• 検索結果がありません。

DEVIATION INEQUALITIES AND MODERATE DEVIATIONS FOR ESTIMATORS OF PARAMETERS IN AN ORNSTEIN-UHLENBECK PROCESS WITH LINEAR DRIFT

N/A
N/A
Protected

Academic year: 2022

シェア "DEVIATION INEQUALITIES AND MODERATE DEVIATIONS FOR ESTIMATORS OF PARAMETERS IN AN ORNSTEIN-UHLENBECK PROCESS WITH LINEAR DRIFT"

Copied!
14
0
0

読み込み中.... (全文を見る)

全文

(1)

ELECTRONIC COMMUNICATIONS in PROBABILITY

DEVIATION INEQUALITIES AND MODERATE DEVIATIONS FOR ESTIMATORS OF PARAMETERS IN AN ORNSTEIN-UHLENBECK PROCESS WITH LINEAR DRIFT

FUQING GAO1

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R.China email: fqgao@whu.edu.cn

HUI JIANG

School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R.China email: huijiang@nuaa.edu.cn

SubmittedDecember 29, 2008, accepted in final formApril 21, 2009 AMS 2000 Subject classification: 60F12, 62F12, 62N02

Keywords: Deviation inequality, logarithmic Sobolev inequality, moderate deviations, Ornstein- Uhlenbeck process

Abstract

Some deviation inequalities and moderate deviation principles for the maximum likelihood esti- mators of parameters in an Ornstein-Uhlenbeck process with linear drift are established by the logarithmic Sobolev inequality and the exponential martingale method.

1 Introduction and main results

1.1 Introduction

We consider the following Ornstein-Uhlenbeck process

d Xt= (−θXt+γ)d t+dWt, X0=x (1.1) whereW is a standard Brownian motion andθ,γare unknown parameters withθ∈(0,+∞). We denote byPθ,γ,xthe distribution of the solution of (1.1).

It is known that the maximum likelihood estimators (MLE) of the parameters θ andγare (cf.

1RESEARCH SUPPORTED BY THE NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA (10871153)

210

(2)

[15])

θˆT=−TRT

0 Xtd Xt+ (XTx)RT 0 Xtd t TRT

0 X2td t−RT

0 Xtd t

2 (1.2)

=θ+WTµˆT−RT 0 XtdWt ˆ2T ,

ˆ

γT=−RT

0 Xtd tRT

0 Xtd Xt+ (XTx)RT 0 X2td t TRT

0 X2td t−RT

0 Xtd t

2 (1.3)

=γ+WT

T +µˆT(WTµˆT−RT

0 XtdWt) ˆ2T , where

ˆ µT= 1

T Z T

0

Xtd t, σˆ2T= 1 T

ZT

0

X2td tµˆ2T. (1.4) It is known thatθˆT andγˆT are consistent estimators ofθ andγand have asymptotic normality (cf.[15]).

Forγ≡0 case, Florens-Landais and Pham([9]) calculated the Laplace functional of(RT 0 Xtd Xt, RT

0 X2td t)by Girsanov’s formula and obtained large deviations forθˆT by Gärtner-Ellis theorem.

Bercu and Rouault ([1]) presented a sharp large deviation for θˆT. Lezaud ([14]) obtained the deviation inequality of quadratic functional of the classical OU processes. We refer to [8] and [11]for the moderate deviations of some non-linear functionals of moving average processes and diffusion processes. In this paper we use the logarithmic Sobolev inequality (LSI) to study the deviation inequalities and the moderate deviations ofθˆT andγˆTforγ6=0 case.

1.2 Main results

Throughout this paper, letλT,T≥1 be a positive sequence satisfying λT→ ∞, λT

pT →0. (1.5)

Theorem 1.1. There exist finite positive constants C0,C1,C2and C3such that for all r >0and all T≥1,

Pθ,γ,x€

|θˆTθ| ≥rŠ

C0exp¦

C1r T Eθ,γ,x( ˆσ2T)min

1,C2r © +C0exp¦

C3T Eθ,γ,x( ˆσ2Tand

Pθ,γ,x |γˆTγ| ≥r

C0exp¦

C1r T Eθ,γ,x( ˆσ2T)min

1,C2r © +C0exp¦

C3T Eθ,γ,x( ˆσ2T)© .

Remark 1.1. In this theorem and the remainder of the paper, all the constants involved depend on θ,γand the initial point x.

(3)

Theorem 1.2. (1).

Pθ,γ,x

q

T

λT( ˆθTθ)∈ ·

,T≥1

satisfies the large deviation principle with speedλTand rate function I1(u) = u2

, that is, for any closed set F inR, lim sup

n→∞

1

λT logPθ,γ,x r T

λT( ˆθTθ)∈F

!

≤ −inf

uF

u2and open set G inR,

lim inf

n→∞

1

λTlogPθ,γ,x rT

λT( ˆθTθ)∈G

!

≥ −inf

uG

u2 4θ. (2).

Pθ,γ,x

q

T

λTγTγ)∈ ·

,T≥1

satisfies the large deviation principle with speedλT and rate function I2(u) =2(θ+2γθu2 2), that is, for any closed set F inR,

lim sup

n→∞

1

λTlogPθ,γ,x r T

λTγTγ)F

!

≤ −inf

uF

θu2 2(θ+2γ2) and open set G inR,

lim inf

n→∞

1

λTlogPθ,γ,x r T

λTγTγ)G

!

≥ −inf

uG

θu2 2(θ+2γ2).

Inγ=0 case, the deviation inequalities of quadratic functionals of the classical OU process are obtained in [14]. For the large deviations and the moderate deviations ofθˆT, we refer to[1], [9]and[11]. The proofs of Theorem 1.1 and Theorem 1.2 are based on the LSI with respect to L2-norm in the Wiener space and Herbst’s argument (cf.[10],[12]).

2 Deviation inequalities

In this section, we give some deviation inequalities for the estimatorsθˆTandγˆTby the logarithmic Sobolev inequality and the exponential martingale method. For deviation bounds for additive functionals of Markov processes, we refer to[3]and[18].

2.1 Moments

It is known that the solution of equation (1.1) has the following expression:

Xt=

 xγ

θ

‹

eθt+ γ θ +eθt

Z t

0

eθsdWs. (2.1)

From this expression, it is easily seen that for anyt≥0, µt:=Eθ,γ,x(Xt) =

 xγ

θ

‹

eθt+ γ

θ, (2.2)

σ2t :=Varθ,γ,x(Xt) = 1

2θ(1−et) (2.3)

(4)

and for any 0≤st,

Covθ,γ,x(Xs,Xt) = 1

2θ(1−e2θs)eθ(t−s). (2.4) Therefore

Eθ,γ,x( ˆµT) =1 TEθ,γ,x

ZT

0

Xtd t

!

= 1 θT

 xγ

θ

‹

(1−eθT) +γ

θ, (2.5)

Varθ,γ,x µˆT

= 1 T2Eθ,γ,x

 ZT

0

eθt Zt

0

eθsdWsd t

!2

 (2.6)

= 1

θ2T2

T− 1

2θ(e2θT−1) +2

θ(eθT−1)

and so for allT≥1,

Varθ,γ,x µˆT

≤ 1

3T (2θ+1) (2.7)

and

Eθ,γ,x( ˆσ2T) = 1 2θ + 1

2T(1−e2θT)

−1+2θ

 xγ

θ

‹2

− 1

θ2T2(1−eθT)2

 xγ

θ

‹2

(1−eθT)

− 1 θ2T2

T− 1

2θ(e2θT−1) +2

θ(eθT−1)

which implies

Eθ,γ,x( ˆσ2T)− 1 2θ

≤ 1

θ2T

θ

 xγ

θ

‹2 +2

θ

. (2.8)

Lemma 2.1. For any0≤αθ2/4, for all T ≥1, Eθ,γ,x exp α

Z T

0

Xt2d t

!!

<∞,

and there exist finite positive constants L1and L2such that for all0≤αθ2/4and T≥1, Eθ,γ,x exp α

ZT

0

X2td t

!!

L1eL2αT.

Proof. For any 0≤αθ2/4, setκ=p

θ2−2α. Then by Girsanov theorem, we have d Pθ,γ,x

d Pκ,γ,x =exp (

− Z T

0

(θ−κ)Xtd Xt− ZT

0

(αX2tγ(θκ)Xt)d t )

(5)

and so

Eθ,γ,x exp α ZT

0

Xt2d t

!!

=Eκ,γ,x d Pθ,γ,x d Pκ,γ,x exp

( α

ZT

0

X2td t )!

=Eκ,γ,x exp (

(−θ+κ) ZT

0

Xtd Xt+γ ZT

0

(θ−κ)Xtd t )!

=Eκ,γ,x exp

(−(θ−κ)

2 (XT2T) +γ Z T

0

(θ−κ)Xtd t )!

≤exp

(θ−κ)T 2

Eκ,γ,x exp (

γ Z T

0

(θ−κ)Xtd t )!

where the last inequality is due toθκ. Now we have to estimateEκ,γ,x(exp{γRT

0(θ−κ)Xtd t}).

Since underPκ,γ,x, ˆ

µTN 1

κT(x−γ

κ)(1−eκT) +γ κ, 1

κ2T2

T− 1

2κ(e2κT−1) +2

κ(eκT−1)

, we have

Eκ,γ,x exp (

γ Z T

0

(θ−κ)Xtd t )!

=exp

γ(θκ) κ



xγ κ

‹

(1−eκT) +γT

‹

·exp

¨γ2(θ−κ)22

T− 1

2κ(e2κT−1) +2

κ(eκT−1)

« . Notingθ /p

2≤κθ, 0≤θκ=2α/(θ+κ)≤2α/θand(θ−κ)2αθ for all 0≤αθ2/4, we complete the proof of the lemma.

ƒ

2.2 Logarithmic Sobolev inequality

Since the LSI with respect to the Cameron-Martin metric does not produce the concentration inequality of correct order in large timeT for the functionals

F(X):= 1 pT

Z T

0

g(Xs)ds−E ZT

0

g(Xs)ds

!!

,

in order to get the concentration inequality of correct order for the functionals F(X), as pointed out by Djellout, Guillin and Wu ([7]) we should establish the LSI with respect to theL2-metric.

Let us introduce the logarithmic Sobolev inequality onWwith respect to the gradient inL2([0,T],R) ([10]). Letµbe the Wiener measure onW =C([0,T],R). A function f :W →Ris said to be

(6)

differentiable with respect to theL2-norm, if it can be extend toL2([0,T],R)and for anywW, there exists a bounded linear operatorD f(w):gDgf(w)onL2([0,T],R)such that

kglimkL20

|f(w+g)f(w)−Dgf(w)| kgkL2

=0.

If f :W →R is differentiable with respect to the L2-norm, then there exists a unique element

f(w) = (∇tf(w),t∈[0,T])inL2([0,T],R)such that

Dgf(w) =〈∇f(w),gL2, f or al l gL2([0,T],R).

Denote by Cb1(W/L2)the space of all bounded function f on W, differentiable with respect to the L2-norm, such that ∇f is also continuous and bounded fromW equipped with L2-norm to L2([0,T],R). Applying Theorem 2.3 in[10]to the Ornstein-Uhlenbeck process with linear drift, we have

EntPθ,γ,x(f2)≤ 2 θ2Eθ,γ,x

Z T

0

|∇tf|2d t

!

, fCb1(W/L2) (2.9) where the entropy of f2is given by

EntPθ,γ,x(f2) =Eθ,γ,x(f2logf2)−Eθ,γ,x(f2)logEθ,γ,x(f2).

Lemma 2.2. For any|α| ≤θ2/4,

Eθ,γ,x exp (

α ZT

0

X2td tEθ,γ,x Z T

0

X2td t

!!)!

Eθ,γ,x exp (4α2

θ2 Z T

0

X2td t )!

and

Eθ,γ,x€ exp¦

αT€ ˆ

µ2TEθ,γ,x( ˆµ2T)Š©Š

Eθ,γ,x exp (4α2

θ2 ZT

0

Xt2d t )!

.

Proof. We apply Theorem 2.7 in [12] to prove the conclusions of the lemma. Take A1 = {αf; |α| ≤θ2/4}andA2={αh; |α| ≤θ2/4}, where

f(w) = Z T

0

w2td t, h(w) = 1 T

ZT

0

wtd t

!2

. Define

Γ1(g1) = 4 θ2

g12

f , g1∈ A1; Γ2(g2) = 4 θ2

g22

h , g2∈ A2.

Then for anyλ ∈[−1, 1], g1 ∈ A1 and g2 ∈ A2, λg1 ∈ A1, λg2 ∈ A2, Γ1(λg1) = λ2Γ1(g1), Γ2g2) =λ2Γ2(g2)and by Lemma 2.1

Eθ,γ,x exp{λΓ1(g1)}

<∞, Eθ,γ,x exp{λΓ2(g2)}

<∞.

Choose a sequence of realC-functionsΦn,n≥1 with compact support such that limn→∞sup|x|≤Mn(x)− ex|=0 for allM∈(0,∞). For anyg1=αf ∈ A1andg2=αh∈ A2, set

Fn(w) = Φn g1(w)/2

, Hn(w) = Φn g2(w)/2 .

(7)

Then for any gL2([0,T],R),

kglimkL20

|Fn(w+g)Fn(w)−αΦn g1(w)/2

w,gL2| kgkL2

=0 and

kglimkL20

|Hn(w+g)Hn(w)−αΦn g2(w)/21

T

RT

0 wtd tRT 0 gtd t| kgkL2

=0.

Therefore,Fn,HnC1b(W/L2),∇Fn=αΦn g1(w)/2 w, and

Hn= α T

ZT

0

wtd tΦn g2(w)/2

and so by (2.9), we have EntPθ,γ,x€

Fn2Š

≤ 2 θ2Eθ,γ,x

ZT

0

|αwt|2d t€

Φn g1(w)/2Š2

!

and

EntPθ,γ,x€ Hn2Š

≤ 2 θ2Eθ,γ,x

 1

T α

Z T

0

wtd t

!2

€Φn g2(w)/2Š2

. Lettingn→ ∞and by Lemma 2.1, we get

EntPθ,γ,x(eg1)≤ 1

2Eθ,γ,x Γ1(g1)eg1

, EntPθ,γ,x(eg2)≤1

2Eθ,γ,x Γ2(g2)eg2

, (2.10)

and so the conclusions of the lemma hold by Theorem 2.7 in[12]andˆ2T≤RT 0 X2td t.

ƒ

2.3 Deviation inequalities

SinceXTN€

µT,σ2TŠ

, and underPθ,γ,x ˆ

µTN 1

θT(x− γ

θ)(1−eθT) +γ θ, 1

θ2T2

T− 1

2θ(e2θT−1) +2

θ(eθT−1)

, it is easily to get from Chebyshev inequality, for anyr>0,

Pθ,γ,x€

XTEθ,γ,x(XT) ≥rŠ

≤2 exp¦

θr2©

, (2.11)

Pθ,γ,x€

µˆTEθ,γ,x( ˆµT) ≥rŠ

≤2 exp

¨

θ3Tr2 2θ+1

«

(2.12) where we used (2.7).

(8)

Lemma 2.3. There exist finite positive constants C0,C1,C2such that for all r>0and all T≥1, Pθ,γ,x

Z T

0

X2td tEθ,γ,x ZT

0

X2td t

!

r T

!

C0exp

C1r Tmin

1,C2r and

Pθ,γ,x€

µˆ2TEθ,γ,x( ˆµ2T) ≥rŠ

C0exp

C1r Tmin

1,C2r .

In particular, there exist finite positive constants C0,C1,C2such that for all r>0and all T≥1, Pθ,γ,x€

|σˆ2TEθ,γ,x( ˆσ2T)| ≥rŠ

C0exp

C1r Tmin

1,C2r .

Proof. We only prove the first inequality. By Lemma 2.2 and Lemma 2.1, there exist finite positive constantsL1andL2such that for allT ≥1, for any|α| ≤θ2/4,

Eθ,γ,x exp (

α ZT

0

X2td tEθ,γ,x Z T

0

Xt2d t

!!)!

L1eL2α2T. Therefore, by Chebyshev inequality, for anyr>0,T≥1 and|α| ≤θ2/4,

Pθ,γ,x Z T

0

Xt2d tEθ,γ,x( ZT

0

Xt2d t)≥r T

!

L1e(αr−L2α2)T

and

Pθ,γ,x Z T

0

X2td tEθ,γ,x( Z T

0

X2td t)≤ −r T

!

L1e(αrL2α2)T. Now, by

sup

|α|≤θ2/4{αrL2α2} ≥θ2r 8 min

1, 2r

L2θ2

, we obtain the first inequality of the lemma from the above estimates.

ƒ

Lemma 2.4. There exist finite positive constants C0,C1and C2such that for all r>0and all T≥1, Pθ,γ,x

‚

WT

 ˆ µTγ

θ

‹ ≥r T

Œ

C0exp

C1r Tmin

1,C2r . Proof. Since for anyr>0 andT≥1,

¨

WT

 ˆ µTγ

θ

‹ ≥r T

«

⊂¦

WT( ˆµTEθ,γ,x( ˆµT))

r T/2©

¨

WT



Eθ,γ,x( ˆµT)− γ θ

‹

r T/2

«

⊂¦

|WT| ≥p r T/2©

∪¦

( ˆµTEθ,γ,x( ˆµT)) ≥p

r©

∪ (

WT

θr T 2|€

xθγŠ

| )

,

(9)

by (2.12) andWTN(0,T), we get Pθ,γ,x



WT( ˆµTγ θ)

r T

‹

≤2 exp

Tr 8

+2 exp

¨

θ3Tr 2θ+1

« +2 exp

θ2r2T

xθγŠ2

 .

ƒ

Lemma 2.5. For eachβ ∈R fixed, there exist finite positive constants C0,C1,C2 such that for all r>0and all T≥1,

Pθ,γ,x

Z T

0

Xtβ dWt

r T

!

C0exp

C1r Tmin

1,C2r . Proof. It is known that forα∈R,

MT(α)=exp (

α Z T

0

Xtβ

dWtα2 2

ZT

0

Xtβ2

d t )

, T≥0

isFT-martingale, whereFT:=σ(Wt,tT). Therefore, by Hölder inequality, we can get that for anyε∈(0, 1],

Eθ,γ,x exp (

α ZT

0

Xtβ dWt

)!

Eθ,γ,x exp

((1+ε)2α2

Z T

0

Xtβ2

d t

)!!1+εε

Eθ,γ,x

MT((1+ε)α) 1+ε1

= Eθ,γ,x exp (

(1+ε)2α2

Z T

0

Xtβ2 d t

)!! ε

1+ε

.

In particular, takeε=1, then by Lemma 2.1, there exists finite positive constantsL1=L1(θ,β,γ,x) andL2=L2(θ,β,γ,x)such that for allT ≥1, for anyα2θ2/16, by Cauchy-Schwartz inequality,

Eθ,γ,x exp (

α Z T

0

Xtβ dWt

)!

Eθ,γ,x exp (

2 ZT

0

(Xtβ)2d t )!!1

2

Eθ,γ,x exp (

2 ZT

0

X2td t )!!1

4

Eθ,γ,x exp (

2 ZT

0

(−2βXt+β2)d t )!!1

4

L1eL2α2T.

Therefore, by Chebyshev inequality, the conclusion of the lemma holds.

ƒ

(10)

Proof of Theorem 1.1

We only show the first inequality. The second one is similar. By θˆTθ= WT€

ˆ µTθγŠ

−RT 0

€Xtθ㊠dWt ˆ2T

for anyr>0 andT≥1, Pθ,γ,x€

|θˆTθ| ≥rŠ

Pθ,γ,x€

σˆ2TEθ,γ,x( ˆσ2T)

Eθ,γ,x( ˆσ2T)/2Š +Pθ,γ,x

WT

 ˆ µTγ

θ

‹

− ZT

0

 Xtγ

θ

‹ dWt

Eθ,γ,x( ˆσ2T)r T/2

!

Therefore, by Lemmas 2.3, 2.4 and 2.5, we obtain the first inequality of the theorem.

ƒ

3 Moderate deviations

In this section, we show Theorem 1.2. By (1.2) and (1.3), we have the following estimates

( ˆθTθ) +2θ T

ZT

0

 Xtγ

θ

‹ dWt

(3.1)

≤|WT€ ˆ µTθγŠ

|

ˆ2T +|2θσˆ2T−1|

RT 0

€XtγθŠ dWt

ˆ2T

and for

γTγ)WT T +2γ

T Z T

0

 Xtγ

θ

‹ dWt

(3.2)

≤|µˆT||WT€ ˆ µTθγŠ

|

ˆ2T +|2γσˆ2TµˆT|

RT 0

€Xtθ㊠dWt

ˆ2T .

Lemma 3.1. (1). For any r>0, lim sup

T→∞

1

λTlogPθ,γ,x

 µˆTγ

θ WT

≥p Tr

‹

=−∞,

lim sup

T→∞

1

λTlogPθ,γ,x µˆTγ

θ

ZT

0

 Xtγ

θ

‹ dWt

≥p Tr

!

=−∞

and

lim sup

T→∞

1

λTlogPθ,γ,x ˆ σ2T− 1

Z T

0

 Xtγ

θ

‹ dWt

≥p Tr

!

=−∞.

(11)

(2). For anyδ >0, lim sup

T→∞

1

λT logPθ,γ,x

( ˆθTθ)−2θ T

Z T

0

 Xtγ

θ

‹ dWt

δ rλT

T

!

=−∞

and

lim sup

T→∞

1

λTlogPθ,γ,x

γTγ)WT T −2γ

T ZT

0

 Xtγ

θ

‹ dWt

δ rλT

T

!

=−∞. Proof. (1). We only give the proof of the third assertion in (1). The rest is similar. For anyL>0,

( ˆ σ2T− 1

Z T

0

 Xtγ

θ

‹ dWt

≥p Tr

)

¨ ˆ σ2T− 1

2θ ≥ r

L

«

 1 pT

Z T

0

 Xtγ

θ

‹ dWt

L

 .

By Lemma 2.3, and Lemma 2.5, we have lim sup

T→∞

1

λTlogPθ,γ,x

‚ ˆ σ2T− 1

2θ ≥ r

L

Œ

=−∞

and

lim sup

T→∞

1

λT logPθ,γ,x

 1 pT

Z T

0

 Xtγ

θ

‹ dWt

L

≤ −L2C1C2. Hence,

lim sup

T→∞

1

λTlogPθ,γ,x ˆ σ2T− 1

Z T

0

 Xtγ

θ

‹ dWt

≥p Tr

!

≤ −L2C1C2. LettingL→ ∞, we obtain the third conclusion.

(2). It follows from (3.1) and (3.2) that

( ˆθTθ)−2θ T

Z T

0

 Xtγ

θ

‹ dWt

δ rλT

T

!

|WT

 ˆ µTγ

θ

‹

| ≥δσˆ2T pT

2

|2θσˆ2T−1|

ZT

0

 Xtγ

θ

‹ dWt

δσˆ2T pT

2

|WT

 ˆ µTγ

θ

‹

| ≥δEθ,γ,x( ˆσ2T) pT

4

∪¦

|σˆ2TEθ,γ,x( ˆσ2T)| ≥Eθ,γ,x( ˆσ2T)/2©

|2θσˆ2T−1|

Z T

0

 Xtγ

θ

‹ dWt

δEθ,γ,x( ˆσ2T) pT

4

(12)

and

γTγ)−2γ T

ZT

0

 Xtγ

θ

‹ dWt

δ rλT

T

!

|µˆT||WT

 µˆTγ

θ

‹

| ≥δσˆ2T pT

2

|2γσˆ2TµˆT|

Z T

0

 Xtγ

θ

‹ dWt

δσˆ2T pT

2

§ µˆTγ

θγ

2θ ª

∪¦

|σˆ2TEθ,γ,x( ˆσ2T)| ≥Eθ,γ,x( ˆσ2T)/2©

 3γ 2θ|WT

 ˆ µTγ

θ

‹

| ≥δEθ,γ,x( ˆσ2T) pT

4



σˆ2Tγ θ +

µˆTγ

θ

‹

Z T

0

 Xtγ

θ

‹ dWt

δEθ,γ,x( ˆσ2T) pT

4

 .

Therefore, by Lemmas 2.3 and (1), we get the conclusions.

ƒ

Lemma 3.2. For eachβ,κ ∈ R fixed,

§ Pθ,γ,x

 pκ

T

RT

0 Xtβ dWt∈ ·

‹ ,T ≥1

ª

satisfies the LDP with speedλTand rate function J(u) = θ2u2

κ2(θ+2(γθ β)2). Proof. By (2.12) and Lemma 2.3, we can get for anyδ >0,

T→∞lim 1

T logPθ,γ,x 1 T

Z T

0

Xtβ2

d t− 1

2θ + 1

θ2(γ−θ β)2

δ

!

<0. (3.3) Therefore, Proposition 1 in[4]yields the conclusion of the lemma.

ƒ

Proof of Theorem 1.2

By Lemma 3.1,{Pθ,γ,x( qT

λT( ˆθTθ)∈ ·),T ≥1}and{Pθ,γ,x( q T

λTγTγ)∈ ·),T ≥1}are expo- nential equivalent to

( Pθ,γ,x

r T λT

T

ZT

0

 Xtγ

θ

‹ dWt∈ ·

! ,T ≥1

)

and (

Pθ,γ,x r T

λT WT

T +2γ T

Z T

0

 Xtγ

θ

‹ dWt

!

∈ ·

! ,T≥1

) , respectively. Noting forγ6= 0, WT

T +

T

RT 0

€XtθγŠ

dWt =

T

RT 0

Xtθγ+1

dWt, Theorem 1.2 follows from Lemma 3.2.

(13)

ƒ

AcknowledgmentsThe authors are grateful to referees for their comments and suggestions.

References

[1] B. Bercu, A. Rouault. Sharp large deviations for the Ornstein-Uhlenbeck process.Theory of Prob. and its Appl., 46(2002), 1-19. MR1968706

[2] S. G. Bobkov, F. Götze. Exponential Integrability and Transportation Cost Related to Loga- rithmic Sobolev Inequalities.Journal of Functional Analysis, 163(1999), 1-28. MR1682772 [3] P. Cattiaux, A. Guillin. Deviation bounds for additive functionals of Markov process.ESAIM:

Probability and Statistics. 12(2008), 12-29. MR2367991

[4] A. Dembo. Moderate Deviations for Martingales with Bounded Jumps.Electronic Commu- nications in Probability, 1 (1996),11-17. MR1386290

[5] A. Dembo, D. Zeitouni.Large Deviations Techniques and Applications, Springer-Verlag, 1998.

MR1619036

[6] J. D. Deuschel, D. W. Stroock.Large Deviations, New York, 1989. MR0997938

[7] H. Djellout, A. Guillin, L. M. Wu. Transportation cost-information inequalities and appli- cations to random dynamical system and diffusions.Ann. Probab., 32(2004), 2702-2732.

MR2078555

[8] H. Djellout, A. Guillin, L. M. Wu. Moderate deviations for non-linear functionals and em- pirical spectral density of moving average processes.Ann. Inst. H. Poincar´e Probab. Statist., 42(2006), 393-416. MR2242954

[9] D. Florens-Landais, H. Pham, Large deviations in estimate of an Ornstein-Uhlenbeck model.

Journal of Applied Probability, 36(1999), 60-77. MR1699608

[10] M. Gourcy, L. M. Wu, Logarithmic Sobolev inequalities of diffusions for the L2 metric.

Potential Analysis, 25(2006), 77-102. MR2238937

[11] A. Guillin, R. Liptser, Examples of moderate deviation principles for diffusion processes.

Discrete and continuous dynamical systems-series B, 6(2006), 803-828. MR2223909 [12] M. Ledoux, Concentration of Measure and Logarithmic Sobolev Inequalities. S´eminaire de

probabilit´es XXXIII, Lecture Notes in Mathematics, 1709(1999), 120-216. MR1767995 [13] M. Ledoux, The Concentration of Measure Phenomenon.Mathematical Surveys and Mono-

graphs 89, American Mathematical Society, 2001. MR1849347

[14] P. Lezaud, Chernoff and Berry-Essen’s inequalities for Markov processes.ESAIMS: Probabil- ity and Statistics, 5(2001), 183-201. MR1875670

[15] Yury A. Kutoyants, Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics, London, 2004, MR2144185

(14)

[16] B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes. Oxford University Presss, New York,1999.

[17] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Springer-Verlag, 1991.

MR1083357

[18] L. M. Wu, A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri.

Poincaré, Probabilités et Statistiques. 36(2000), 435-445. MR1785390

参照

関連したドキュメント

Key words: Barabási-Albert model, sublinear preferential attachment, dynamic random graphs, maximal degree, degree distribution, large deviation principle, moderate

Specifically, given an initial sample from a two parameter Poisson-Dirichlet process, we establish conditional fluctuation limits and conditional large deviation principles for

SOME RESULTS ON CONVERGENCE RATES FOR PROBABILITIES OF MODERATE DEVIATIONS FOR SUMS OF RANDOM VARIABLES..

But since the contracts are embedded in a collective of identical contracts, all providing independent information on the structure distribution, we can estimate these

[2] , Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl. Kittaneh, A numerical radius inequality and an estimate for

It is well known that in general Burkholder’s function (that is, the special function leading to a given martingale inequality) is not unique, see e.g.. Sometimes it is of interest

Keywords and phrases: Capacity on Wiener space, quasi-sure analysis, Ornstein–Uhlenbeck process, Brownian

The author would like to express his thanks to the editor for his kind help and invaluable suggestions in the formatting and writing of this