• 検索結果がありません。

IUTch III{IV with remarks on the function-theoretic roots of the theory

N/A
N/A
Protected

Academic year: 2022

シェア "IUTch III{IV with remarks on the function-theoretic roots of the theory"

Copied!
99
0
0

読み込み中.... (全文を見る)

全文

(1)

IUTch III–IV with remarks on the function-theoretic roots of the theory

Go Yamashita

RIMS, Kyoto

26/June/2016 at Kyoto

(2)

Contents

A Motivation of Θ-link

from Hodge-Arakelov theory

IUTch III

IUTch IV

(3)

A Motivation of Θ-link

from Hodge-Arakelov theory

(4)

de Rham’s thm /C

£

p -adic Hodge comparison /Q

p

£

Hodge-Arakelov comparison /NF

£

(A motivation of ) Θ-link

(5)

/C

H

1

(C

×

, Z) ⊗

Z

H

dR1

(C

×

) Ð→ C

↺ ⊗

dTT

z→ ∫

dT

T

= 2πi induces a comparison isom.

H

dR1

(C

×

) Ð→(H

1

(C

×

, Z) C)

(6)

/Q

p

G

m

-case

´

etale side dR side

T

p

G

m

Zp

H

dR1

(G

m

/Q

p

) Ð→ B

crys

∈ ∈

ε

dTT

z→ “ ∫

ε dTT

” = log [ ε ] = t

2πi

←→

ε = ( ε

n

)

n

Õ× ×× ε

0

= 1, ε

1

≠ 1, ε

pn+1

= ε

n

“analytic path” around the origin ⋅ ⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅

⋅ ⋅⋅⋅

(7)

/Q

p

E : elliptic curve /Z

p

0 → coLieE

Qp

E

Q

p

E

Qp

→ 0 univ. ext’n

´

etale side dR side

T

p

E

Qp

Qp

H

dR1

( E

Qp

/Q

p

) Ð→ B

crys

coLiêEQ

p

Pω ÐÐÐÐÐ→

“ ∫

P

ω” = “ log

ω

( P ) ”

P =(Pn)n PnE(Qp),pPn+1=Pn, “analytic path” on E

̂ ( ̂ Ĝ ) ̂G ) ( )=

(8)

/NF

Hodge-Arakelov theory

“discretise” & “globalise ”

the p -adic Hodge comparison map

(9)

E / F ← NF > 2 prime assume 0 ≠ PE ( F )[ 2 ] L ∶= O( [ P ])

E [ ] ∶ approximation of “underlying mfd.”

(10)

Roughly

Ð Ð→ ÐÐÐ

Zar. locally EGa/EOE[T] relative degree

dimF =2

↓ dimF =2

Γ ( E

, L ∣

E

)

deg<

Ð→L

E[]

(=

E[]

F )

dR side (fcts) ´ etale side (values)

an isom. of F -vector spaces

& preserves specified integral str.’s ↙

(omit)

at non-Arch. & Arch. places

(11)

cf. degenerate (G

m

) case

F [ T ]

deg<

Ð→

ζµ

F

∈ ∈

f ÐÐÐÐ→

( f ( ζ ))

ζµ

( Vandermonde det ≠ 0 )

(12)

(LHS) (i.e. dR side) has filtration by rel. deg.

s.t. Fil

j

/ Fil

j+1

ω

E⊗(−j)

(RHS) (i.e. ´etale side)

in the specific integral str.

we have a Gaussian pole q

j2/8ℓ

O

F

the map: (derivatives of) theta fcts

z→

(13)

Consider both sides as vector bdl’s over the moduli M

ell

degree comparison

(LHS) = −

1

j=0

j [ ω

E

] ≈ −

2

2 [ ω

E

]

○ ! ∥

by [ωE2] [Mell]

1

6[logq]

(RHS) = − 1

1

j

2

[ log q ] ≈ −

2

[ log q ]

(14)

Motivation of Θ-link

Assume a global mult. subspace ME [ ] take NE [ ] a gp scheme s.t. M × NE [ ] apply Hodge-Arakelov for E

∶= E / N

over K ∶= F ( E [ ]) Γ (( E

)

, L ∣

(E)

)

deg<

Ð→

21j21

( q

j

2

2ℓ

O

K

) ⊗

OK

K

(15)

incompatibility of Hodge fil. on (LHS) w/ the ⊕ decomp. on (RHS)

; Fil

0

= qO

K

○*

q

j2

O

K

“arith. Kodaira-Spencer morph.”

deg ÐÐ ÐÐ ≈ → 0

deg ≪ 0

Ð Ð Ð Ð

⇒ 0 < ∼ ( large number )(≈ − ht )

(16)

(scheme theoretic)

Hodge-Arakelov: use scheme theory cannot obtain

*

IUTch: abandon scheme theory use (non-scheme theoretic)

*

” { q

j2

}

j

z→ q

(17)

Grothendieck

2 ways of cracking a nut

— crack it in one breath by a nutcracker,

— soak it in a large amount of water, soak, soak, and soak.

then it cracks by itself.

(18)

an example of the 2nd one :

rationality of congruent zeta by Lefschetz trace formula : many commutative diagrams

& proper base change, smooth base change

– proper & smooth base change ← not the “point” of the proof – each commutative diagram → Ð ÐÐÐ

(19)

In some sense, the “point” of the proof was to establish the scheme theory &

´etale cohomology theory

⎛ ⎜⎜

i.e., the circumstances where

a topological (not coherent) cohomology theory works (in positive char.)

⎞ ⎟⎟

(20)

IUTch also goes in the 2nd way of nutcracking.

Before IUTch, the essential ingredients already appeared.

What was remained was

to put them together

(21)

∀ constructions are (locally) trivial

After many (locally) trivial constructions

( in several hundred pages),

highly non-trivial inequality follows!

(22)

The “point” was to establish

the circumstances,

in which non-arith. hol. operations work!

(23)

IUTch III

(24)

In short, in IUT II,

we performed “Galois evaluation”

theta fct z→ theta values

“env” labels “gau” labels (MF-objects

(filteredφ-modules) z→ Galois rep’ns)

(25)

Two Problems

1. Unlike “theta fcts”, “theta values” DO NOT admit a multiradial alg’m in a NAIVE way.

2. We need ADDITIVE str. for (log-) height fcts. µlog

(26)

On 1.

theta fcts Gal.z→eval. theta values

Õ××× ∩

(admit multirad. alg’m

cf.[IUT II, Prop 3.4(i)]) ∏

F÷×

(constant monoids)

Õ×××

requires cycl. rig.:::via::::::LCFT (cf.[IUT II, Prop 3.4(ii), Cor 3.7(ii), Rem 4.10.2(ii)])

(27)

Recall cycl. rig. :::via::::::LCFT uses

O=(unit portion)×(value gp portion)

O

core O =

>

We DO NOT share it in both sides of Θ-link!

“{qj2}j z→q”

theta values

DO NOT admit a multirad. alg’m in a NAIVE way.

(28)

cf. ⎧⎪⎪

⎨⎪⎪⎩

cycl. rig. via mono-theta env.

cycl. rig. viaẐ×∩Q>0={1} use only “µ-portion”

µ

core µ do not

interfere 6j

admit a multirad. alg’m

~

O⋍ ×µ

O×µ

=0

=

9 0

(29)

To overcome these problems, Ð→use log link!

⎛⎜⎜

⎜⎝

& allowing::::mild indet’s Õ×××

non-interference etc. (later)

⎞⎟⎟

⎟⎠

(30)

log-Θ lattice

⋮ ⋮

● ●

Õ× ×× Õ×

⋯ ÐÐÐ→ ● ÐÐÐ→ ×× ● ÐÐÐ→ ⋯

Õ× ×× Õ×

⋯ ÐÐÐ→ ● ÐÐÐ→ ×× ● ÐÐÐ→ ⋯

Õ× ×× Õ×

⋮ ×× ⋮

● ∶ ( Θ

±ell

NF-) Hodge theater

(31)

(D - ) Θ

±ell

NF Hodge theater

ϕΘ±ell

global global

;

patching ϕΘ

÷

×

(D-)Θell-bridge

(ψ÷×Θ)

(ψΘ±ell)

(;F⋊± -synchro.

1 2 ÷×

÷×

F

÷×

sym.

(D-)Θ±-bridge

jF÷×

(ψ÷×NF) (F÷× -torsor)

>={0,≻}

F⋊±

sym.

÷×tF1 0 1

geom.

(D-)NF-bridge (D-)Θ-bridge

(F⋊± -torsor) ϕΘ±±

ϕNF÷×

(⋯⋯→HTΘ)

(ψΘ±±) ({±1}×{±1}V-torsor)

(rigid)

arith.

(32)

pTeich IUTch

hyperb. curve / char = p>0 an NF

indigenous bdl.

over a hyperb. curve / char =p >0

once punctured ell. curve over an NF

Frob. in char =p>0 log - link

”Witt” lift pn/pn+1 ;pn+1/pn+2 Θ - link

(33)

∢ eye

want to see alien ring str.

⊞ ● Θ-link

ÐÐÐÐÐÐ→ ● Õ×××

××

Õ×××

××log-link

⊠ O×µ

⎛⎜

Note F⋊± -symm. isom’s are compatible w/ log-links

↝can pull-back Ψgau via log-link

⎞⎟

(34)

∢ However,

⊞ ● Θ

ÐÐÐÐÐÐ→ ● Õ×××

××

Õ×××

××log Õ×

××××log is highly non-commutative

⊠ O×µ ●ÐÐÐÐÐÐ→

Θ ●

↝ (cf. log(aN)≠(loga)N) cannot see from the right

●Õ×

(35)

We consider the infinite chain of log-links

⋮ logÕ×

×××

● logÕ×

×××

● logÕ×

×××

● logÕ×

×××

ÐÐÐÐ→●

←ÐÐÐÐthis is invariant by one shift!

(36)

Important Fact

k/Qp fin.

log shell logOk×2p1 logOk× =Ik

Õ×××

××log ⊂ the domain & codomain of log are

Ok× contained in the log-shell upper semi-compatibility

(Note also: log-shells are rigid)

(37)

Besides theta values, we need another thing :

we need NF (:= number field) to convert ⊠-line bdles into ⊞-line bdles

and vice versa.

(38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎨⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎩

⊠ -line bdles

←def’d in terms of torsors

⊞ -line bdles

←def’d in terms of fractional ideals Ð→

∃ natural

cat. equiv. in a scheme theory

(39)

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎨⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⊠-line bdles

←def’d only in terms of ⊠-str’s

→admits precise log-Kummer corr.

But, difficult to compute log-volumes

⊞-line bdles

←def’d by both of ⊠ & ⊞-str’s

→only admits upper semi-compatible log-Kummer corr.

But, suited to explicit estimates

(40)

We also include NFs as data

(an NF)j ⊂∏

vQ

log(O×)

theta values

NFs }←Ð story goes in a parallel way in some sense ( of course∃ essential difference

cf. [IUT III, Rem 2.3.2, 2.3.3] )

(41)

To obtain the final multirad. alg’m:

Frob.-like → ● data assoc. toF-prime-strips

z→

£ Kummer theory

´etale-like ↘

● data assoc. toD-prime-strips arith.-hol. ↗

z→ £ forget arith. hol. str.

mono-an. → ● data assoc. toD-prime-strips

(42)

´ etale-like

Frob.-like

wall

Θ

´

etale transport

Kummer detachment

(43)

Frobenius-picture

⋮ ⋮

⋅ ⋅

↑ ↑

⋅ ⋅

log ↑ ↑ log ÐÐÐÐÐÐÐ→

⋅ ⋅ Kummer

log ↑ ↑ log theory

⋅ Ð→

Θ ⋅ ↑

log ↑ ↑ log (cycl. rig.’s)

⋮ ⋮

´etale-picture rad.

data

core

rad.

data permutable Y

U

(44)

3 portions of Θ-link

GvÐ→˜ Gv

↻ ↻ ←share (↝ht + fct)

● unit O×µÐ→˜ O×µ local

⎧⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎩ ● value gp q

12

j2

N

Ð→˜ qN←drastically changed

● global realified

V∋v

(R0)v(⋯,j2,⋯)Ð→(R˜ 0)vlogq

(

;

)

(45)

Kummer theory unit portions

GvO×µ∶=Oׯk/µ Qp-module

+integral str. i.e. Im(OkׯH)⊆(Oׯkµ)H

↑ fin. gen.

Zp−mod.

HGv

open Θ wall ↓ ≀←non-ring theoretic «

log-shell («

computable log-vol.)

GO×µ

(46)

(GvOkׯ) ̃Ð→

Kummer(Gv ↷Oׯk(Gv)) Õ×××

unlike the case of O¯k,

⎛⎜⎜

⎜⎝

←now, we cannot use O¯k. use onlyOׯk

⎞⎟⎟

⎟⎠

̂Z×- indet. occurs Õ×××

×××

↘ container is invariant under thisẐ×-indet.

OK

cycl. rig. µ(Gv)→˜µ(Oׯk)

via LCFT ?

does not hold.

(47)

We want to protect

⎧⎪⎪⎨⎪⎪

value gp portion global real’d portion

from thisẐ×- indet!

⎛⎜⎜

sharing O×µ →˜ O×µ w/ int. str.

; (Ind 2)

●Ð→

Θ ● horizontal indet.

⎞⎟⎟

(48)

value gp portion

mono-theta cycl. rig.

O

(unlike LCFT cycl. rig.)

↖only µ is involved

µ core

µ

O≅ ×µ

O×µ shared

0

+ i

do not obstruct each others )

0 i

NF portion

^

̂×

(49)

Note also

mono-theta cycl. rig.

is compat. w/ prof. top.

↝ F⋊± - sym. (conj. synchro.) log● ⊞↑ F⋊± - sym. is compat. w/ log-links

● ⊠ ↝ can pull-back coric (diagonal) obj.

via log-links ↙later

↝ LGP monoid (Logarithmic Gaussian Procession)

(50)

● value gp portion

Õ××× After

● Kummer (Kummer) ○(log)n (n≧0), log Õ×

×× ↘ take the action of “qj2” on I⊗Q

● → ○ coric

log Õ×

×× Kummer log-Kummer correspondence unit portion

● ↗ ↖ not compat.

Õ××× Kummer ↝ consider of a common rigid upper bound given by log-shell↓

● (Ind 3)

Õ×

(51)

value gp portion

● const. multiple rig.

logÕ×

×× label 0

hor. core

splitting modulo µof

● 0→O×O×qj2→O×qj2/O×→0

&

logp(µ)=0

↝ No new action appears

by the iteraions of log.’s No interference

(52)

Note also

µlog(logp(A))=µlog(A) if A→˜

bijlogp(A) (compatibility of log-volumes

w/ log-links)

↝do not need to care about

how many times log.’s are applied.

(53)

⎛⎜⎜

⎜⎜⎜⎜

⎜⎜⎜⎜

⎜⎜⎜⎜

⎜⎜⎜⎜

⎜⎜⎜⎜

⎜⎝

In the Archimedean case,

we use a system (cf. [IUT III, Rem 4.8.2(v)]) {⋯↠O×N ↠O×N↠⋯}

& µN is killed inO×/µN

& constructions (of log-links,⋯)

start fromO×/µN’s, notO× (cf. [IUT III, Def 1.1(iii)])

& we put “weightN” on O×/µN

for the log-volumes (cf. [IUT III, Rem.1.2.1(i)])

(54)

NF portion

as well, consider the actions of(Fmod× )j

after (Kummer) ○(log)n (n≧0) By Fmod× ∩∏vOv=µ

↝ No new action appears in the interation of log.’s

No interference

(55)

cf multirad. contained in

geom. container      a mono-analytic container

val gp

eval

theta fct ; theta values

(depends on labels

& hol. str. ) qj2

NF

eval

(∞)κ-coric fcts ; NF

(indep. of labels

dep. on hol. str.) Fmod× (up to{±1}) Belyˇı cusp’tion

(56)

cycl. rig log-Kummer theta mono-theta cycl. rig. no interference

by const. mult. rig.

NF ̂Z×∩Q>0={1} no interference

cycl. rig byFmod× ∩∏vOv =µ

(57)

vicious cycles

µFr µ´et

Kummer

Õ×××

××log indet.=∶Iord

KummerÐ→ ○µ´et

N1×{±1}

µFr theta Iord={1}

by zero of order=1 at each cups

×Õ

××

××

⎛⎜

cf. qj2’s are not inv.

under1}

⎞⎟

⎠ Õ×××

××log

NF Iord↠Im⊂N1

{∥1}

↘ bŷZ×∩Q>0={1}

However

the totally of we have(F× )↶{±1}-indet.

(58)

1

22 1

0 cf. [IUT III, Fig 2.7]

0 is also permuted

F⋊± - sym. theta fct

local & transcendental ←Ð zero of order = 1 at each cusp

theta q=e2πiz “only one valuation”

compat. w/ prof. top. ;cycl. rig.

⎜⎜

⎜⎜

Note theta fcts/ theta values do not haveF⋊± - sym.

But, the cycl. rig. DOES.

use [ , ]

⎟⎟

⎟⎟ NF global & algebraic rat. fcts.

Never for alg. rat. fcts incompat. w/ prof. top. ←Ð

̂Z×Q> ={1} sacrifice the compat. w/ prof. top.

(59)

Note also Gal. eval. ←use hol. str.

labels

←Ð

theta Gal. eval. & Kummer

←compat. w/ labels

NF ← ⎧⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎨⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎩

the output Fmod× does not depend on labels.

global real’d monoids are

mono-analytic nature (←units are killed)

; do not depend on hol. str.

(60)

unit O×µO×µ (Ind 2)→ val. gp {qj2} w/ (Ind 3)↑

↷I⊗Q

↷ NF (−)Mmod

⎫⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎬⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎭

Kummer detachement

;

´

etale-like objects

(61)

´etale transport

full poly

Gv Ð→ Gv (Ind 1)

indet.

permutative

;we can transport the data over the Θ-wall

(62)

Another thing

Ψgau⊂ ∏

t∈F÷×

(const. monoids)

labels come from arith. hol. str.

(63)

cannot transport the labels for Θ-link

?

?

?

2

Θ-link

F÷×

1

÷×(∶= 21)

(64)

0

1

?

?

?

±-possibilities

(±)±-possibilities in total

± ÷× + + ÷× ●

(65)

use processions

{0} ⊂ {0,1} ⊂ {0,1,2} ⊂⋯⊂ {0,⋯, ℓ÷×}

z→ z→ z→ z→

{?} ⊂ {?,?} ⊂ {?,?,?} ⊂⋯⊂ {?,⋯,?} ÐÐÐÐ→then, in total(±)!-possibilities

gives more strict inequalityÐ→

than the former case

(66)

q12 q22

acts q(÷×)2

const. mult. rig.

A rough picture of the final multirad. rep’n:

(Fmod× )1 ⋯ (Fmod× )÷×

{I0Q} ⊂ {I0Q,

I1Q} ⊂ ⋯ ⊂ {I0Q,, IQ÷×}

–

(67)

Recall

R,C : groupoids (i.e. morph’s are isom’s) s.t. objects are isomorphic Φ∶RÐ→C : functor ess. surj.

If Φ is full (i.e., multiradial)

⇒sw : R×CR Ð→ R×CR

(R1,R2, α∶Φ(R1)

Φ(R2)) z→ (R2,R1, α1)

(68)

By this multirad. rep’s & the compatibility w/ Θ-link :

6 6

deg≪0 deg≈0

{qj2}1j÷× - q w/ indet.’s

w/ indet.’s we cannot

distinguish them!!

(69)

(Ind1) permutative indet. iN GvGv in the ´etale transport

(Ind2) horizontal indet. ● Θ

ÐÐÐÐ→● O×µO×µ in the Kummer detach. w/ int. str.

(Ind3) vertical indet. ●

Ð→

●log

log(O×) Ð→ ⊂

log 2p1 log(O×) O×

in the Kummer detach.

can be considered as a kind of

(70)

Z ⊗

F1

Z

↘ ↗

(Ind1) hol. hull (Ind2)

(Ind3)

(71)

q

hol. hull

mono-analytic container

possible images of “{qj2}j” somewhere, it contains a region

∥ log-shell

I Q

(72)

Recall {qj2}j z→q Ð→ 0⪯−(ht)+(indet)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

( 1 +ε) ( log -diff (+log -cond)) Ð→ (ht)⪯(1+ε)(log -diff+log -cond)

calculation in Hodge-Arakelov

miracle equality 1 2

j

j2[ logq ]≈ 2

24[ logq ] 1 ))

j[ ωE ]≈ 2

24[ logq ] 6

(73)

cf. Hodge-Arakelov

IF a global mult. subspace existed

Ô⇒ qO ↪ qj2O

Ð→ Ð→

deg≒0 deg≪0

Ô⇒ −(large)⪰0

(74)

What was needed was

the circumstances, in which

ÐÐÐÐÐ→ this calculation of the miracle equality works!!

( i.e., to abandan the scheme theory,

and to go to IU !! )

(75)

[IUT III, Th 3.11] In summary,

tempered conj. (;diagonal

;hor. core) vs prof. conj. F⋊± -conj. synchro (semi-graphs of anbd.)

(i)(objects) (ii)(log-Kummer) (iii)(compat. w/

Θ×LGPµ -link)

F⋊± -symm.

I ; unit invariant after admitting(Ind3)

invariant after admitting(Ind2)

̂ Z×-indet.

Ψ–LGPval gp compat. of log-link w/F⋊± -symm.

no interference byconst. mult. rig.

ell. cusp’tion←pro-panab.

+ hidden endom.

onlyµis involved

;multirad.

protected from Ẑ×-indet. by mono-theta cycl. rig.

quadratic str. of Heisenberg gp

F

÷×

-symm.

(−)MmodNF

Belyˇı cusp’tion

pro-panab.

+ hidden endom.

no interference byFmod×

v Ov=µ

protected from Ẑ×-indet. by Ẑ×Q>0={1}

(76)

Some questions

(77)

How about the following variants of Θ -link ?

i) { q j

2

} j z→ q N ( N > 1 )

ii) {( q j

2

) N } j z→ q ( N > 1 )

(78)

i) {qj2}j z→qN

deg≒0⎛

⎜⎝

≈ht

&

←deg≪

⎞⎟

⎠ it works

Ð→N⋅0⪯−(ht)+(indet.) (as for Nℓ)

(WhenN>⇒the inequality is weak)

(79)

ii) {( q j

2

) N } j z→ q

it DOES NOT work !

(80)

Because

1 Θ ;

replaceΘN ⇒mono-theta cycl. rig.

mono-theta cycl. rig. comes

from the quadraticity of [ , ] cf. [EtTh, Rem2.19.2]

Ð→ΘN (N>1)Ð→/∃ Kummer compat.

(81)

2 vicious cycles

ΘN zero of order=N>1 at cusps various Frob-like µKummer theory

≃ ´etale-like µ←cusp

● logÕ×

×××

KummerÐÐÐ→ ○ cf. [IUT III, Rem.2.3.3(vi)]

logÕ×

×××

● ↺loop →one loop gives onceN-power

Kummer

ÐÐÐ→

Kummer

ÐÐÐ→

(82)

IF it WORKED

Ð→ 0⪯−N(ht)+(indet.)

Ð→ (ht)⪯ N1(1+ε)(log-diff. + log-cond.) Ð→ contradition to a lower bound

given by analytic number theory (Masser, Stewart-Tijdeman)

(83)

IUTch IV

(84)

[IUT IV, Prop 1. 2]ki/Qp fin with ram. index = : ei (i ∈I,I <∞) For autom. ∀ϕ∶(⊗iIlogpOk×

i)⊗QpÐ→(⊗˜ iIlogpOk×

i)⊗Qp

6 (Ind 1)

´etale transport indet. ↶↷

&

(Ind 2)

O×µO×µ hor. indet. →

ofQp -vect. sp. which induces an autom. of the submodule

iIlogpOk×

i , put

ai ∶=⎧⎪⎪⎪

⎨⎪⎪⎪⎩

1

eipei1⌉ (p>2) bi ∶=⌊loglogpp−1pei ⌋−e1

i

2 (p=2),

(85)

⇒Then, we havepλiI 1

2plogpOk×

i

←Ð (Ind 3)vert. indet.

(Ind 1)(Ind 2)

normalisation

ϕ(pλOkioOkio(⊗iIOkio) )⊆pλ⌋−⌈δI⌉−⌈aIiIlogpOk×

i

pλ⌋−⌈δI⌉−⌈aI⌉−⌈bI(⊗iIOki)

its hol. upper bound this contains

the union of all possible images of Θ-pilot objects forλe1i

0Z. (For a bad place,λ=ord(qvi

0) )

(86)

e.g. e<p−2 O⊆ 1plogpO×=p1m

Zp -basisπ, π2, . . . , πe

cannot distinguish if we have no ring str.

“differential /F1cf. Teichm¨uller dilation

6

- ; 6 -

⎛⎜⎜

⎜⎜

k/Qp fin.

GkÐ→˜ Gk

∃non-sch. th’c autom. also cf.[QpGC] main thm

⎞⎟⎟

⎟⎟

(87)

It’s a THEATRE OF ENCOUNTER of

anab. geom.

I

R

Teich. point of view - Hodge-Arakelov (& “diff. /F1 ”)

;Diophantine conseq. !

(88)

By this upper bound,

([IUT IV, Th 1.10]) main thm. of IUT −∣log(Θ)∣

↓ ≦ ≧

−∣log(q)∣ +41{( 1 +36dmod) (logdFtpd+logfFtpd)

↘ ↙

log-diff + log-cond

(“(almost zero)- (large)”) +10(dmod+ηprm (abs. const. given by

prime number thm.)

16(1−122)log(q)}−log(q)

↘ ↙

ht

(89)

ht<: (1 +ε)(log-diff + log-cond)

miracle equality

already appeared in Hodge Arakelov theory.

Γ((E/N),O(P)∣(E/N))<→˜ ⊗÷×

j=−÷×qj2OKK P∈(E/N)[2](F)

polar coord 1deg(LHS)≈−1i=01i[ωE]≈−12[ωE]

∥ cartesian coord 1deg(RHS)≈−12÷×

j=1j2[logq]≈−241[logq]

(90)

i.e. discretisation of

“ ∫

−∞

e

x2

dx = √ π ” cartesian polar

coord coord

(91)

On the ε - term

ht ≤ δ + ∗ δ

1

2

log ( δ )

it appears as a kind of

“quadratic balance”

( ht∶= 16logq

δ∶=log -diff+log -cond. ) 6

(cf. Masser, Stewart-Tijdeman analytic lower bound)

(92)

1

2

↔ Riemann zeta ?

calculation of the intersection number

IUT : ∆.∆ for “∆ ⊂ Z ⊗

F1

Z ”

More precisely ∆.(∆+εΓFr)

the graph of “abs. Frobenius”

cf. Θ - link ↔abs. Frob.

(93)

cf.

∆.∆ ←→ Gauss-Bonnet

∣ log ( Θ )∣ ≦ ∣ log ( q )∣ ≑ 0

expresses the hyperbolicity of NF

←→ Θ-link ( pTeich der. of can. lift of Frob.

ω ↪ Φ

ω ⇒ ( 1 − p )( 2g − 2 ) ≦ 0 )

(94)

∆. ( ∆ + εΓ

Fr

)

= ∆.∆ + ∆.εΓ

Fr

↓ ↓

main term of abc ε -term

1

2

appeared

(95)

Question

Can we “integrate” it to

∆. ( ∆ + εΓ

Fr

+

ε22

Γ

2Fr

+ . . . ) = ∆.Γ

Fr

Riemann !!? ↓

(96)

Recall

Θ

Mellin

; ζ

´etale Θ also plays crucial roles in IUTch.

(97)

[IUTchI] arith. upper & lower half plane [IUTchII] arith. funct. eq. (´ etale theta) [IUTchIII] arith. analytic cont. ( log-shell

& log-link )

(98)

a phenomenon of Fourier transf. in IUTch

×

indet.

O

×µ

e

x22

e

2πiξx

dx

Ð →

(gp. str.) quadricity

;

mono-theta rigidities

multiradiality ∫

-

-

*

(99)

∃ ? IU-Mellin transf.

参照

関連したドキュメント

In this paper, under some conditions, we show that the so- lution of a semidiscrete form of a nonlocal parabolic problem quenches in a finite time and estimate its semidiscrete

Keywords: continuous time random walk, Brownian motion, collision time, skew Young tableaux, tandem queue.. AMS 2000 Subject Classification: Primary:

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

Applying the representation theory of the supergroupGL(m | n) and the supergroup analogue of Schur-Weyl Duality it becomes straightforward to calculate the combinatorial effect

Our method of proof can also be used to recover the rational homotopy of L K(2) S 0 as well as the chromatic splitting conjecture at primes p &gt; 3 [16]; we only need to use the

As a consequence of this characterization, we get a characterization of the convex ideal hyperbolic polyhedra associated to a compact surface with genus greater than one (Corollary

We study the classical invariant theory of the B´ ezoutiant R(A, B) of a pair of binary forms A, B.. We also describe a ‘generic reduc- tion formula’ which recovers B from R(A, B)

While conducting an experiment regarding fetal move- ments as a result of Pulsed Wave Doppler (PWD) ultrasound, [8] we encountered the severe artifacts in the acquired image2.