• 検索結果がありません。

Branner-Hubbard-Lavaurs deformation of parabolic cubic polynomials(Complex Dynamics and its Related Fields)

N/A
N/A
Protected

Academic year: 2021

シェア "Branner-Hubbard-Lavaurs deformation of parabolic cubic polynomials(Complex Dynamics and its Related Fields)"

Copied!
3
0
0

読み込み中.... (全文を見る)

全文

(1)

$\mathrm{B}\mathrm{r}\mathrm{A}\mathrm{n}\mathrm{e}\mathrm{r}$

-Hubbard-Lavaurs

deformation of

parabolic

cubic polynomials

東京工芸大学

中根

静男

(Shizuo Nakane)

Tokyo

$\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{e}\ \mathrm{I}\dot{\mathrm{u}}\mathrm{c}$

University

Since

the wring deformation (or the Branner-Hubbard deformation) changes

nothin$\mathrm{g}$

on

thefilled-inJuliaset, it does not deform polynomials with oonnectedJulia

sets. For polynomials with parabolic cycles, the Lavaurs

maps

enable us to deform

complex structures also in the parabolic basins. This deformation, the

Branner-Hubbatd-Lavaurs deformation,

can

deform such polynomials. We$\mathrm{w}\mathrm{i}\mathrm{U}$showthat this

happens for real cubic polynomials with parabolic fixed points of multiplier

one.

This is closelyrelated to the non-landing of stretchingrays. Wewill also show that

the real BHL-deformation set coincides with the accumulation set of

a

stretching

ray.

1

Stretching

rays

for

real cubic polynomials

We consider a family ofreal cubic polynomialsofthe form :

$Ps=\{P_{A,B}(z)=z^{S}-3Az+\sqrt{B}; A,B>0\}$

.

For $P\in Ps$, let $\varphi_{P}$ be its

$\mathrm{B}\tilde{\mathrm{o}}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{r}$ coordinate. For a positive number $s>0$, put

$\ell_{s}(z)=z|z|^{s-1}$ andwe define a $P$-invariant Beltrami form$\mu_{\iota}$ by

$\mu_{l}:=\{$

$(\ell_{l}\mathit{0}\varphi_{P})^{*}\mu_{0}$in a nbd of

oo

,

$\mu_{0}$

on

$K(P)$

.

Then, by theMeasurable RiemannMapping Theorem, $\mu_{\iota}$ is integratedbya qc-map

$\chi$

.

and $P_{\iota}:=\chi_{\mathrm{r}}\circ P\circ\chi_{l}^{-1}\in \mathcal{P}_{\theta}$

.

Thus we define a real analytic map $W_{P}$ : $\mathrm{R}_{+}arrow Ps$

by $W_{P}(s)=P_{s}$

.

The B\"ottcher coordinate $\varphi_{P}$

.

of

P.

is equal to

$\ell_{s}\circ\varphi_{P}\circ\chi_{s}^{-1}$. Since $P_{s}$ is hybrid equivalent to $P$

,

it holds $P\equiv P$ for $P\in C_{3}$

,

the connectedness locus.

For$P\in \mathcal{E}_{3}$

,

the escape locus, we definethe stretching ray through$P$ by

$R(P)=W_{P}(\mathbb{R}_{\vdash})=\{P_{l};s\in \mathbb{R}_{+}\}$

.

On

the

shift

locus, where both critical points $\pm\sqrt{A}$

are

escaping,

we

define the

Bottcher vectorby

$\eta(P):=\frac{\mathrm{l}}{\log 3}\log\log|\varphi_{P}(-\sqrt{A})|-\frac{\mathrm{l}}{\log 3}\log\log|\varphi_{P}(\sqrt{A})|$

.

数理解析研究所講究録

(2)

Lemma 1.1. $([KN])$ The B\"ottcher vector is constant on each stretching ray in the

shift

locus.

Intheshift locusofourfamilyP3, stretching raysare level curvesoftheB\"ottcher

vector map $P\vdash+\eta(P)$

.

2

$\mathrm{B}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}-\mathrm{H}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{a}\mathrm{r}\mathrm{d}$

-Lavaurs deformation

Consider the locus $Per_{1}(1)=\{B=4(A+1/3)^{3};0<A<1/9\}$ in $P_{3}$

,

where the

map

$Q$ has a parabolic fixedpoint $\beta_{Q}$ ofmultiplier onewhose immediate basin $B_{Q}$

contains both critical points. Let $\phi_{Q,-}$ and$\phi_{Q,+}$ denote the attracting and repeling

Fatou coordinates respectively of the parabolic fixed point $\sqrt Q$ for $Q\in Pe\mathrm{r}_{1}(1)$

.

The Lavaurs map $g_{Q,\sigma}$ : $B_{Q}arrow \mathbb{C}$ with

lifted

phase $\sigma\in \mathrm{R}$ is defined by $g_{Q.\sigma}=$

$\phi_{Q,+}^{-1}\circ T_{\sigma}\circ\phi_{Q.-}$, where $T_{\sigma}(z)=z+\sigma$

.

For $Q\in Per_{1}(1)$ and $\sigma\in \mathrm{R}$

, we

define a

$<Q,g_{Q,\sigma}>$-invariant Beltrami form $\mu_{s,\sigma}$ by

$\mu_{\epsilon,\sigma}$

$:=$

Then, as before, there exists a $\mathrm{q}\mathrm{c}$-map

$\chi_{\epsilon,\sigma}$ such that $\mu_{s,\sigma}=xi_{\sigma},\mu_{0},$ $Q_{\iota,\sigma}:=\chi_{s,\sigma}0$

$Q\circ\chi_{s,\sigma}^{-1}\in Per_{1}(1)$

.

Lemma 2.1. The map $\chi_{s,\sigma}\mathrm{o}g_{Q,\sigma}\mathrm{o}\chi_{s,\sigma}^{-1}$ is a Lavaurs map

of

$Q_{s,\sigma}$ with some

lifled

phase $\sigma(s)$

.

We call $(Q_{s.\sigma}, \sigma(s))$ the Bmnner-Hubbatd-Lavaurs

deformation

of $(Q,\sigma)$

.

We

also definethe $BHL$-ray $L(Q,\sigma)$ through $(Q,\sigma)$ by

$L(Q,\sigma)=\{(Q_{e,\sigma}, \sigma(s))\in Per_{1}(1)\mathrm{x}\mathrm{R};s\in \mathbb{R}\}$

and the B\"ottcher-Lavaurs vectorby

$\eta(Q,\sigma):=\frac{\mathrm{l}}{\log 3}$log log$\varphi_{Q}(g_{Q,\sigma}(-\sqrt{A}))-\frac{1}{\log 3}\log\log\varphi_{Q}(gQ,\sigma(\sqrt{A}))$

.

Note that this is well defined because $\varphi_{Q}(g_{Q,\sigma}(\pm\sqrt{A}))>1$. It satisfies$\eta(Q, \sigma+1)=$

$\eta(Q,\sigma)$

.

By thesame argument as in the proof of Lemma 1.1,wehave the following.

Lemma 2.2. The B\"oucher-Lavaurs vector$\eta(Q,\sigma)$ is constant on each BHL-ray.

For$Q\in Per_{1}(1)$

, we

definetheFatou vector by$\tau(Q):=\phi_{Q,-}(-\sqrt{A})-\phi_{Q,-}(\sqrt{A})$

.

Lemma

2.3.

The Fatou vector gives

a

real analytic pammetrization

of

the locus

$Per_{1}$(1).

It easily follows that $Q_{s,\sigma}\equiv Q$ if $\tau(Q)\in \mathbb{Z}$, that is, if $Q$ has a critical orbit

relation.

(3)

Theorem 2.1. ($Non- tr\dot{\tau}\dot{m}al$ BHL-deformation)

If

$\tau(Q)\not\in \mathbb{Z}$, then the map $s\text{ト}arrow Q_{s,\sigma}$ is not constant

for

any $\sigma$.

Such a

map

is first obtained in Willumsen [W] in the region $A<0$

.

See also

Tan Lei [T]. Once we get such a non-trivial deformation, the following corollary is

essentially due to [W].

Corollary 2.1. (Discontinuity

of

wring operution)

Suppose $\tau(Q)\not\in$ Z. Then the map $(P, s)rightarrow W_{P}(s)$ is $d\dot{w}$continuous at $(Q,s)$

if

$Q_{\iota,\sigma}\neq Q$

for

some

$\sigma$.

Theregion$R_{0}:=\{B>4(A+1/3)^{S}\}$ is contained in the shift locus. Stretching

rays in $\mathcal{R}_{0}$

are

uniquely labelled by the B\"ottcher vector. Let $R(\eta)$ denote the ray

with level$\eta$

.

Theorem 2.2. ($[KNJ$, Non-landing

of

stretching rays)

If

$\eta\in \mathbb{Z}$, then$R(\eta)$ lands at$Q\in Per_{1}(1)$ wrth$\tau(Q)=\eta$

. If

$\eta\not\in \mathrm{Z}$

,

then$R(\eta)$ has a

non-trivial

accumulation set on$Per_{1}(1)$

.

The followingtheorem suggests thatstretching

rays are

obtained$\mathrm{h}\mathrm{o}\mathrm{m}$the

rescal-ing of BHL-rays and

seems

to explain the regular oscillation of stretchingrays.

Theorem 2.3. Suppose$\tau(Q)\not\in \mathrm{Z}$. Then the $BHL$

-deformation

set$\{Q_{s,\sigma};s>0\}$

of

$Q$ coincides with the accumulation set

of

thestretchingray$R(\eta)$, where$\eta=\eta(Q,\sigma)$

.

References

[B] B. Branner: Turning around the connectedness locus. In: “Topologicalmethods

in modem Mathematics.” pp.

391-427.

Houston, Publish orPerish, 1993.

[BH] B. Branner and J. Hubbard: The iteration ofcubic polynomiak. Part I: The

global topology of parameter

space. Acta

Math. 160 (1988),

pp.

143-206

[KN] Y. Komori and

S.

Nakane: Landing property of stretchingrays for real cubic

polynomials.

Conformal

Geometry and Dynamics

8

(2004), pp.

87-114.

[M] J. Milnor: Remarkson iterated cubic maps. Experimental Math. 1 (1992), pp.

5-24.

[PT] C. L. Petersen and Tan Lei: Branner-Hubbard motions and attracting

dy-namics. In: “Dynamics on the Riemann sphere.” pp.

45-70.

Euro. Math. Soc.,

2006.

[T] TanLei: Stretching

rays

andtheir accumulations, folowing PiaWillumsen.In:

“Dynamics

on

the

Riemann

sphere.”

pp.

183-208.

Euro.

Math.

Soc.,

2006.

[W] P. Willumsen: Holomorphic dynamics :

On

accumulation of $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{c}\mathrm{h}_{\dot{\mathrm{i}}}\mathrm{g}$ rays.

Ph.D. thesis Tech. Univ. Denmark,

1997.

参照

関連したドキュメント

The main purpose of this survey is to identify and highlight the discrete inequalities that are connected with (CBS)− inequality and provide refinements and reverse results as well

We recall here the de®nition of some basic elements of the (punctured) mapping class group, the Dehn twists, the semitwists and the braid twists, which play an important.. role in

Conley index, elliptic equation, critical point theory, fixed point index, superlinear problem.. Both authors are partially supportedby the Australian

Coupled singular parabolic systems with memory: Inspired by the results in [2, 26, 40], it would be quite interesting to consider the null controllability of coupled system of

In the proofs we follow the technique developed by Mitidieri and Pohozaev in [6, 7], which allows to prove the nonexistence of not necessarily positive solutions avoiding the use of

The assertions stated in this work have been specialized in the area of the location of zeros for complex polynomials in terms of two foci: (i) finding bounds for complex

Next, new classes of rational functions: parabolic Collet–Eckmann and topological parabolic Collet–Eckmann are introduced and mean porosity of Julia sets for functions in these

[19, 20], and it seems to be commonly adopted now.The general background for these geometries goes back to Klein’s definition of geometry as the study of homogeneous spaces, which