ilr}^{*}(z)(1\leq i\leq I,$ $1\leq$

$l\leq n(i)$,$0\leq r\leq q-$ $1$,$2r\neq q-1)$ are algebraically independent $over\otimes z$)

if

and

only

if

thefollowing conditions (i) and (ii) hold;

(i) each one

of

the sets

of

vectors $\{a:\iota_{r}, ir_{;lq-1-r};1\leq l\leq m(i)\}(1\leq i\leq I,$$0\leq$

$r<q-1)$ and $\{b_{il_{\Gamma}},b;lq-1-r;1arrow\leq l\leq n(i)\}$ $(1\leq i\leq I, 0\leq r\leq q-1,2r \neq q-1)$

is linearly independent over$\mathbb{C}$,

(ii)

if

$\alpha_{i}=q,$ then

for

any $r$ with $0\leq f$ $<q-1$

$(-r, 1-r, . . . , q・1・r)\not\in \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}\{a_{ilr|lq-1-r},a; 1\succ\cdot\leq l\leq m(i)\}$ ,

and

if

$\beta_{j}=-q$, then

for

any $r$ with $0\leq r\leq q-1,2r\neq q-1$

($-r$, 1 $-r$,

. .

,$q$–1 –r) $l$ $\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathrm{c}}\{b_{il_{\Gamma}},\overline{b}:lq-1-r;1\prec\leq j\leq n(i)\}$

.

Remark 1.1 To prove the theorem, we use a criterion of algebraic

indepen-dence over $\mathbb{Q}z$) of functions satisfying certain functional equations (cf. [7]

Corol-lary of Theorem 3.2.1), which enable us to reduce the algebraic dependency over

$\alpha z)$ of our functions to the linear dependency of them over $\mathbb{C}$mod $\mathbb{C}(z)$

.

So we

actually prove that the functions in the theorem are algebraically dependent over

$\mathbb{C}(z)$ if and only if, for some $i$ and $r$, $f_{jlr}(z)$,

$f_{*lq-1-r}^{*}.(z)(1\leq l\leq$ n(i)$\}$ are

lin-early dependent over $\mathbb{C}$ $g_{\mathrm{i}}\iota_{r}(z),g_{ilq-1-r}^{*}(z)(1\leq l\leq$ n(0) are linearly dependent

over $\mathbb{C}$

$\alpha_{i}=q$ and $\mathrm{z}/(1-z)^{2}\in \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}$

{

filr(z) $f_{ilq-1-r}^{*}(z)$;1 $\leq l\leq m(i)$}, or

$\beta_{:}=-q$ and $\mathrm{z}/(1-z)^{2}\in \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathbb{C}}$

{

$g_{ilr}(z),g_{ilq-1-r}^{*}(z);1\leq l\leq$ n(i)}.

Remark 1.2 Theconditions (i) and (ii) in Theorem 1.1 imply that $m(i)$,$\mathrm{n}(\mathrm{i})\leq q$

for any $i$, $\alpha:\neq q$ if$m(i)=q,$ and$\beta_{i}\neq-q$ if$n(i)=q.$

Theorem 1.2. Let the

functions

$f_{ilr}(z)$,$f_{ilr}^{*}(z)$,gtlr(z), and$g_{ilt}^{*}(,)$ satisfy the

condi-tions (i) and (ii) in Theoreml.l. Assume that$\alpha_{i}$,$\beta_{i}$,$a\dot{.}lr(n)$, and$b_{ilr}(n)$ are algebraic

for

all$i$,$l,r$ and

$n$

.

Then,

for

any algebraic number$\alpha$ with $0<|\alpha$$|<1,$ the numbers

filr(z) ($1\leq i\leq I,$ $1\leq l\leq$ n(i)}$0\leq r<q-1$),$f_{ilr}^{*}(\alpha)(1\leq i\leq I, 1\leq l\leq m(i),0<$

$r\leq q-1),g:\iota_{r}(\alpha)$ and $g_{ilr}^{*}(\alpha)(1\leq i\leq I, 1\leq l\leq n(i),$$0\leq r\leq q-1,$$2\mathrm{r}\neq q-1)$

(5)

182

If we fix $r=0$ in Theorem 1.1 and Theorem 1.2, we have the results ofKurosawa and thesecond named author[6] mentionedabove. In their proof, they used another criterion ([7] Theorem 3.5) ofalgebraic independence offunctions over

(Qz).

References

[1] H. Delange, Sur la fonction sommatoire de la fonction “somme des chiffres”,

Enseign. Math. (2) 21 (1975), 31-47.

[2] P. Flajolet, P. Grabner, P. Kirschenkofer, H. Prodinger, and R. F. Tichy, Mellin transforms and asymptotics: digitals sums, Theoret. Comput. Sci. 123(1994),

291-314.

[3] P. Flajolet and L. Ramshaw, A note ongray code and odd-even merge, SIAM

J. Comput. 9 (1980), 142-158.

[4] P. J. Grabner and J. M. Thuswaldner, On thesumofdigits function for number systems with negative bases, The Ramanujan J. 4 (2000), 201-220.

[5] D. E. Knuth, The Art of Computer Programming, vol. 2, Addison Wesley,

London, 1996.

[6] T. Kurosawa and I. Shiokawa, $q$-linear functions and algebraic independence, Tokyo J. Math. 25 (2002), 459-472.

[7] Ku. Nishioka, Mahler functions and Transcendence, LNM 1631, Springer, 1996.

[8] H. Niederreiter, Random NumberGeneration and

Qu\’asi-Monte

Carlo Methods,

CBMS-NSF Regional Conf. Ser. in Appl. Math. 63, Philadelphia, 1992.

[9] S. Okada and I. Shiokawa, Algebraic independence results related to ($q$,$r\rangle$

-number systems, preprint.

[6] T. Kurosawa and I. Shiokawa, $q$-linear functions and algebraic independence, Tokyo J. Math. 25 (2002), 459-472.

[7] Ku. Nishioka, Mahler functions and Transcendence, LNM 1631, Springer, 1996.

[8] H. Niederreiter, Random NumberGeneration and

Qu\’asi-Monte

Carlo Methods,

CBMS-NSF Regional Conf. Ser. in Appl. Math. 63, Philadelphia, 1992.

[9] S. Okada and I. Shiokawa, Algebraic independence results related to $(q,$$r\rangle-$

number systems, preprint.

$\mathrm{K}\mathrm{o}\mathrm{h}\mathrm{o}\mathrm{k}\mathrm{u}- \mathrm{k}’ \mathrm{u}\mathrm{A}\mathrm{u}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{s}$

, $\mathrm{a}\mathrm{d}\mathrm{d}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}.\cdot \mathrm{D}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{o}\mathrm{f}\mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}.\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s},\mathrm{K}\mathrm{e}\mathrm{i}\mathrm{o}\mathrm{U}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}\mathrm{H}\mathrm{i}\mathrm{y}\mathrm{o}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{Y}\mathrm{o}\mathrm{k}\mathrm{o}\mathrm{h}\mathrm{a}\mathrm{m}\mathrm{a},2\mathrm{f}3- 85_{\sim}^{9}2\mathrm{J}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{n},\mathrm{e}- \mathrm{m}\mathrm{a}\mathrm{i}1\cdot \mathrm{s}_{-}\mathrm{o}\mathrm{k}\mathrm{a}\mathrm{d}\mathrm{a}_{\sim}\Theta \mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{k}\mathrm{e}\mathrm{i}\mathrm{o}.\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}\mathrm{e}- \mathrm{m}\mathrm{a}\mathrm{i}\mathrm{l}.\cdot$’

参照

関連したドキュメント

Necessary and sufficient conditions are found for a combination of additive number systems and a combination of multiplicative number systems to preserve the property that all

Greenberg and G.Stevens, p-adic L-functions and p-adic periods of modular forms, Invent.. Greenberg and G.Stevens, On the conjecture of Mazur, Tate and

In place of strict convexity we have in this setting the stronger versions given by the order of contact with the tangent plane of the boundary: We say that K ∈ C q is q-strictly

However its power ∇ / 2 , though not conformally covariant, has positive definite leading symbol (in fact, leading symbol |ξ| 2 Id), and so satisfies our analytic and

In [LW], [KKLW], bosonic Fock spaces were used to construct some level 1 highest weight modules of affine Lie algebras using the fact that the actions of the

[Mag3] , Painlev´ e-type differential equations for the recurrence coefficients of semi- classical orthogonal polynomials, J. Zaslavsky , Asymptotic expansions of ratios of

This is applied in Section 3 to linear delayed neutral difference- differential equations and systems, with bounded operator-valued coefficients: For weighted LP-norms or

Hugh Woodin pointed out to us that the Embedding Theorem can be derived from Theorem 3.4 of [FM], which in turn follows from the Embedding Theorem for higher models of determinacy