• 検索結果がありません。

JJ II

N/A
N/A
Protected

Academic year: 2022

シェア "JJ II"

Copied!
22
0
0

読み込み中.... (全文を見る)

全文

(1)

volume 7, issue 1, article 21, 2006.

Received 27 June, 2005;

accepted 19 November, 2005.

Communicated by:S.S. Dragomir

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

A NOTE ON THE ACCURACY OF RAMANUJAN’S APPROXIMATIVE FORMULA FOR THE PERIMETER OF AN ELLIPSE

MARK B. VILLARINO

Escuela de Matemática, Universidad de Costa Rica, 2060 San José, Costa Rica.

EMail:mvillari@cariari.ucr.ac.cr

2000c Victoria University ISSN (electronic): 1443-5756 192-05

(2)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

Abstract

We present a detailed error analysis, with best possible constants, of Ramanu- jan’s most accurate approximation to the perimeter of an ellipse.

2000 Mathematics Subject Classification:26D15, 33E05, 41A44.

Key words: Ramanujan’s approximative formula, Best constants, Elliptic functions and integrals.

Support from the Vicerrectoría de Investigación of the University of Costa Rica is acknowledged. We thank the referee for his valuable comments and additional refer- ences.

Contents

1 Introduction. . . 3

2 Later History . . . 6

3 Fundamental Lemma . . . 7

4 Ivory’s Identity . . . 14

5 The Accuracy Lemma. . . 16

6 The Accuracy of Ramanujan’s Approximation . . . 19 References

(3)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

1. Introduction

Letaandbbe the semi-major and semi-minor axes of an ellipse with perimeter pand whose eccentricity isk. The final sentence of Ramanujan’s famous paper Modular Equations and Approximations toπ, [6], says:

“ The following approximation forp[was] obtained empirically:

(1.1) p=π

(a+b) + 3(a−b)2 10(a+b) +√

a2+ 14ab+b2

whereεis about 687194767363ak20 .”

Ramanujan never explained his “empirical” method of obtaining this ap- proximation, nor ever subsequently returned to this approximation, neither in his published work, nor in his Notebooks [4]. Indeed, although the notebooks do contain the above approximation (see Entry 3 of Chapter XVIII) the state- ment there does not even mention his asymptotic error estimate stated above.

Twenty years later Watson [7] claimed to have proven that Ramanujan’s ap- proximation is in defect, but he never published his proof.

In 1978, we established the following optimal version of Ramanujan’s ap- proximation:

Theorem 1.1 (Ramanujan’s Approximation Theorem). Ramanujan’s approx- imative perimeter

(1.2) pR:=π

(a+b) + 3(a−b)2 10(a+b) +√

a2 + 14ab+b2

(4)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

underestimates the true perimeter,p, by

(1.3) :=π(a+b)·θ(λ)·λ10, where

(1.4) λ:= a−b

a+b,

and where the function θ(λ) grows monotonically in 0 ≤ λ ≤ 1 while at the same time it satisfies the optimal inequalities

(1.5) 3

217 < θ(λ)≤ 14 11

22 7 −π

.

Please take note of the striking form of the sharp upper bound since it in- volves the number 227 −π

which measures the accuracy of Archimedes’ fa- mous approximation, 227 ,to the transcendental numberπ!

Corollary 1.2. The error in defect, , as a function ofλ, grows monotonically for0≤λ ≤1.

Corollary 1.3. The error in defect,, as a function of the eccentricity,e, is given by

(1.6) (e) :=a

( δ(e)

2 1 +√

1−e2 19)

e20.

Moreover, (e)grows monotonically withe, 0≤ e≤ 1, whileδ(e)satisfies the optimal inequalities

(1.7) 3π

68719476736 < δ(e)≤

7 11

22 7 −π 218 .

(5)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

This Corollary1.3 explains the significance of Ramanujan’s own error esti- mate in (1.1). The latter is an asymptotic lower bound for(e)but it is not the optimal one. That is given in (1.7).

(6)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

2. Later History

We sent an (updated) copy of our 1978 preprint to Bruce Berndt in 1988 and he subsequently quoted its conclusions in his edition of Volume 3 of the Notebooks (see p. 150 [4]). However the details of our proofs have never been published and so we have decided to present them in this paper.

Berndt’s discussion of Ramanujan’s approximation includes Almkvist’s very plausible suggestion that Ramanujan’s “empirical process” was to develop a continued fraction expansion of Ivory’s infinite series for the perimeter ([1]) as well as a proof, due independently to Almkvist and Askey, of our fundamental lemma (see §3). However, their proof is different from ours.

The most recent work on the subject includes that by R. Barnard, K. Pearce, and K. Richards in [3], published in the year2000, and the paper by H. Alzer and Qui, S.-L. (see [2]), which was published in the year 2004. The former also prove the major conclusion in our fundamental lemma, but their methods too are quite different from ours. The latter includes a sharp lower bound for elliptical arc length in terms of a power-mean type function. But their methods are also quite different from ours.

(7)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

3. Fundamental Lemma

Lemma 3.1 (Fundamental Lemma). Define the functionsA(x)andB(x)and the coefficientsAnandBnby:

A(x) := 1 + 3x 10 +√

4−3x := 1 +A1x+A2x2+· · · , (3.1)

B(x) :=

X

n=0

1 2n−1

1 4n

2n n

2

xn:= 1 +B1x+B2x2+· · · . (3.2)

Then:

A1 =B1, A2 =B2, A3 =B3, A4 =B4 (3.3)

A5 < B5, A6 < B6, . . . , An < Bn, . . . , (3.4)

where the strict inequalities in (3.4) are valid for alln ≥5.

Proof. First we prove (3.3). We read this off directly from the numerical values of the expansion:

A1 =B1 = 1 4 A2 =B2 = 1

16 A3 =B3 = 1

64 A4 =B4 = 25

4096.

(8)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

Now we prove (3.4). ForA5,B5,A6, andB6we verify (3.4) directly from their explicit numerical values. Namely,

A5 = 4712

214, B5 = 49

214 ⇒A5−B5 = −32 214 <0 A6 = 803

221, B6 = 882

221 ⇒A6−B6 = −79 221 <0.

Therefore it is sufficient to prove

(3.5) An< Bn

for all

(3.6) n≥7.

Now the explicit formula forAnis

(3.7) An=an−1+an−2+an−3+· · ·+a1+a0 where

(3.8)

an−1 := 1

2n−3 · 1 16n

2n−2 n−1

3n−1

an−2 := 1

2n−5 · 1 16n−1

2n−4 n−2

3n−2

−1 25

... ...

a1 := 1 2·1−1

1 162

2 1

31

−1 25

n−2

a0 := 4 16

−1 25

n−1

.

(9)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

Next we write (3.9) An=an−1

1 + an−2 an−1

+an−3 an−1

+an−4 an−1

+· · ·+ a1 an−1

+ a0 an−1

and assert:

Claim 1. The ratios an−k−1a

n−k increase monotonically in absolute value as k in- creases fromk= 1tok=n−1.

Proof. Fork = 1, . . . , n−2,

an−k−1

an−k

=

1 + 2

2n−2k−3 1

2 + 1

4n−4k−2 1

12

≤ 1

6 (which is the worst case and occurs whenk=n−2)

<1 Fork=n−1,

a0 a1

= 1 3 <1.

This completes the proof.

Claim 2. The ratios an−k−1

an−k

alternate in sign.

Proof. This is a consequence of the definition of theak.

(10)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

By Claim1and Claim2we can write (3.9) in the form

An=an−1 (1−something positive and smaller than1)

< an−1.

Therefore, to prove (3.8) forn≥7, it suffices to prove that

(3.10) an−1 < Bn

for alln ≥7.

By (3.8) and the definition ofBn, this last afirmation is equivalent to proving 1

2n−3· 1 16n

2n−2 n−1

3n−1 <

1 2n−1· 1

4n 2n

n 2

,

which, after some algebra, reduces to proving the implication n≥7⇒

n 2 · 2n−12n−3

2n n

·3n−1 <1.

If we define for all integersn ≥7

(3.11) f(n) :=

n 2 ·2n−12n−3

2n n

·3n−1 then the affirmation(3.10)turns out to be equivalent to

(3.12) n≥7⇒f(n)<1

This latter affirmation is a consequence of the following two conditions:

(11)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

Condition 1. f(7) <1.

Condition 2. f(7) > f(8)> f(9) >· · ·> f(k)> f(k+ 1)>· · ·

Proof of Condition1. By direct numerical computation, f(7) = 1701

1936 <1.

Proof of Condition2. We must show that

k ≥7⇒f(k)> f(k+ 1).

If we define

(3.13) g(k) := f(k)

f(k+ 1), then we must show that

(3.14) k ≥7⇒g(k)>1.

Using the definition (3.11) off(n)and the definition (3.14) ofg(n), and reduc- ing algebraically we find

g(k) = 2k 6k−9

2k−1 k+ 1

2

,

(12)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

and we must show that

(3.15) k ≥7⇒ 2k

6k−9

2k−1 k+ 1

2

>1.

Define the rational function of the real variablex:

(3.16) g(x) := 2x

6x−9

2x−1 x+ 1

2

.

Then the graph ofy=g(x)has a vertical asymptote atx= 32 and

(3.17) lim

x→32+

g(x) = +∞.

Moreover, the derivative ofg(x)is given by:

g0(x) = 2(2x2−7x+ 1) x(x+ 1)(2x−1)(2x+ 3), which implies that

g0(x)





<0 if 32 < x < 7+

41

4 ,

= 0 ifx= 7+

41 4 ,

>0 ifx > 7+

41 4 .

Therefore, forx ≥ 32, g(x)decreases from “+∞” at x = 32 (see (3.17)) to an absolute minimum value (in 32 ≤x <∞)

g 7 +√ 41 4

!

= 1 + 37−√ 41 399 + 69√

41 = 1.0363895208. . .

(13)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

and then increases monotonically asx → ∞to its asymptotic limity = 43 and this is enough to complete the proof of the Fundamental Lemma.

(14)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

4. Ivory’s Identity

In 1796, J. Ivory [5] published the following identity (in somewhat different notation):

Theorem 4.1 (Ivory’s Identity). If 0 ≤ x ≤ 1then the following formula for B(x)is valid:

(4.1) 1 π

Z π 0

q

1 + 2√

xcos(2φ) +x dφ

=

X

n=0

1 2n−1

1 4n

2n n

2

xn ≡B(x).

Proof. We sketch his elegant proof.

1 π

Z π 0

q

1 + 2√

xcos(2φ) +x dφ

= 1 π

Z π 0

q 1 +√

xe2iφ q

1 +√

xe−2iφ

= 1 π

Z π 0

X

m=0

1

2m−1 · 1 4m

2m m

(√

x)me2πimφ

×

X

n=0

1 2n−1· 1

4n 2n

n

(√

x)ne−2πinφ

= 1 π

X

m=0

1

2m−1· 1 4m

2m m

(√

x)m

(15)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

×

X

n=0

1 2n−1· 1

4n 2n

n

(√ x)n

Z π 0

e2πi(m−n)φ

=

X

n=0

1

2n−1 · 1 4n

2n n

2

xn

We will need the following evaluation in our investigation of the accuracy of Ramanujan’s approximation.

Corollary 4.2.

(4.2) B(1) = 4

π. Proof. By Ivory’s identity,

B(1) = 1 π

Z π 0

q

1 + 2√

1 cos(2φ) + 1dφ

= 1 π

Z π 0

p2 + 2 cos(2φ)dφ

= 1 π

Z π 0

p4 cos2(φ)dφ

= 4 π.

(16)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

5. The Accuracy Lemma

Theorem 5.1 (Accuracy Lemma). For0≤x≤1, the function

(5.1) A(x) := 1 + 3x

10 +√ 4−3x underestimates the function

(5.2) B(x) :=

X

n=0

1 2n−1

1 4n

2n n

2

xn

by a discrepancy, ∆(x) which is never more than π41411

x5 and which is always more than 2317x5:

(5.3) 3

217x5 <∆(x)≤ 4

π − 14 11

x5.

Moreover, the constants π41411

and 2317x5 are the best possible.

Proof. By the definition ofA(x)andB(x)given in Theorem1.1, the discrep- ancy∆(x)is given by the series

∆(x) :=B(x)−A(x)

= (B5−A5)x5+ (B6−A6)x6+· · · :=δ5x56x6+· · · ,

where, again by Theorem1.1,

δk>0 fork= 5,6, . . . .

(17)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

On the one hand

∆(x) = x556x+· · ·)

≤x5567+· · ·)

=x5∆(1)

=x5{B(1)−A(1)}

=x5 4

π − 14 11

where we used Corollary1.2of Ivory’s identity in the last equality. Therefore

∆(x)≤ 4

π − 14 11

x5.

This is half of the accuracy lemma. Moreover, the constant π41411

is assumed for x = 1 and thus cannot be replaced by anything smaller, i.e., it is the best possible constant.

On the other hand, we can write

∆(x) = x55+G(x)}, where

G(x) :=δ6x+δ7x2+· · · ⇒

(G(x)≥0 for all0≤x≤1, G(x)→0 asx→0.

This shows that

∆(x)> δ5x5 = 3 217x5

(18)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

and that

x→0lim

∆(x) x5 = 3

217.

This proves both the other inequality in the theorem and the optimality of the constantδ5 = 2317,i.e., that it cannot be replaced by any larger constant.

This completes the proof of the Accuracy Lemma.

(19)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

6. The Accuracy of Ramanujan’s Approximation

Now we can achieve the main goal of this paper, namely to prove Ramanujan’s Approximation Theorem.

First we express the perimeter of an ellipse and Ramanujan’s approximative perimeter in terms of the functionsA(x)andB(x).

Theorem 6.1. If pis the perimeter of an ellipse with semimajor axes aandb, and ifpRis Ramanujan’s approximative perimeter, then:

(6.1)

p =π(a+b)·B (

a−b a+b

2)

pR =π(a+b)·A (

a−b a+b

2) .

Proof. We begin with Ivory’s Identity (§4) and in it we substitutex:= a−ba+b2

. Then the integral becomes

1 π

Z π 0

v u u t1 + 2

s

a−b a+b

2

cos(2φ) +

a−b a+b

2

= 4

π(a+b) Z π2

0

(a2sin2φ+b2cos2φ)dφ

(20)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

and therefore B

( a−b a+b

2)

= 4

π(a+b) Z π2

0

(a2sin2φ+b2cos2φ)dφ.

But, it is well known (Berndt [4]) that the perimeter,p, of an ellipse with semi- axesaandbis given by

p= 4 Z π2

0

(a2sin2φ+b2cos2φ)dφ,

and thus

(6.2) p=π(a+b)·B

( a−b a+b

2) .

Moreover, some algebra shows us that A

( a−b a+b

2)

= 1 + 3 a−ba+b2

10 + q

4−3 a−ba+b2

= 1 a+b

(a+b) + 3(a−b)2 10(a+b) +√

a2 + 14ab+b2

and we conclude that Ramanujan’s approximative formula,pRis given by

(6.3) pR=π(a+b)A

( a−b a+b

2) .

(21)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

The formula forpabove was the object of Ivory’s original paper [5].

Now we complete the proof of Theorem1.1.

Proof. Writing

λ:= a−b a+b,

and using the notation of the statement of Theorem1.1. we conclude that :=π(a+b)·θ(λ)·λ10

=π(a+b)·∆(λ2) λ10 ·λ10, where

(6.4) θ(λ)≡ ∆(λ2)

λ1056λ2+· · · .

Now we apply the Accuracy Lemma and the proof is complete.

(22)

A Note On the Accuracy of Ramanujan’s Approximative Formula for the Perimeter of an

Ellipse Mark B. Villarino

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of22

J. Ineq. Pure and Appl. Math. 7(1) Art. 21, 2006

References

[1] G. ALMKVIST AND B. BERNDT, Gauss, Landen, Ramanujan, the Arithmetic-geometric Mean, Ellipses,π, and the Ladies Diary, Amer. Math.

Monthly, 95 (1988), 585–608.

[2] H. ALZERANDS.-L. QIU, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comp. Appl. Math., 172 (2004), 289–312.

[3] R.W. BARNARD, K. PEARCE AND K.C. RICHARDS, A monotonicity property involving3F2 and comparisons of the classical approximations of elliptical arc length, SIAM J. Math. Anal., 32 (2000), 403–419.

[4] B. BERNDT, Ramanujan’s Notebooks, Volume 3, Springer, New York, 1998.

[5] J. IVORY, A new series for the rectification of the ellipsis; together with some observations on the evolution of the formula(a2 +b2 −2abcosφ)n, Trans. R. Soc. Edinburgh, 4 (1796), 177–190.

[6] S. RAMANUJAN, Ramanujan’s Collected Works, Chelsea, New York, 1962.

[7] G.N. WATSON, The Marquis and the land agent, Mathematical Gazette, 17 (1933), 5–17.

参照

関連したドキュメント

Pro. Solel, Hardy algebras, W ∗ -orrespondenes and inter- polation theory, Math. Popesu, Nonommutative dis algebras and their representations,. Pro. Popesu, Interpolation problems

and Soon-Yi Kang have proved many of Ramanujan’s formulas for the explicit evaluation of the Rogers-Ramanujan continued fraction and theta-functions in terms of Weber-Ramanujan

(The definition of this invariant given in [13] is somewhat different from the one we use, which comes from [23], but the two definitions can be readily shown to agree.) Furuta and

Theorem (B-H-V (2001), Abouzaid (2006)) A classification of defective Lucas numbers is obtained:.. Finitely many

Platonov conjectured, conversely, that finitely generated linear groups which are super- rigid must be of “arithmetic type.” We construct counterexamples to Platonov’s

Let S be a closed Riemann surface of genus g and f: S → S be a fixed point free conformal automorphism, of odd order n &gt; 1.. Similar arguments as above permit us to show that

2015 年度 2016 年度 2017 年度 2018 年度 2019 年度 都有施設全体 4,903 5,286 5,453 5,111 4,988. (単位:t-CO

Grasshopper - For control of first and second instar grasshopper nymphal stages a rate range of 3.9 to 5.8 fluid ounces of product per acre (0.02 - 0.03 lb. ai/A) can be used.