• 検索結果がありません。

Estimations of power difference mean by Heron mean (The research of geometric structures in quantum information based on Operator Theory and related topics)

N/A
N/A
Protected

Academic year: 2021

シェア "Estimations of power difference mean by Heron mean (The research of geometric structures in quantum information based on Operator Theory and related topics)"

Copied!
13
0
0

読み込み中.... (全文を見る)

全文

(1)9. 数理解析研究所講究録 第2033巻 2017年 9-21. Estimations of power difference 前橋工科大学. (Maebashi. mean. by Heron. mean. 伊藤公智(Masatoshi Ito) Technology). Institute of. Abstract. In this report,. we. discuss estimations of power difference. We obtain the greatest value double. $\alpha$= $\alpha$(q). mean. Heron. by. mean.. $\beta$= $\beta$(q). such that the. \overline{q}^{\mathrm{L}_{\frac{a^{q+1}-b^{q+1} {a^{\mathrm{q} -b\mathrm{q} +1. is the power. and the least value. inequality. K_{ $\alpha$}(a, b)<J_{q}(a, b)<K_{ $\beta$}(a, b) holds for any a, b difference similar. mean. >. and. inequalities. 0 and q \in \mathbb{R} , where. J_{q}(a, b). K_{q}(a, b)=(1-q)\displaystyle \sqrt{ab}+q\frac{a+b}{2}. for bounded linear operators. =. is the Heron. on a. mean.. We also get. Hilbert space.. Introduction. 1. This report is based mean, the. geometric. on. [10].. For two. mean, the harmonic. positive real numbers mean. and the. a. and b , the arithmetic. logarithmic. mean are as. follows:. A(a, b)=\displaystyle \frac{a+b}{2} (arithmetic mean), G(a, b)=\sqrt{ab} (geometric mean), H(a, b)=\displaystyle \frac{2ab}{a+b} (harmonic mean), L(a, b)=\displaystyle \frac{a-b}{\log a-\log b} (logarithmic mean). We remark that these and. so on.. always As. means are. symmetric, that is, A(a, b)=A(b, a) G(a, b)=G(b, a). It is well known that the. ,. inequality H(a, b) \leq G(a, b) \leq L(a, b) \leq A(a, b). holds. one. parameter extensions of above. M_{q}(a, b)=. means, the. \left{bgin{ary}l (\frac{^q}+b{ 2})^{\frac1}{\mathr{q}&\mathr{i}\mathr{f}q\ne0,\ sqrt{ab}&\mathr{i}\mathr{f}q=0, \end{ary}\ight.. following. are. known.. (power mean),. J_{q}(a,b)=\left{ ginary}{l \facq}{+1\frac^{q+1}-b {a^q}-b &\mathr{i} mfq\ne0,-1 \frac{-b}loga\b}&mathr{i}\ mfq=0,(\athrm{p} o\mathr{w} me\athr{}m d}\athrm{i f}\mathr{ me}\athr{m e}\athrm{n c}\mathr{e\mathr{}\mathr{e ma}\thr{n),\ frac{b(\log- b)}{a&\mthr{i}amfq=-1, \end{ary}ight.. K_{q}(a, b)=(1-q)\displaystyle \sqrt{ab}+q\frac{a+b}{2}. (Heron mean),.

(2) 10. HZ_{q}(a, b)=\displaystyle \frac{a^{1-q}b^{q}+a^{q}b^{1-q} {2} J_{\mathrm{q}}(a, a). We note that. Relations among these. \displaystyle \lim_{b\rightar ow a}J_{q}(a, b). \equiv. means are as. =. (Heinz mean). and also these. a,. means. are. also. M_{1}(a, b)=J_{1}(a, b)=K_{1}(a, b)=HZ_{0}(a, b)=HZ_{1}(a, b)=A(a, b) J_{0}(a, b)=L(a, b) M_{0} ( a b ) ). =J_{\frac{-1}{2}}(a, b)=K_{0} (. M_{q}(a, b) J_{q}(a, b) ,. ,. ). a). b). M_{-1}(a, b)=J_{-2}(a, b)=H(a, b) and also. symmetric.. follows:. and. K_{q}(a, b). =HZ_{\frac{1}{2}}(a, b)=G(a, b). ,. ,. are. increasing. monotone. on. q\in \mathbb{R}.. Our purpose in this report is to give estimations of power difference mean by Heron In section 2, we state former results on inequalities estimating above means. In. mean.. section. 3,. the double. $\alpha$= $\alpha$(q). obtain the greatest value. we. and the least value. $\beta$= $\beta$(q). such that. inequality K_{ $\alpha$} ( a b ) ). holds for any a, b>0 and. q\in \mathbb{R}. .. <J_{q}(a, b)<K_{ $\beta$}(a, b). In section. section 3 for bounded linear operators. on a. 4,. we. have similar. inequalities. to those in. Hilbert space.. Former results. 2. Many \bullet. If. researchers investigate. q\displaystyle \in(-2, \frac{-1}{2})\cup(1, \infty). then. then. ,. <M_{\frac{1+2\mathrm{q} {3} ( b). J_{\mathrm{q} (a, b). inequalities comparing. a). M_{\underline{1+}_{3}2}f(a, b)<J_{q} (. for all a, b>0 with. a). two. means.. b ), and if. a\neq b. .. For. example,. q\displaystyle \in(-\infty, -2)\cup(\frac{-1}{2}. The parameter. possible. (Xia, Wang, Chu, Hou [14]) \bullet. Here,. If. q\in[0 1 ] ,. we. then. HZ_{q}(a, b)\leq K_{(1-2\mathrm{q})^{2}}(a, b). pay attention to the. 2. \mathrm{A}. Proposition only if $\alpha$\displaystyle \geq\frac{1}{3}. The. ). ([1]).. The. optimal inequality. following. L ( a ) b ) \leq. Here,. we. K_{\frac{1}{3} (a, b). Proposition. give. holds. is well known. (Bhatia [1]). 2. \mathrm{A} , for. as. for. all a, b> 0. the classical. example, they obtain. if. Pólya. matrix. and. in‐. norm. [1, 5, 8], and also operator inequalities for bounded linear operators on a in [3, 4]. In [1], Bhatia proved Proposition 2. \mathrm{A} by using Taylor expansion.. in. Hilbert space. .. 1) ,. result.. inequality L(a, b) \leq K_{ $\alpha$}(a, b). As related results to. equality. inequalities. for all a, b>0. \displaystyle\frac{1+2q}{3}. ,. is best. a. proof by this. way for readers’ sake..

(3) 11. Proof of Proposition. 2. A. L(a, b)\leq K_{ $\alpha$}(a, b). Since. .. for all a, b>0 is. equivalent. to. \displaystyle \frac{x-1}{\log x}\leq(1- $\alpha$)\sqrt{x}+ $\alpha$\frac{x+1}{2} for all x>0 and. only. if. by replacing. $\alpha$\displaystyle \geq\frac{1}{3}.. Put x=e^{2t} in. (2.1).. by \displayt e\frac{}b. x. Then. ,. have. we. (2.1). ,. can. (2.1). holds for all x>0 if. only if. \displaystyle \frac{1}{t}\sinh t\leq(1- $\alpha$)+ $\alpha$\cosh t. that is,. By Taylor expansion, (2.2). .. to show that. holds for all x>0 if and. \displaystyle \frac{e^{t}-e^{-t} {2t}\leq(1- $\alpha$)+ $\alpha$\frac{e^{t}+e^{-t} {2} for all t\in \mathbb{R}. only. (2.1). be written. (2.2). by. \displaystyle \frac{t^{2} {3!}+\frac{t^{4} {5!}+\cdots+\frac{t^{2k-2} {(2k-1)!}+\cdots\leq $\alpha$(\frac{t^{2} {2!}+\frac{t^{4} {4!}+\cdots+\frac{t^{2k-2} {(2k-2)!}+\cdots) so. that. holds for all t\in \mathbb{R} if and. (2.2). only. if. $\alpha$\displaystyle \geq\frac{1}{3}. .. Hence the. proof is complete.. Noting that \displaystyle \frac{1}{(2k-1)!} \leq $\alpha$\displaystyle \frac{1}{(2k-2)!} if and only if $\alpha$ \geq \displaystyle \frac{1}{2k-1} for k =2 3, of Proposition 2. \mathrm{A} we obtain that the reverse inequality K_{ $\alpha$}(a, b) \leq L(a, b) a, b>0 if and only if $\alpha$\leq 0. ). .. .. .. ,. We have many related numerical. [13], Xia, Hou, Wang K_{q}(a, b). so on.. and. In. inequalities. to those in this. and Chu obtained. ,. section,. optimal inequalities. in the. \square. proof. holds for all. see. [7, 13] and J_{q}(a, b). between. .. ([13]).. Theorem 2. \mathrm{B}. For all a, b>0 with. a\neq b. ,. we. have the. (i) If $\alpha$\displaystyle \in(0, \frac{2}{3}). ,. then. J_{\frac{3 $\alpha$-1}{2} (a, b)<K_{ $\alpha$} (. (ii) If $\alpha$\displaystyle \in(\frac{2}{3},1). ,. then. J_{\frac{ $\alpha$}{2- $\alpha$}}(a, b)<K_{ $\alpha$}(a, b)<J_{\frac{3 $\alpha$-1}{2} (a, b). The given parameters. In Theorem 2. \mathrm{B} ,. \displaystyle\frac{3$\alpha$-1}{2}. and. \displayst le\frac{$\alpha$}{2-$\alpha$}. a). b). in either. <J_{\frac{ $\alpha$}{2- $\alpha$}}(a, b). case are. following inequalities.. .. .. best. possible.. they obtain the greatest value p=p( $\alpha$) and the least inequality. value. q=q( $\alpha$). such that the double. J_{p}(a, b)<K_{ $\alpha$}(a, b)<J_{q} ( a b) ). holds for any. $\alpha$. \in. ( 0 1). ). putting $\alpha$=\displaystyle \frac{1}{3} estimating power difference .. implies Proposition 2. \mathrm{A} by following Theorem 2. \mathrm{B} as the result. We remark that Theorem 2. \mathrm{B}. Theorem 2. \mathrm{B}. can. be written. mean. by. Heron. by. the. mean.. ’.

(4) 12. Theorem 2. \mathrm{B}'. For all a, b>0 with. .. a\neq b_{f}. we. have the. following inequalities.. (i) If q\displaystyle \in(0, \frac{1}{2}). ,. then. K_{\overline{\mathrm{q} +\overline{1} 2A(a, b)<J_{q}(a, b)<K_{\underline{2}_{\mathrm{B}_{\frac{+1}{3} } (a, b). (ii) If q\displaystyle \in(\frac{1}{2},1). ,. then. K_{\frac{2q+1}{3} (a, b)<J_{q}(a, b)<K_{2_{B},\overline{\mathrm{q} +\overline{1} (a, b). (iii) If q\displaystyle \in(\frac{-1}{2},0], The. .. J_{\mathrm{q} (a, b)<K_{$\Delta$_{\frac{+1}{3} ^{2} (a, b). then. given parameters. .. \displaystyle\frac{2q+1}{3}. and. \overline{q}+\overline{1}2. in either. best. case are. .. possible.. Main result. 3. ’. Theorem 2. \mathrm{B} in the previous section q is. restricted,. all q \in \mathbb{R}. $\alpha$= $\alpha$(q). so we. as an. seems. to be. a. partial. obtain estimations of power difference. extension of Theorem 2.\mathrm{B}^{\rangle} In other .. and the least value. $\beta$= $\beta$(q). result since the range of. mean. such that the double. ). q\in \mathbb{R}.. Theorem 3.1. For all a, b>0 with. (i). Let. q\displaystyle \in(0, \frac{1}{2})\cup ( 1. ). \infty. ).. a\neq b. ,. we. have the. following.. Then. K_{\overline{\mathrm{q} +\overline{1} 2 $\Delta$(a, b)<J_{\mathrm{q} (a, b)<K_{\frac{2\mathrm{q}+1}{3} (a, b) (ii). Let. q\displaystyle \in(\frac{1}{2},1). .. (iii). Let. q\displaystyle \in(\frac{-1}{2},0].. .. Then. K_{\underline{2}_{B_{\frac{+1}{3} } (a, b)<J_{q}(a, b)<K_{\overline{\mathrm{q} +\overline{1} 2s(a, b). .. Then. G(a, b)=K_{0}(a, b)<J_{\mathrm{q}}(a, b)<K (a, b) (iv). Let. q\displaystyle \in(-\infty, \frac{-1}{2}). .. The. .. Then. K_{$\Delta$_{\frac{+1}{3} 2 (. a). given parameters of K_{ $\alpha$}(a, b). b). <J_{q}(a, b) <K_{0}(a, b)=G(a, b). in each. case are. best. possible.. Heron. mean. for. get the greatest value. K_{ $\alpha$}(a, b)<J_{q}(a, b)<K_{ $\beta$} ( a b) holds for any. by. words, inequality we. ..

(5) 13. Equalities. hold between. J_{q}(a, b). and. K_{ $\alpha$}(a, b). in the. following. J_{q}(a, b)=K_{\underline{2}_{\mathrm{B}_{\frac{+1}{3} } (a, b)=K_{\overline{\mathrm{q} +\overline{1} 2\mathrm{B}(a, b) for q=\displaystyle \frac{1}{2} J_{\mathrm{q}}(a, b)=K_{\frac{2\mathrm{q}+1}{3}}(a, b)=K_{0}(a, b) for q=\displaystyle \frac{-1}{2}.. cases.. ,. 1.. We shall show Theorem 3.1 from. [13]. x=\displaystyle \frac{a}{b}. by using Taylor expansion, which is the different way we have only to show the following propositions. By and 3.2 Propositions 3.3, we immediately obtain Theorem 3.1.. To prove Theorem. putting. in. Proposition. 3.2. The. (i). Let. 3.1,. following. q\displaystyle \in(\frac{-1}{2}, \frac{1}{2})\cup ( 1. ). \infty. ).. statements hold:. Then. J_{q}(x, 1)<K_{ $\alpha$}(x, 1) for (ii). Let. q\displaystyle \in(-\infty, \frac{-1}{2})\cup(\frac{1}{2},1). .. (i‐1). Let. 3.3. The. q\displaystyle \in(0, \frac{1}{2})\cup ( 1 J_{q} ( x. (i‐2). Let. following. 1). ). ). \infty. ).. all x>0 with. Let. q\displaystyle \in(\frac{1}{2},1). Let. all x>0 with. q\displaystyle \in(-\infty, \frac{-1}{2}). we. x\neq 1 if and only if. $\alpha$\displaystyle \leq\frac{2q}{q+1}.. all x>0 with. x\neq 1 if and only if $\alpha$\leq 0.. Then. .. .. all x>0 with. x\neq l if and only if. $\alpha$\geq\overline{q}+\overline{1}2 $\Delta$.. Then. J_{q}(x, 1)<K_{ $\alpha$}(x, 1) for Here,. $\alpha$\displaystyle \leq\frac{2q+1}{3}.. Then. J_{\mathrm{q}}(x, 1)<K_{ $\alpha$}(x, 1) for (ii‐2). x\neq 1 if and only if. Then. J_{q}(x, 1)>K_{ $\alpha$}(x, 1) for (ii‐l). $\alpha$\geq$\Delta$_{\frac{+1}{3} ^{2}.. statements hold:. >K_{ $\alpha$}(x, 1) for. q\displaystyle \in(\frac{-1}{2},0].. x\neq 1 if and only if. Then. J_{q}(x, 1) >K_{ $\alpha$}(x, 1) for. Proposition. all x>0 with. all x>0 with. x\neq 1 if and only if $\alpha$\geq 0.. proof of Proposition 3.2. Proposition 3.3 can be shown by the similar to prove these propositions, we show two properties of functions and 3, q\in \mathbb{R} defined by. give. a. argument. As lemmas. 9k(q). for k=2 ,. .. .. .. g_{k}(q)\displayst le\ quiv\frac{(q+1)^{2(k-1)}-q^{2(k-1)}{\sum_{i=2}^{k}\left(\begin{ar y}{l 2k-1\ 2(i-1) \end{ar y}\right)q^{2(k-i)}. (3.1).

(6) 14. and. g_{k}(0). \displaystyle\frac{1}{2k-1}. \equiv. efficient for. for convenience’ sake.. nonnegative integers. g_{2}(q)=\displaystyle \frac{2q+1}{3}. in. Proof. Firstly,. and. r. =. such that 0 \leq. \leq. r. n. .. is. a. binomial. We remark that. g_{\infty}(q)\displaystyle \equiv\lim_{k\rightar ow\infty}g_{k}(q). we state the following By putting j=k-i,. exists and. relation. (3.2). 9_{\infty}(q)=. \left\{begin{ar y}{l \frac{2q} +1}&(q>0),\ 0&(q\le 0). \end{ar y}\right.. which is important to prove results. 2q\displayst le\sum_{i=2}^{k}\left(\begin{ar y}{l 2k&-1\ 2(i-1)& \end{ar y}\right)q^{2(k-i)}=2\displayst le\sum_{\mathrm{j}=0}^{k-2}\left(\begin{ar y}{l 2k-1\ 2(k-j1) \end{ar y}\right)q^{2j+1} =2\displaystyle \sum_{j=0}^{k-1}\left(\begin{ar ay}{l} 2k-1\ 2j+1 \end{ar ay}\right)q^{2j+1}-2q^{2k-1}=(q+1)^{2k-1}+(q-1)^{2k-1}-2q^{2k-1}. If. q\neq 0. ,. the. co‐. particular.. Lemma 3.4. The limit. in this paper.. n. (_{r}^{n}) \displaystyle \frac{n!}{r!(n-r)!}. Here,. following. holds. (3.2). by (3.2).. g_{k}(q)=\displaystyle \frac{(q+1)^{2(k-1)}-q^{2(k-1)} {\frac{1}{2q}\{(q+1)^{2k-1}+(q-1)^{2k-1}-2q^{2k-1}\}. =\displaystyle\frac{2q\{1-(\frac{q}{q+1})^{2(k-1)}\}{q+1+(q-1)(L_{\frac{1}{1}^{-})^{2k-2}-2q(\frac{\mathrm{q}{q+1})^{2k-2} =\displaystyle\frac{2q\{(\frac{\mathrm{q}+1}{q})^{2(k-1)}-1\}{(q+1)(\frac{q+1}{q})^{2k-2}+(q-1)(\frac{\mathrm{q}-1}{q})^{2k-2}-2q}. Now. (Case 1). we. divide the range of q into four. If q. 0 , then -1 <. >. g_{\infty}(q)=\displaystyle \frac{2q}{\mathrm{q}+1}. (Case 2). (Case 3) (Case 4). \displayst le\frac{q-1}{q+1}. <. (if q\neq-1 ). (3.3). (3.4). .. cases.. 1 and 0 <. Aq+\overline{1}. <. 1. .. Therefore. (3.3) implies. Lq^{\frac{-1}{+1} <-1 and -1<\overline{q}+1\mathrm{L}<0 that have g_{\infty}(q)=0. If q<\displaystyle \frac{-1}{2} then -1<\displaystyle \frac{q+1}{q} <1 and \displaystyle \frac{q-1}{\mathrm{q} >1 Therefore (3.4) implies g_{\infty}(q)=0. If. \displaystyle \frac{-1}{2}<q<0. ,. then. ,. ,. If. ,. proof. we. .. q=0 then. Hence the. so. is. g_{k}(0)=\displaystyle \frac{1}{2k-1}\rightarrow 0. complete.. as. k\rightarrow\infty. \square.

(7) 15. Lemma 3.5. Let. (i) If k\geq 3. g_{k}(q) for q\in \mathbb{R}. as. in. (3.1).. Then the. following. assertions hold:. then. ,. g_{2}(q)-g_{k}(q)=\displaystyle\frac{2(q-1)(2q+1)(2q-1)}{3\sum_{$\iota$'=2}^{k}\left(\begin{ar ay}{l 2k-1\ 2(i-1) \end{ar ay}\right)q^{2(k-i)}\sum_{\dotplus_{w=k-3}u+v}(q\mathrm{u},vw\geq0+1)^{2u}(q-1)^{2v}q^{2w}. (ii) If k\geq 2. and. q>0 then ,. 9k(q)-g_{\infty}(q)=\displaystyle\frac{(q-1)(2q-1)}{(q+1)\sum_{i=2}^{k}\left(\begin{ar ay}{l 2k-1\ 2(\dot{7}-\mathrm{l}) \end{ar ay}\right)q^{2(k-i)} \sum_{v,w\geq0,v+w=k-2}(q-1)^{2v}q^{2w}. Proof.. Here. we. show. (i) only.. We consider the. case. q\neq 0. since the. case. q=0 holds by. g_{2}(0)-g_{k}(0)=\displaystyle \frac{1}{3}-\frac{1}{2k-1}=\frac{2(k-2)}{3(2k-1)}. Since. we. get. g_{2}(q)-g_{k}(q)=\displaystyle\frac{2q+1}{3}-\frac{(q+1)^{2(k-1)}-q^{2(k-1)}{\sum_{i=2}^{k}\left(\begin{ar ay}{l 2k-1\ 2(i-\mathrm{l}) \end{ar ay}\right)q^{2(k-i)}. =\displaystyle\frac{(2q+1)\sum_{i=2}^{k}(_{2(i-1)}^{2k-1})q^{2(k-i)}-3\{(q+1)^{2(k-1)}-q^{2(k-1)}\}{3\sum_{i=2}^{k}\left(\begin{ar ay}{l 2k-\mathrm{l}\ 2(i-1) \end{ar ay}\right)q^{2(k-i)},. we. have. only. to show. h_{1}(q)\displaystyle \equiv(2q+1)\sum_{i=2}^{k}\left(\begin{ar ay}{l } 2k & -\mathrm{l}\ 2(i-\mathrm{l}) & \end{ar ay}\right)q^{2(k-i)}-3\displaystyle \{(q+1)^{2(k-1)}-q^{2(k-1)}\} =2(q-1)(2q+1)(2q-1)\displaystyle \sum_{\dotplus_{w=k-3}u+v}(q+1)^{2\mathrm{u} (q-1)^{2v}q^{2w}u,vw\geq 0^{\cdot}. (3.5).

(8) 16. By (3.2),. the. equation (3.5) holds. since. h_{1}(q)=(2q+1)\displaystyle \sum_{i=2}^{k}\left(\begin{ar ay}{l } 2k & -1\ 2(i-\mathrm{l}) & \end{ar ay}\right)q^{2(k-i)}-3\displaystyle \{(q+1)^{2(k-1)}-q^{2(k-1)}\}. =\displaystyle \frac{2q+1}{2q}\{(q+1)^{2k-1}+(q-1)^{2k-1}-2q^{2k-1}\}-3\{(q+1)^{2(k-1)}-q^{2(k-1)}\} =\displaystyle \frac{1}{2q}\{(2q+1)(q+1)(q+1)^{2k-2}+(2q+1)(q-1)(q-1)^{2k-2}-2q(2q+1)q^{2k-2} -6q(q+1)^{2k-2}+6q\cdot q^{2k-2}\}. =\displaystyle \frac{1}{2q}\{(2q-1)(q-1)(q+1)^{2k-2}+(2q+1)(q-1)(q-1)^{2k-2}-4q(q-1)q^{2k-2}\} =\displaystyle \frac{q-1}{2q}[(2q-1)\{(q+1)^{2(k-1)}-q^{2(k-1)}\}-(2q+1)\{q^{2(k-1)}-(q-1)^{2(k-1)}\}]. (*)=2(q-1)(2q+1)(2q-1)\displaystyle \sum_{\dotplus_{w=k-3}u+v}(q+1)^{2u}(q-1)^{2v}q^{2w}\mathrm{u},vw\geq 0. and the last. equality (*) holds. ’. since. (2q-1)\{(q+1)^{2(k-1)}-q^{2(k-1)}\}-(2q+1)\{q^{2(k-1)}-(q-1)^{2(k-1)}\} =(2q-1)\{(q+1)^{2}-q^{2}\}\{(q+1)^{2(k-2)}+(q+1)^{2(k-3)}q^{2}+\cdot\cdot \cdot +(q+1)^{2}q^{2(k-3)}+q^{2(k-2)}\} -(2q+1)\{q^{2}-(q-1)^{2}\}\{q^{2(k-2)}+q^{2(k-3)}(q-1)^{2}+ \cdots +q^{2}(q-1)^{2(k-3)}+(q-1)^{2(k-2)}\}. =(2q+1)(2q-1)\displaystyle \sum_{i=1}^{k-2}\{(q+1)^{2i}-(q-1)^{2i}\}q^{2(k-2-i)} =(2q+1)(2q-1)\displaystyle \sum_{i=1}^{k-2}\{(q+1)^{2}-(q-1)^{2}\}. \times\{(q+1)^{2(i-1)}+(q+1)^{2(i-2)}(q-1)^{2}+ \cdot \cdot \cdot +(q-1)^{2(i-1)}\}q^{2(k-2-i)}. =4q(2q+1)(2q-1)\displaystyle \sum_{i=1}^{k-2}\{\sum_{j=0}^{i-1}(q+1)^{2j}(q-1)^{2(i-1-j)}\}q^{2(k-2-i)}. =4q(2q+1)(2q-1)\displaystyle \sum_{\dotplus_{w=k-3}u+v}(q+1)^{2u}(q-1)^{2v}q^{2w}\mathrm{u},vw\geq 0^{\cdot}. Therefore the desired result holds. Now. we are. ready. Proof of Proposition. to prove. 3.2.. (i). Proposition. Let q \in. ( \displayst le\frac{-1}{2. ). \square. 3.2.. \displayte\frac{1}2 ) \cup(1, \infty). .. Firstly. we. show that. $\alpha$. \geq. \displaystyle\frac{2q+1}{3}. ensures. J_{q}(x, 1)=\displaystyle \frac{q}{q+1}\frac{x^{q+1}-1}{x^{q}-1}<(1- $\alpha$)\sqrt{x}+ $\alpha$\frac{x+1}{2}=K_{ $\alpha$}(x, 1) for all x>0 with. x\neq 1.. (3.6).

(9) 17. q\neq 0 by putting x=e^{2t} (3.6). If. ,. ,. holds if and. only if. \displaystyle \frac{q}{q+1}\frac{e^{(\mathrm{q}+1)t}-e^{-(q+1)t} {e^{qt}-e^{-qt} <(1- $\alpha$)+ $\alpha$\frac{e^{t}+e^{-t} {2} Since both sides of. Then,. since. (3.7). \displaystyle \frac{e^{\mathrm{q}t -e^{-\mathrm{q}t }{q}>0. ,. are even. (3.7). for all. functions, we have only equivalent to. t\in \mathbb{R}\backslash \{0\}. to consider the. (3.7). .. t > 0.. case. for t>0 is. f(t)\displaystyle \equiv\frac{e^{qt}-e^{-qt} {q}\{(1- $\alpha$)+ $\alpha$\frac{e^{t}+e^{-t} {2}\}-\frac{e^{(q+1)t}-e^{-(\mathrm{q}+1)t} {q+1}. (3.8). =\displaystyle \frac{2}{q}\sinh(qt)\{(1- $\alpha$)+ $\alpha$\cosh t\}-\frac{2}{q+1}\sinh((q+1)t)>0. Therefore. we. prove. (3.8). By Taylor expansion,. we. for all t>0.. have. f(t)=\displaystyle \frac{2}{q}(qt+\frac{q^{3}t^{3} {3!}+\frac{q^{5}t^{5} {5!}+\cdots) \{(1- $\alpha$)+ $\alpha$(1+\frac{t^{2} {2!}+\frac{t^{4} {4!}+\cdots)\} -\displaystyle \frac{2}{q+1}\{(q+1)t+\frac{(q+1)^{3}t^{3} {3!}+\frac{(q+1)^{5}t^{5} {5!}+\cdots\} =2(t+\displaystyle \frac{q^{2} {3!}t^{3}+\frac{q^{4} {5!}t^{5}+\cdots) (1+\frac{ $\alpha$}{2!}t^{2}+\frac{ $\alpha$}{4!}t^{4}+\cdots) -2\displaystyle \{t+\frac{(q+1)^{2} {3!}t^{3}+\frac{(q+1)^{4} {5!}t^{5}+\cdots\}. =2\displaystyle \sum_{k=2}^{\infty}\{\frac{q^{2(k-1)} {(2k-1)!}+\sum_{i=2}^{k}\frac{q^{2(k-i)} $\alpha$}{(2\mathrm{i}-2)!(2k+1-2\mathrm{i})!}-\frac{(q+1)^{2(k-1)} {(2k-1)!}\}t^{2k-1}. =2\displaystyle\sum_{k=2}^{\infty}$\phi$_{k,q}($\alpha$)t^{2k-1}, where. $\phi$_{k,q}( $\alpha$)\displaystyle \equiv\frac{q^{2(k-1)} {(2k-1)!}+\sum_{i=2}^{k}\frac{q^{2(k-i)} $\alpha$}{(2\mathrm{i}-2)!(2k+1-2\mathrm{i})!}-\frac{(q+1)^{2(k-1)} {(2k-1)!} Then. $\phi$_{k,q}( $\alpha$)>0. if and. ,. by. the similar argument,. we can. that. $\phi$_{k,0}( $\alpha$)>0. if and. only. if. .. get. $\phi$_{k,0}( $\alpha$)\displaystyle \equiv\frac{ $\alpha$}{(2k-2)!}-\frac{1}{(2k-1)!} so. ,. only if. $\alpha$>\displayst le\frac{(q+1)^{2(k-1)}-q^{2(k-1)}{\sum_{i=2}^{k}\left(\begin{ar y}{l 2k-1\ 2(i-1) \end{ar y}\right)q^{2(k-i)}=g_{k}(q) If q=0. for k=2 3,. $\alpha$>\displaystyle \frac{1}{2k-1}=g_{k}(0). for k=2 3, ,. .. .. .. .. ,. .. .. .. ..

(10) 18. By (i) in Lemma 3.5, q \in (\displaystyle \frac{-1}{2}, \frac{1}{2})\cup ( 1 \infty ) ensures that g_{2}(q) > 9k(q) for all k \geq 3. Therefore, if $\alpha$\geq \displaystyle \frac{2q+1}{3} =g_{2}(q) then $\phi$_{2,q}( $\alpha$) \geq 0 and $\phi$_{k,q}( $\alpha$) >0 for all k\geq 3 that is, ). ,. (3.8). ,. holds.. $\alpha$<\displaystyle \frac{2q+1}{3}=92(q). On the other. hand,. if. sufficiently small. t>0. Therefore. We. can. prove. .. (ii) similarly,. so. (3.8). the. ,. then. assures. $\phi$_{2,q}( $\alpha$)<0 holds,. that is,. $\alpha$\displaystyle \geq\frac{2q+1}{3}.. f(t). <0 for. proof is complete.. \square. Operator inequalities. 4. Here,. an. operator means. bounded linear operator. on a. Hilbert space \mathcal{H} An operator .. positive (denoted by T\geq 0 ) if (Tx, x ) \geq 0 for all x \in \mathcal{H} and also an strictly positive (denoted by T>0 ) if T is positive and invertible.. T is said to be. operator. a. ,. T is said to be. We denote the set of all. positive operators by \mathcal{B}^{+}(\mathcal{H}) A real‐valued function f defined .. J\subset \mathbb{R} is said to be operator monotone if. on. A\leq B implies f(A)\leq f(B) for. selfadjoint operators. A and B whose spectra. $\sigma$(A) $\sigma$(B) ,. \subset J ) where A\leq B. means. B-A\geq 0. positive invertible operators \mathcal{A} and B the arithmetic. For two. geometric. ,. A\# B. mean. A\displaystyle \nabla B=\frac{A+B}{2},. and the harmonic. mean. A ! B. A\displaystyle \# B=A^{\frac{1}{2} (A\frac{-1}{2}BA\frac{-1}{2})^{\frac{1}{2} A^{\frac{1}{2}. are. and. defined. as. A ! B=. mean. A\nabla B ) the. follows:. (\displaystyle \frac{A^{-1}+B^{-1} {2})^{-1}. [11] constructed the general theory of operator means. A binary oper‐ (A, B) \in \mathcal{B}^{+}(\mathcal{H}) \mathrm{x}\mathcal{B}^{+}(\mathcal{H})\rightar ow A $\sigma$ B\in \mathcal{B}^{+}(\mathcal{H}) in the cone of positive operators on. Kubo and Ando ation. \mathcal{H} is called. an. operator. mean. if the. following. conditions. are. satisfied:. (i) A\leq C. and. B\leq D imply A $\sigma$ B\leq C $\sigma$ D (monotonicity),. (ii) A_{n}\downarrow A. and. B_{n}\downarrow B imply A_{n} $\sigma$ B_{n}\downarrow A $\sigma$ B (upper semicontinuity),. (iii) T^{*}(A $\sigma$ B)T\leq (T^{*}AT) $\sigma$(T^{*}BT) (iv) A. I $\sigma$ I=I. $\sigma$. is said to be. We remark that. an. T^{*} (A. an. operator connection if. operator connection. $\sigma$. (i), (ii). and. (iii). are. sat‐. satisfies the transformer equality. $\sigma$ B)T=(T^{*}AT) $\sigma$(T^{*}BT) if T is invertible. in [11] that there exists a one‐to‐one correspondence between $\si g ma$ and an mean operator operator monotone function f\geq 0 on [0, \infty ) with f(1)=1. Moreover, they obtained. an. (transformer inequality),. (normalized condition).. binary operation. isfied.. for every operator T.

(11) 19. f by. We remark that be defined. can. is called the. A. representing function of. $\sigma$ ,. and also. operator. an. mean $\sigma$. $\sigma$ B=A^{\frac{1}{2} f(A\displaystyle \frac{-1}{2}BA\frac{-1}{2})A^{\frac{1}{2}. (4.1). if A>0 and B\geq 0. In this. A, B. report,. we use. the notation hke. an. operator. mean. 0 , the. A $\sigma$ B. .. For. ,. ,. A(1, x)=\displaystyle \frac{x+1}{2}, Now it is. to consider. permitted. H(1, x)=\displaystyle \frac{2x}{x+1}. G(1, x)=\sqrt{x},. functions. The power difference. operator As. an. mean. K_{q} ( 1 ). mean. \mathrm{J}_{\mathrm{q} (A, B) For. x. following 4. \mathrm{A}. Proposition. and the Heron. -2\leq q\leq an. for. general. real‐valued. R_{q}(A, B) are given [2, 6, 9, 12] that Obviously \mathrm{R}_{q}(A, B) is an mean. 1 , it is known in. operator. mean.. for 0\leq q\leq 1.. estimation of Heron. showed the. is. L(1, x)=\displaystyle \frac{x-1}{\log x}.. and. binary operations given by (4.1). by J_{q}(1, x) ), respectively. \mathrm{J}_{q}(A, B) is increasing on q and \mathrm{J}_{q}(A, B) and. the. for. representing functions of the arithmetic mean \mathfrak{A}(A, B) the geometric \mathfrak{G}(A, B) the harmonic mean fi (A, B) and the logarithmic mean L(A, B) are. >. mean. [3]. \mathfrak{M}(A, B). ([3]).. mean. for. positive operators, Fujii, Furuichi and Nakamoto. result.. Let A and B be positive invertible operators and r\in \mathbb{R}. .. Then. following inequalities hold:. (i) If r\geq 2 (ii) If r\leq 1. ,. then. rA\# B+(1-r)A\nabla B\leq A. ! B.. ,. then. rA\# B+(1-r)A\nabla B\geq A. ! B.. The conditions. on r. is. optimal,. that. is,. \displaystyle \inf\{r|rA\# B+(1-r)A\nabla B\leq A ! B\}=2. and. \displaystyle \sup\{r|rA\# B+(1-r)A\nabla B\geq A ! B\}=1. By Propositions ately.. 3.2 and. 3.3,. we can. obtain. an. extension of. Proposition. Theorem 4.1. Let A and B be positive invertible operators.. (i). Let. q\displaystyle \in(0, \frac{1}{2})\cup(1, \infty). .. Then. \displaystyle \mathrm{R}_{\frac{2q}{q+1}}(A, B)\leq \mathrm{J}_{q}(A, B)\leq \mathrm{R}\frac{2q+1}{3} ( A. ). B ).. 4. \mathrm{A} immedi‐.

(12) 20. (ii). Let q\in. (\displaystyle \frac{1}{2},1). .. Then. \mathrm{R}_{\frac{2q+1}{3} (A, B)\leq \mathrm{J}_{q}(A, B)\leq \mathrm{R}_{\frac{2q}{q+1}}(A, B) (iii). Let. q\displaystyle \in(\frac{-1}{2},0].. .. Then. \mathfrak{G}(A, B)=\mathrm{B}_{0}(A, B)\leq \mathrm{J}_{q}(A, B)\leq \mathrm{R}_{B_{\frac{+1}{3} }2 ( A (iv). Let. q\displaystyle \in(-\infty, \frac{-1}{2}). B ).. Then. .. \mathrm{R}_{\underline{2}_{\mathrm{B}_{\frac{+1}{3} }(A, B)\leq \mathrm{J}_{q} ( A The given parameters. ). of \mathrm{R}_{$\alpha$} (A, B). in each. ). B). \leq \mathrm{R}_{\mathrm{P}}(A, B)=\mathfrak{G}(A, B). case are. best. .. possible.. Theorem 4.1. implies the following Corollary 4.2 by putting q=0, -2 4.2, the second inequality in (i) is an operator version of Proposition 2. \mathrm{A} is just Proposition 4. \mathrm{A}. Corollary. (i). 4.2. Let A and B be. (ii) \mathrm{R}_{-1}(A, B)\leq \mathfrak{H}(a, b)\leq \mathrm{R}_{0}(\mathcal{A}, B)=\emptyset(A, B) of R_{ $\Phi$}(A, B). Acknowledgements.. ,. and also. (ii). positive invertible operators. Then the following hold.. \mathfrak{G}(A, B)=\mathrm{f}\mathrm{l})(A, B)\leq L(A, B)\leq \mathrm{R}_{\frac{1}{3}}(A, B). The given parameters. Corollary. In. .. in each. This work. was. .. .. case are. best. possible.. supported by JSPS KAKENHI Grant. Number. \mathrm{J}\mathrm{P}16\mathrm{K}05181.. References [1]. [2]. R.. BHATIA, Interpolating. (2006),. mean. J. I. FUJII. parameterized operator. M.. AND. Math.,. FUJII, S.. Y. 1. SEO,. (1998),. FURUICHI. S.. On. means. R.. and its operator. dominated. NAKAMOTO, Estimations of Inequal., 10 (2016), 19‐30.. FURUICHI, Operator inequalities among arithmetic Inequal., 8 (2014), 669‐672.. harmonic mean, J. Math.. inequality. 355‐363.. by. power. 301‐306.. AND. positive operators, J. Math.. [4]. arithmetic‐geometric 413. ones, Sci.. [3]. the. version, Linear Algebra Appl.,. mean,. Heron. geometric. means. for. mean. and.

(13) 21. [5]. S. FURUICHI. K.. AND. 2013, 2013:535,. YANAGI, Bounds of the logarithmic. mean, J.. Inequal. Appl.. 11 pp.. [6]. FURUTA, Concrete examples of operator monotone functions obtained by an ele‐ mentary method without appearing to Löwner integral representation, Linear Algebra Appl., 429 (2008), 972‐980.. [7]. Z.‐Y.. T.. for 9. [8]. HE,. the. (2015),. [9]. AND. combination. of. Y.‐M.. CHU, Optimal one‐parameter mean bounds logarithmic means, J. Math. Inequal.,. arithmetic and. 699‐707.. F. HIAI. Anal.,. M.‐K. WANG. convex. AND. 163. F. HIAI. H.. KOSAKI, Comparison of. (1999),. AND. H.. various. means. for operators,. J. Funct.. 300‐323.. KOSAKI, Means for matrices and comparison of their J., 48 (1999), 899‐936.. norms,. Indiana Univ. Math.. [10]. ITO, Estimations of Math. Inequal... [11]. F. KUBO AND T.. M.. (1980),. [12]. Y.. difference. Means. mean. of positive. by Heron. mean, to appear in J.. Ann.,. linear operators, Math.. 246. 205‐224.. operator. means. involving. T. YAMAZAKI. the power. AND. difference. M.. family of Algebra Appl. 485. YANAGIDA, On. means, Lminear. a. \rangle. 124‐131.. XIA, S.‐W. HOU, G.‐D. WANG AND Y.‐M. CHU, Optimal one‐parameter for the convex combination of arithmetic and geometric means, J. Appl. Anal., 18 (2012), 197‐207. W.‐F. mean. [14]. ANDO,. UDAGAWA, S. WADA,. (2015), [13]. power. W.‐F. tween. bounds. XiA, G.‐D. WANG,. Y.‐M. CHU. AND. S.‐W.. one‐parameter and power means, Adv. Math.. (Masatoshi Ito). Maebashi Institute of. Technology,. 371‐0816, JAPAN E‐mail address:. m‐ito@maebashi‐it.ac.jp. 460‐1. HOU, Sharp inequalities be‐. (China),. 42. (2013),. 713‐722.. Kamisadorimachi, Maebashi,. Gunma.

(14)

参照

関連したドキュメント

By an inverse problem we mean the problem of parameter identification, that means we try to determine some of the unknown values of the model parameters according to measurements in

Gauss’ functional equation (used in the study of the arithmetic-geometric mean) is generalized by replacing the arithmetic mean and the geometric mean by two arbi- trary means..

We give some results in the following directions: to describe the exterior struc- ture of spacelike bands with infinite number of branches at the infinity of R n+1 1 ; to obtain

Neumann started investigation of the quantity k T K k 0 (which he called the configuration constant of K) in order to get a proof for the existence of the solution of the

Equivalent conditions are obtained for weak convergence of iterates of positive contrac- tions in the L 1 -spaces for general von Neumann algebra and general JBW algebras, as well

The commutative case is treated in chapter I, where we recall the notions of a privileged exponent of a polynomial or a power series with respect to a convenient ordering,

Then it follows immediately from a suitable version of “Hensel’s Lemma” [cf., e.g., the argument of [4], Lemma 2.1] that S may be obtained, as the notation suggests, as the m A

Definition An embeddable tiled surface is a tiled surface which is actually achieved as the graph of singular leaves of some embedded orientable surface with closed braid