• 検索結果がありません。

=C00(ぶ;),即r2)=乳r(T2)=C∞(5;)亀andどr(r2)=ど。r(T2)=町r2)⑳鴎) WemayCOnSidertheproductfo1iationFonT2=宝×S;=i(x,y)∈R2/(2nZ)21given Structures(II)

N/A
N/A
Protected

Academic year: 2021

シェア "=C00(ぶ;),即r2)=乳r(T2)=C∞(5;)亀andどr(r2)=ど。r(T2)=町r2)⑳鴎) WemayCOnSidertheproductfo1iationFonT2=宝×S;=i(x,y)∈R2/(2nZ)21given Structures(II)"

Copied!
6
0
0

読み込み中.... (全文を見る)

全文

(1)

Bulletinof theFacultyof Education,MieUniversity・33mturalScience(1982),ト6頁

Notes on PartiaJJy UnimoduJar Structures(II)

by Yukihiro Kanie

かepαγ加e氾才イ〟α山肌α〜∫cぶ,肪e U乃れ,er吉和

This noteis a continuation of PartI(〔K‑6〕),and here we。Sethe same

§5・F'0[iationsonTorus(ⅠⅠ).Inthis section,WeSt。dyderivati。nS。f iT(T2)forthelinearfoliation苫Onthe2‑dimensionaltorus T2witharational

Slopelandthe corresponding s・p・u.StruCture Tl・Duetothe remarksi。§4,

WemayCOnSidertheproductfo1iationFonT2=宝×S;=i(x,y)∈R2/(2nZ)21given

byly=COnStant【,and the s・p・u・StruCture

T=dx.Then,Z=∂∬,C脚(T2)j

=C00(ぶ;),即r2)=乳r(T2)=C∞(5;)亀andどr(r2)=ど。r(T2)=町r2)⑳鴎)

=C伽(5;)も⑳C∞(5;)も・

At first,We get

easily the following

Lemma10・(∫)〝■ズ∈ゴて(r2)ざα棚e‥んere′α涼乃β〔考朝=〔ろsi叫朝

=0,沌e乃gよぎe叩γe5ざedα5 g=α屯 カγざOme

CO犯ざ加〜仇

(よりrんe ce雨eγ∂扉どr(r2)co加古de…油R∂ズ・

Proposition

H・DdinelhelinearmappingsA,BandCqfろ(Thoilseぴ

A(乳(rう)=0, A(≠(γ)屯)=(鋤)(#)∂ズ;

月(乳(T2))=0ラ 郎拍)屯)=拍)∂∬;

C(≠(ッ)色)=頼)色, Cは(S三))=0

力汀̀川〟≠∈Cの(5こ)・rんe乃,A,月α乃dCαγedeγ∫γα〜go乃ぶ扉どr(r2),。几d輌。γe

pγOperJy

otJねγ.

肋γeO靴γ,〔A,β〕=0,〔c.A〕=A α乃d〔c,β〕=且

Proq[Since〔≠Zl躍〕=0,〔≠∂y,躍〕=棉湧Z

and鳩,吋=1≠(㌔功一

4・(Py4)ia。forany≠,4・∈C∞(S:),WeCaneasilycheckthederivati。np,。Perty。f

A,BandC・And also bysimp)ecalculations,We can showtheircommutationrelations.

Now,We

Showthat A,Band Care

properly

outer.

‑1‑

(2)

Yukihiro

Kanie

At first,aSSume that

a vector

field XonT2gives the derivation Aas

A=adX・Since〔x,qr]=〔x,∂y〕=〔x,Siny∂x〕=0,We

get

by the similar

arguments as LemmalO that Xis written as X=a∂x(a∈R).

Apply Ato the

vector

field siny∂n,then

cosy∂y=A(sinyPy)=〔apx,Sinyも〕=0・

Thisisimpossible,thatis,Ais

properly

outer.

Secondly,aSSume that X∈別(T2)gives the derivati。n B as B=adX.

Since[x,qr]=0,the coefficient functions of Xareindependent of x,SO

Xis written as X=≠(y)∂x+¢(y)∂y(≠,4・∈C∞(S:))・

On the other hand,the function≠has the constant derivative‑1.In fact,

∂ズ=月(∂〟)=〔g,∂〟〕=‑(∂〟≠)∂ズー(㌔胡∂y・

This contradicts that periodic functions have

not

non‑ZerO

COnStant

derivatives.

Finally,aSSume that X∈せl(T2)gives derivation C as C=adX.

Since[x,別(S;)]=0,it follows easily that Xis written as X=f(x)∂,

for some f∈C∞(S:)・

ApplyC to the

vector

field∂x,then

∂ズ=C(∂ズ)=〔g,生〕=‑(屯J)(∬)生・

hence㌔J=‑1・This contradicts the periodicity off・ Q.E.D.

Theorem12・(f)エe古かゐeαdeγ血〜fo陀げろ(r2)・rんeれ,加γe P∬f5f5α

γeCわγイブeJdⅣ0乃r2α乃d coれ5如才5α,占α乃d c∈R5"。ん〜ん。〜

β =adⅣ+αA+ 占月+

cC.

〟0γPOぴeγ,亡んe

coγ15〜αれ才ざ

α,占α氾d c α∫re 混和f叩eJy de才eγmよ几ed,

α乃d〜β 祝乃gq腔 mO血Jo

ce乃オeγ

√∫=R∂ガイろ(T2)・

(わ)rんeγeαγ̲e mO乃α加αJ仙ねγdeγ血〜fo几ざイゴr(T2)・

β1=β1ぱr(T2);ゴ丁(r2))g50Jd加乃ざioれ3,αれヴα5αエie

ge乃Prα拍rざA,βαれd Cぴi〜んγe′αffo耶[A,β〕=0,〔c,月〕

=

β.

α乃dⅣ〜5f・乃ごて(T2)

TんeJfγ5f coゐomoJog〟

α′geゐγαガ1んα‥んγeP.

=Aα托d[C,β〕

Proq[Let Dbea derivationofゴT(T2)・

Let D'bethelinear mappingof P((S;)toitself which assigns

to

X∈ヅ((ギ)

the別(S3)‑part Of D(X)・Then D'gives a derivation of や【(i),because

gT(T2)is anideal・Hence by F・Takens〔T‑1〕,there exists a unique

vector

field Wl副(Sこ)suchthat D'(X)=Lwl,X〕foranyX∈Y((S:)・

Let Dl=D‑adwl,thenDlisaderivationoffT(T2)suchthat Dl(PL(i))

⊂汀(r2).

(3)

NoTES

ONPARTIALLYUNIMODULARSTRUCTURES(II)

Definethefunction〆0(y)∈C∞(S;)as Dl(も)=≠。(y)∂x・Put

占=(2わー1如(y)dy α乃d ¢(〟)=1#胸トムid弘

then thefunction¢(y)is well‑definedon S;・

Let W;=‑¢(y)∂x∈gT(T2)and D2=Pl‑adw2‑bB,thenD2isaderiva‑

tionofiT(T2)suchthat P2(やt(Sこ))⊂gT(T2)and 巧(∂y)=0・hfact, 巧(屯)β1(亀)+〔呪,∂g〕‑d月(∂タ)=j≠。(y)‑(∂y¢)(y)‑いも=0.

Apply P2tO the equalities〔∂x,Py〕=〔∂x,Sinyも〕=0,thenby LemmalO

We get that 上㌔(∂x)=c∂x for some

constant

c∈R.

Let D3=D2.CC,thenD3isaderivationof2(T2)suchthatlWt(S:))

⊂乳(門 and q(∂ズ)=巧(免)=0・

Definethefunctions≠k,≠;,警 and 粍′∈C∞(S:)as P3(sinky㌔)=≠kPr+軌 andIucosky㌔)=範∂ズ+吃∂y・

ApplyD3tOtheequalities ksinky∂x=[cosky∂x,㌔〕and kcoskyqr=〔∂y,Sinky㌔〕

(k∈Z),then we get

枕∂ズ+ん≠去∂y=〔叱∂ズ+仇,∂ダ〕=‑(も亀)∂ズー(∂〟吃)屯, 片帆+た帆=〔も,≠々㌔十≠こ㌔〕=(兢)∂ズ+(も船∂y,

hencei≠々,顧 andl≠;,万 satisfythe conditions of the followinglemma.

Lemma13・⊥e才≠肌d¢ゐビル乃C王〜0れ55α‡よぎ血乃g偏d抑eγeれ〜ねJeq祝αfよ0托ざ

も≠=烏¢ and も¢=一点≠

Joγ50me∫乃〜egeγ ん,rんeれ,〜んeγeαγe

CO柁β如才ざααれdβ∈Rβ〟。ん血才

≠(y)=asinky+βcosky and ¢(y)=‑βsinky+acosky.

Proqf Thefunctions≠and¢satisfytheequations

∂訝=‑k2≠and∂:¢

=‑K2¢ So,aSis wellknown,≠and4・arelinearcombinationsof sinkyand COSky.Write≠and ¢as

≠(y)=aSinky+βcosky and 4・(y)=γsinky+8cosky

forsomeconstants

a,β,γand81Put・themintotheequation∂y≠=kめthen kacosky‑kβsinky=kγSinky+k5cosky,

hence

a=5andβ=‑yl Q.E.D.

Thus,there are

constants

ak,Pk,a々 and 且'such that

≠々(y)=a々Sinky十島cosky, 亀(y)=一色sinky+akCOSky,

3

(4)

YⅦkiIliro Eanie

≠;(y)=宅Sinky+色′cosky and 吃(y)=一銭Sinky+宛COSky・

Apply上もtothe equality kも=〔sinkyPy,‑COSkyqr〕+〔cosk咤,SinkyPr〕,then O=〔sinkyも,(βkSinky‑akCOSky)px+(&'sinhy‑a;cosky)も〕

+〔cosky曳,(a烏Sinky+鶴cosky)∂x+(∂;sinky+色′cosky)も〕

=klβ烏Sinkycosky+akSi㌔ky十a々COS2ky‑βkCOSky‑βkCOSkysinkyi∂x 十kla;sin2ky+αこCOS2ky+a;cos2ky+a;sin2kyi∂。

=如α鳥∂ズ+2αヱも),

hence

a烏=屯=0・Apply D3tOthe equality sin2y∂x=2〔siny∂y,SinyPx〕,then

J%cos2y屯+攫cos2yay=2〔sinyh,AcosyPr+β;cosy∂y〕

=‑2且sin2ypx‑2(AIsin2y+A′cos2y)py=‑2β1Sin2y∂x‑2A′Py,

hence 色cos2y=β1(cos2y‑1)and 考COS2y=‑2β;・Theseimply that

β1=A′=0,thatis,巧(siny生)=彗(cosyPx)=0・

Let≠∈C叫(S:)・Thenweget that D3(穐)=0,bytheformula 4ax=〔≠siny∂。,‑COSy∂x〕十〔≠cosyP,,SinyPx〕・

Hence巧(どr(r2))=0・

Definethefunctions≠"and V∈C∞(S;)as

Lt(sinyPy)=≠′′(y)Px and A(cosyも)=少'(y)∂x・

Apply D3tOthe equalities siny屯=〔cosy▼㌔,∂y〕and cosy∂y=〔㌔,Sinyay〕,then

We get Similarly as above that Py≠"=g'and P9¢'′=‑≠"・Then by Lemma 13,there are constants ar'andβ"such that

≠'′(y)=a''siny+β′′cosy and g'(y)=‑β'′siny+a''cosy・

Apply P,tO the equality Py=[cosy∂,SinyPy〕,then we get

0=〔(a"cosy‑β''siny)qr,SinyP,〕+〔cosy曳,(a"siny十β"cosy)∂x〕

=α′旦,

Put a=β"andlet P.=巧‑aA,then D.is aderivationof 2T(T2)

suchthat 上乙(9t(S;))⊂gT(T2)and P,(Px)=旦(Py)=q(siny∂y)=q(cosya。)

Let fEC00(S:)・Define thefunctions fi∈C∞(S;)(i=0,1,2)as

q(J∂y)=f。∂x,D.(fsinyも)=f∂x and 彗(fcosy∂。)=ム∂x・

Apply D tothe equalities

2fち=Ucosyay,Siny屯〕‑LFsinyPy,COSyち〕,

(5)

NoTES ONPARTIALLYUNIMODULARSTRUCTURES(ⅠⅠ)

2fsinyも=LFcosyP,,∂y〕‑Lfも,COSyも〕

2fcosyPy=LF∂めSinyP。〕‑LFsinyPy,q,〕,

〔も,f∂y〕+LFsiny屯,SinyPy〕+Ucos鴫,COSyPy〕=0,

then we get

2ム∂ズ=叛∂ズ,Sinyも〕一レ1屯,COSy∂〟〕=明美)cos#‑(揖)si叩lち,

21㌔=抗生,も〕一払∂ズ,COSy∂y〕==屯ム)cosダー(もム)l㌔, 2L∂x=LhPx,Siny∂。〕‑u∂x,も〕=i(PyL)‑(PyL)sinyi∂,,

〔亀,兢〕+扶∂∬,Si噂も〕十抜毛,COSy∂タ〕

=‡(亀j;)‑(亀f)siny‑(もh)cosylpx=0.

benee,

2jこ=(Pyf)cosy‑(∂。ム)siny・ 2fl=(∂。ム)cosy‑∂yj;,

2f2=Py美.(∂yf。)siny and Py亮=(∂y美)siny+(∂y美)cosy.

In particular,

2L=(Pyf)(siJy+cos2y)‑(∂yム)siny

=(∂。fo)siny‑(∂yム)sinycosy+2jLcosy+(u)sinycosy‑(∂。差)siny

=2J。COSy,

thus j;=jLcosy,Similarly f=j;siny・Hence 2亮(㌔工)cosダー(も美)sin封

=鳩ム)siny+Lcosyicosy J(㌔ム)cosy‑Lsinyisiny

=J。(cos2y+sin2y)=ん

Hence weget that jL=0,thatis,q(f∂。)=0・Consequently weget that

q(fT(T2))=0,thatis,D=ad(Wl+W2)+aA+bB+cC・

For the uniqueness

of the expression of D,itis sufficient

to

showthat

a=b=c=O and′W∈3,if thederivation adW十aA+bB+cC(W∈3r(T2))

iszeroon2r(T2)・Infact,applythisderivationtothevectorfields Px,∂y

and sinyPy・ Q.E.D.

〔K‑1〕Y・Kanie:Cohomologies qfLiealgebras qFvectorfieldswilhcoWicienls inadjoinlrepresenlations:Case qf classicallype,Publ.RIMS.,Kyoto Univ.,ll(1975),213‑245.

〔E‑2〕‑:Coんomo毎よeざ扉エfeα′geムγα5げむeC加/ieJd=βよ〜んco卿cfe乃〜ざ

in adjoinlreprentalions:Foliated Case,Publ・RIMS・,Kyoto Univ.,

14(1978),487‑501.

〔E‑3〕‑:Someエゴeα′geゐrαざげ即eC加Jfe′dβ0犯♪Jfα‡edmα項Jdβα兜d

5‑

(6)

Yukihiro

Kanie

lheir derivalion algebras,Proc.Japan Acad.,55,Ser.A(1979).

409‑411.

〔K‑4〕‑:Some⊥よeαkeムγα5イγeC加J〜eJdざα氾d如才γdeγ如才よ0れ5ごCα5e qf parlially classicaltype,Nagoya Math.J.,82(1981),175‑づ07.

〔K‑5〕‑¶:50me⊥feαJgeゐγα5イヴeC拍γJieJd5α犯d如才γdeγ血〜fo乃ざごCα5e qf striclly parlially classicaltype,Bull.of the Fac.of Education, Mie Univ.,32NaturalScience(1981),7‑15.

〔K‑6〕職:Notes on partially unimodular structures(Ⅰ),Bu11.of the Fac.

of Education,Mie Univ.,32NaturalScience(1981),17‑26.

〔S‑1〕N.Steenrod:The Topology of Fibre Bundles,Princeton Univ.Press, Princeton,NewJersy(1951).

〔S‑2〕S.Sternberg:Lectures on DiffrentialGeometry,Prentice‑Hall,(1964).

〔T‑1〕F.Takens:Derivations qf vec10rfields,Comp.Math.,26(1973),

151‑158.

参照

関連したドキュメント

The statistical procedure proposed in this paper has the following advantages over the existing techniques: (i) the estimates are obtained for covariate dependence for different

Key words and phrases: Linear system, transfer function, frequency re- sponse, operational calculus, behavior, AR-model, state model, controllabil- ity,

The main aim of the present work is to develop a unified approach for investigating problems related to the uniform G σ Gevrey regularity of solutions to PDE on the whole space R n

In the case of single crystal plasticity, the relative rotation rate of lattice directors with respect to material lines is derived in a unique way from the kinematics of plastic

Starting out with the balances of particle number density, spin and energy - momentum, Ein- stein‘s field equations and the relativistic dissipation inequality we consider

(The Elliott-Halberstam conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve- ments in Huxley’s results, which for r ≥ 2 are weaker than the result

のようにすべきだと考えていますか。 やっと開通します。長野、太田地区方面  

[r]