• 検索結果がありません。

Operator Norm Inequality and Positive Definiteness of Some Functions (Recent developments of operator theory by Banach space technique and related topics)

N/A
N/A
Protected

Academic year: 2021

シェア "Operator Norm Inequality and Positive Definiteness of Some Functions (Recent developments of operator theory by Banach space technique and related topics)"

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)80. 数理解析研究所講究録 第2073巻 2018年 80-86. Operator Norm Inequality and Positive Definiteness of Some Functions. Imam Nugraha Albania Department ofMathematics Education,. Indonesia University of Education. This is ajoint work with Professor NAGISA Masaru. 1. Notation. The continuous function $\varphi$ : \mathbb{R}\rightarrow \mathbb{C} is said to be positive definite if for any positive integer n\in \mathrm{N} and for any x_{1},x_{2}, x_{n}\in \mathbb{R} , the following n\times n matrix. \left(bgin{ary}l $\varphi(X_{1-x\mathr{l})&$\varphi(x_{\matrl}-X_{2)&\cdots &\cdots$varphi(x_{\matrl}-x_{n)\ $varphi(X_{2-1)}&$\varphi(X_{2-x})&\cdots &\cdots$varphi(x_{2}-n)\ & dots& \ & \dots&\ $varphi(x_{n}-1)&$\varphi(x_{n}&-2)\cdots&$varphi(x_{n}&- ) \end{ary}ight)\eq0,. that is,. \displaystyle\sum_{i,j=1}^{n}$\alpha$_{i}\overline{$\alpha$_{j} $\varphi$(x_{i}-x_{j}\cdot). \geq 0 for all $\alpha$_{1},. $\varphi$(-x)=\overline{ $\varphi$(x)} , and | $\varphi$(x)|\leq $\varphi$(0). $\alpha$_{n}\in \mathbb{C} . By definition, $\varphi$(0) \geq 0,. for any x\in \mathbb{R}.. $\varphi$(x)=e^{\sqrt{-1}ax} , where a\in \mathbb{R}.. Typical example of positive definite function is This can be seen because of the identity. ( $\varphi$(x_{i}-x_{j}) _{i,j=1}^{n}=(e^{\sqrt{-|}a(x_{i}-x_{j})})_{i,j=1}^{n}=. \left(bgin{ary}l e^\sqrt{-1}ax_\ e^{sqrt-.1}ax_2\ e^{sqrt-1}ax_n \ed{ary}ight) (_{e^\sqrt{-1}a^e{\sqrt-.1}e^{\sqrta-1x}_{ x_{n}2)^{*}. :ư. It is known as Bochner’s theorem that the function $\varphi$ is positive definite if there exists a positive finite measure $\mu$ on \mathbb{R} such that. $\varphi$(x)=\displaystyle \int_{-\infty}^{\infty}e^{ixt}d $\mu$(t). ..

(2) 81. 2. Introduction and Main Results It is known that. \Vert H^{1}2 XK21 \displaystyle \Vert\leq\frac{1}{2}\Vert HX+XK\Vert, where H,K,X are operators on Hilbert space and H,K are positive and invertible. To show this operator norm inequality, we consider two functions as follows:. M(s,t)=(st)^{\frac{1}{2} = $\iota$(\displaystyle \frac{s}{t})^{\frac{1}{2} =tf(\frac{s}{t}) and. N(s,t)=\displaystyle \frac{s+t}{2}=t(\frac{\frac{s}{t}+1}{2}) =tg(\frac{s}{t}) that is. f(t)=t^{\frac{1}{2}}. and. ,. g(t)=\displaystyle \frac{t+1}{2} . Then, we have. \displaystyle\frac{f(e^{2x}){g(e^{2x})=\frac{e^{X}{\frac{e^{2x}+1}{2}=\frac{1}\frac{e^{X}+e^{-x}{2}=\frac{1}\coshx}=\frac{2\sinhx}{\mathrm{s}\dot{\mathrm{ }\mathrm{h}2x}. It is known that \displaystyle \frac{2\sinh x}{\sinh 2x} is positive definite. By [3], this fact is equivalent to the operator norm inequality. \displaystyle \Vert|H^{\frac{1}{2} XK^{\frac{1}{2} \Vert|\leq\frac{1}{2}\Vert|HX+XK. ,. where \bullet is any unitarily invariant norm and usual operator norm \Vert\bul et is one of example of unitarily ìnvariant norms. Borrowing notation in [3], we can write the above operator norm inequality as follows:. \displaystyle \Vert|M(H,K)X\Vert|\leq\frac{1}{2}\Vert|N(H,K)X\Vert|. For a_{1}\geq a_{2}\geq\cdots\geq a_{n}>0 and b_{1}\geq b_{2}\geq\cdots\geq b_{n}>0 , we define the function. h(x)=\displaystyle\prod_{i=1}^{n}\frac{b_{i}\sinha_{i}x {a_{i}\sinhb_{i}x ..

(3) 82. The following statements had proved in [1]:. (1) If. \displaystyle\sum_{i=1}^{k}a_{i}\leq\sum_{i=1}^{k}b_{i} for aÍìyk. (2) If a_{1} >b_{1} , then. (3) If. h. =1. , 2,. n. , then. h. is positive definite.. is not positive definite.. \displaystyle\sum_{i=1}^{n}a_{i}>\sum_{i=1}^{n}b_{i} , then. h. is not positive definite.. For a\geq b>0 . and c\geq d>0 , we set. M(s,t)=(st)^{\frac{1-a+b}{2} \displaystyle \frac{b(s^{a}-t^{a}) {a(s^{b}-t^{b}) and. N(s,t)=(st)^{\frac{1-c+d}{2} \underlc(s^{d}-t^{d}) ine{d(s^{c}-t^{c})}. .. By the facts (1), (2) and (3), we have that the following three statements are equiv‐ alent.. (a) c\geq a and b+c\geq a+d.. (b). \displaystyle \frac{\sinh ax\sinh dx}{\sinh bx\sinh cx}. is positive definite.. (c) \Vert|M(H,K)X\Vert| \leq \displaystyle \frac{1}{2}|\Vert N(H,K)X\Vert| , where H,K,X are operators on Hilbert space and H,K are positive and invertible. The following two functions does not satisfies the assumption of (1), (2) and (3):. h_{1}(x)=\displaystyle \frac{\sinh 8x\sinh 6x\sinh x}{\sinh 9x\sinh 4x\sinh 4x} and. h_{2}(x)=\displaystyle \frac{\sinh 8x\sinh 6x\sinh 3x}{\sinh 9x\sinh 4x\sinh 4x}. It is proved in [1] that h_{1} is positive definite whereas h_{2} is not positive definite. We can get the following statement and the non positive definiteness of h_{2} can be extended as stated in Corollary 2..

(4) 83. Theorem 1. [2] If. $\varphi$. \displaystyle \lim_{n\rightar ow\infty} $\varphi$(nx)= $\varphi$(0). for all x\in \mathbb{R} , then $\varphi$ is constant.. Corollary 2. If. h. (not necessarily continuous) is positive definiĩe on. \mathbb{R}. and. is non‐constant satisfying a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}. and. a_{1}\times a_{2}\times\cdots\times a_{n}=b_{1}\times b_{2}\times\cdots\times b_{n},. then. h. is not positive definite.. 3. Proof of the Main Results. We define that the function. $\varphi$. is positive definite on. \displaystyle\sum_{i,j=1}^{n}$\alpha$_{i}\overline{$\alpha$_{j} $\varphi$(x_{i}-x_{j})\geq0 is known as Herglotz’s theorem that. bers. , where. n,. exists positive finite measure. $\mu$. on. $\Gamma$. $\alpha$_{1}, $\alpha$_{2} ,. \cdots. if for any natural num‐. , $\alpha$_{n}\in \mathbb{C} and x_{1},x_{2} ,. \cdots. is positive definite function on (as a dual of \mathb {Z} ) such that $\varphi$. $\varphi$(n)=\displaystyle \int_{ $\Gamma$}e^{2 $\pi$\sqrt{-1}nx}d $\mu$(x) Here, [0, 1 ) \cong \mathbb{R}/\mathbb{Z} will identify. \mathb {Z}. , x_{n}\in \mathbb{Z} . It \mathb {Z}. if there. for all n\in \mathbb{Z}.. $\Gamma$.. Before we begin our proof, we will show that. $\mu$(\displaystyle \{0\})=\lim_{N\rightar ow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N} $\varphi$(n). .. ( $\dag er$ ). To prove this, it suffices to show that if $\mu$(\{0\})=0 , then. \displaystyle\lim_{N\rightar ow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}$\varphi$(n)=0 by considering $\mu$- $\mu$(\{0\}) $\delta$) instead of $\mu$ , where $\alpha$ is a Dirac measure at 0 . So, we are going to assume that $\mu$(\{0\})=0. Since |\sin x|\leq|x| and \displaystyle \frac{2x}{ $\pi$}\leq\sin x(0\leq x\leq\frac{ $\pi$}{2}) , then. \displaystyle \frac{1}{2N+1}|\frac{\sin(2N+1) $\pi$ x}{\sin $\pi$ x}|\leq\frac{1}{2N+1}\times\frac{(2N+1) $\pi$ x}{\frac{2 $\pi$ x}{ $\pi$} =\frac{ $\pi$}{2}. if. 0\displaystyle \leq x\leq\frac{1}{2}..

(5) 84. For a sufficiently small. $\varepsilon$>0 ,. we have. |\displaystyle \frac{1}{2N+1}\sum_{n=-N}^{N} $\varphi$(n)|=\frac{1}{2N+1}\sum_{n=-N}^{N}\int_{0}^{1}e^{2 $\pi$\sqrt{-1}nx}d $\mu$(x)|. =|\displaystyle \int_{0}^{1}\frac{1}{2N+1}\frac{\sin(2N+1) $\pi$ x}{\sin $\pi$ x}d $\mu$(x)| \displaystyle\leq\int_{-$\varepsilon$}^{$\varepsilon$}|\frac{1}{2N+1}\frac{\sin(2N+1)$\pi$x}{\sin$\pi$x}|d$\mu$(x) +\displaystyle\int_{$\varepsilon$}^{1-$\varepsilon$}|\frac{1}{2N+1}\frac{\sin(2N+1)$\pi$x}{\sin$\pi$\mathrm{x} |d$\mu$(x) \displaystyle\leq\frac{$\pi$}{2}$\mu$( -$\varepsilon$, $\varepsilon$) +\frac{1}{(2N+1)\sin$\pi\varepsilon$}$\mu$($\Gam a$). Hence,. \disN\rightarrow\infty playstyle \lim\sup|\frac{1}{2N+1}\sum_{n=-N}^{N} $\varphi$(n)|. \leq. \displaystyle \frac{ $\pi$}{2} $\mu$( - $\varepsilon$, $\varepsilon$. Since. $\varepsilon$. .. is arbitrary and. $\mu$(\{0\})=0 , then \displaystyle \lim_{N\rightar ow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N} $\varphi$(n)=0.. Lemma 3. Let $\varphi$:\mathbb{Z}\rightar ow \mathbb{C} be positive definite and nl\rightar ow\infty \mathrm{i}\mathrm{m} $\varphi$(n)= $\varphi$(0) . Then, $\varphi$ is constant.. Proof. Let $\varphi$(n)=\displaystyle \int_{0}^{1}e^{2 $\pi$\sqrt{-1}nx}d $\mu$(x) for all n\in \mathbb{Z} . Then, $\varphi$(0)= $\mu$( $\Gamma$) . Further‐ more, by ( $\dag er$ ) and since \displaystyle \lim_{n\rightar ow\infty} $\varphi$(n)= $\varphi$(0) , then $\mu$(\{0\})= $\varphi$(0) . This means that $\mu$. is a non‐negative scalar multiple of Dirac measure at. 0. and so, $\varphi$(n)= $\varphi$(0) for. all n\in \mathbb{Z}.. \square. Proof of Theorem 1. Given x\in \mathbb{R} , we can cpnsider the complex‐valued function $\varphi$_{X} on \mathb {Z} in which. $\varphi$_{X}(n)= $\varphi$(nx) We have that. $\varphi$_{X}. is positive definite and since. .. \displaystyle \lim_{n\rightar ow\infty} $\varphi$(nx)= $\varphi$(0) , then by Lemma. 3, $\varphi$_{X} is constant and since x is arbitrarily chosen, then $\varphi$ is constant..

(6) 85. Proof of Corollary 2. By the assumption we have. h(x)=\displaystyle \frac{\sinh a_{1}x\sinh a_{2}x\cdots\sinh a_{n}x {\sinh b_{1}x\sinh b_{2}x\cdots\sinh b_{n}x . Consider that. h(0)=\displaystyle \lim_{x\rightar ow 0}h(x). =\displaystyle\lim_{x\rightar ow0}\frac{\sinha_{1}x\sinha_{2}x\cdot\cdot.\sinha_{n}x{\sinhb_{1}x\sinhb_{2}x\cdot\cdot\sinhb_{n^{x}. =\displaystyle\frac{a_{1}\timesa_{2}\times\cdots\timesa_{n}{b_{1}\timesb_{2}\times\cdots\timesb_{n} =1. and. \displaystyle\lim_{x\rightar ow\infty}h(x)=\lim_{x\rightar ow\infty}\frac{(e^{a\mathrm{l}X-e^{-a_{1^{X} )(e^{a_{2^{X} -e^{-a_{2^{X} )\ldots(e^{a_{n}x-e^{-a_{n^{x} )}{(e^{b_{1^{X} -e^{-b_{1^{X} )(e^{b_{2^{X} -e^{-b_{2^{X} )\ldots(e^{b_{n^{X} -e^{-b_{n}x)}. =\displaystyle\lim_{x\rightar ow\infty}\frac{e^{(a_{1}+a_{2}+\cdot\cdot.+a_{n})x}(1-e^{-2a_{1^{X} )(1-e^{-2a_{2^{X} ).\cdot(1-e^{-2a_{n^{X} )}{e^{(b_{1}+b_{2}+\cdot\cdot+b_{n})x}(1-e^{-2b_{1^{X} )(1-e^{-2b_{2^{X} ).(1-e^{-2b_{n^{X} )} =1.. This means. \displaystyle \lim_{n\rightar ow\infty}h(nx)=1 for all x\in \mathbb{R}. Since h is non‐constant, then by Theorem 1,. h. is not positive definite..

(7) 86. References [1] Albania. I. N and Nagisa. M, Some Families of OperatorNorm Inequalities, Linear Algebra and Its Application. 534(2017), 102‐121. [2] Albania. I. N and Nagisa. M, Positive Definite Sequences with ConstantModulus, Scientiae Mathematicae Japonicae. Editione Electronica, whole number 30, e‐2017‐17. [3] Hiai.. $\Gamma$. and Kosaki. H, Means for Matrices and Comparison of Their Norms, Indiana Univ.. Math. J. 48(1999), 899‐936.. [4] Hiai.. $\Gamma$. and Petz. D, Introduction to Matrix Analysis andApplications, Springer, 2014.. Department of Mathematics Education Indonesia University of Education Jl. Dr. Setiabudhi 229 Bandung, West Java 40154 \mathrm{e} ‐mail address: albania@upi.edu, phantasion@gmail. com.

(8)

参照

関連したドキュメント

W ang , Global bifurcation and exact multiplicity of positive solu- tions for a positone problem with cubic nonlinearity and their applications Trans.. H uang , Classification

Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singu- larly perturbed domains, Comm.. Chabrowski, Variational methods for potential

Our goal is to establish the theorems of existence and multiple of positive entire solutions for a class quasilinear elliptic equations in R N with the Schauder-Tychonoff fixed

In [LN] we established the boundary Harnack inequality for positive p harmonic functions, 1 < p < ∞, vanishing on a portion of the boundary of a Lipschitz domain Ω ⊂ R n and

In the proofs we follow the technique developed by Mitidieri and Pohozaev in [6, 7], which allows to prove the nonexistence of not necessarily positive solutions avoiding the use of

The operator space analogue of the strong form of the principle of local reflexivity is shown to hold for any von Neumann algebra predual, and thus for any C ∗ -algebraic dual..

Lions, “Existence and nonexistence results for semilinear elliptic prob- lems in unbounded domains,” Proceedings of the Royal Society of Edinburgh.. Section

(The Elliott-Halberstam conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve- ments in Huxley’s results, which for r ≥ 2 are weaker than the result