• 検索結果がありません。

Optimization of Power Grasps for Multiple Objects

N/A
N/A
Protected

Academic year: 2022

シェア "Optimization of Power Grasps for Multiple Objects"

Copied!
7
0
0

読み込み中.... (全文を見る)

全文

(1)

Optimization of Power Grasps for Multiple Objects

著者 Yoshikawa Tsuneo, Watanabe Tetsuyo, Daito Mutsuo

journal or

publication title

Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA)

volume 2

number 2001

page range 1786‑1791

year 2001‑01‑01

URL http://hdl.handle.net/2297/35238

doi: 10.1109/ROBOT.2001.932868

(2)

! "#$!% &

' !(!%%)' )!%)%*' "+ ,

Æ

!"

Æ

!

"# $

% &

%

'

(

& %

!

!

& )

*

+

( ,

-

.

!

/+ Æ

%

&

0 Æ

1

1 0 #

%

&

$ 2 !

3 *

0

4

%

%

& !

5! %

0

$

#

0 6 7

6 7 % 6 7

8 6 7

! 9 6 7 6 %

7%

: 6 : 79 6 7

6 7

676

7 !

9 6 7 !

% ;

;

;

%! (

(3)

4 8 <

4 5

( =;

¼

%!

0

%

2

;

;

4

!

( (

;

# $ >

?

@

?

67

?

@

?

6#7

@

6

7

@

6

7

@

6

7

" !&

!

;

;

567!

;

;

6#7!

;

;

!

( (

5

4

4

65

4 ;

?

@

?

6$7

A !

4

4676$7

4

?

½

½ ?

@

?

6*7

@

½

½

@

67

67

"

! 6 7

!

5

4

5!( (

& 6#7

?

½

½

?

@ 6,7

@

67

67

67

" ! ! 6 7

6 7

!

5

@ (

5

(

(

46*76,7

%

?

?

@ 6.7

@

½

6

¼ 7

½

(4)

½

@

½

6 7

?

@

?

½

½ ?

?

@

?

?

5 6 7

3

5 @ ;

@;

@;

0

% &!

5

!

2

!

( (

5

(( (

( 5

&4

! $

$

; 6.7

@

6+7

@

@

½½

6

¼¾½

¼

¼ 7

½¾½

½

½

@

@

46+7

@ 6

7

B6

7

6>7

!

0

6>7

@6

7

B6

7

6C7

6C7

&

5

6C7 !

! D

&

6C7

@ @6

7

E

B6

7

=

6=7

E

6@

7

6@

7

0

!

"

%

%

B

67

Æ !

"

67

@

E

F

6#7

@

½½

6

¼½

¼

¼ 7

½¾½

½

½

E

@

6B

½½ 7

½

¾

6B

7

½

¾

66B

¼½ 7

½

¾

6B

¼

¼ 7

½

¾

7

6B

½¾½ 7

½

¾

6B

½

½ 7

½

¾

F

@

½½

6

¼½

¼

¼ 7

½¾½

½

½

"G G !

0 Æ

(5)

%

!

! 6#7

6=7 6#7

@

6$7

H E

6=7

! " H

! + !

6$7 6+7 !

&

!

@

@

6*7

5 !

"

@ 67 6,7

!

!!

( 6+7

0 6. B

7

!

!

4%

@. B

@. 6

7

% "

& %

Æ !

@.

# @. B

#

@$

4 #8 I!

! #

! 0

% &

Æ !

%

=$

4 # 67

4 #67

==> =>

4 # 67

E

@,6.7

0 %

%

//+

%

H

# $! % & + 4

% '$! % & %

#$! %&

"

! "

!

"

( "

! " )

" '$! %

"'

$!%&

% % # $!

%&

#$!"

% &

'

$!%&

(6)

4 *8 < 607

& H

%

) "

%

*

+

'$!%&"

#$! % & * + "

,

J

@ !

6.7

5

!

J

@ !

6+7

! !

/ /+ H

46+7

@6

7

B6

7

6>7

!

'

6#76>7

1 J

6J

7

'

4 .8 <

4 +8 #!4 $

4

9 7

I 4 $40.

#7 ; 6

%! ( 7 %!

( $7 Æ !

%

!

=$ *7

@

@

%

,7

! &

J

6+7

!

(

!

( #!

@

@

@

@=

B

6C7

(7)

0 1 0

0.05 0.1 0.15

one object two objects (I) two objects (II) three objects Φ

τ 11 /τ 12 –1

4 >8 J

8 J

&

J

@

@

==* +>* ==*

607 .. >#$* ..

60 07 #== >..C #==

$# C*#. $#

4 $ '

#!

&

%

%

5 @ , !

4 +

.*

< !" 4 >

J

J

J

&

J

@=

&J

J

44 >

&

&

"

&

=>C#* &

=>C#*

0

Æ

%

&

4 !

3

4 !

&

!""" # $ %

&'()*&'('''+

& ,- % , . "/0 1

!""" #

$ % &)('*&)2''+

3 ,- % , . 405 5 % "67

1 !"""

#$ % &2'*&8)

&(((

) 5. / % / #

# 05 !"""#

$ % )99*)+)''8

2 ,4 0 $0%: % 5

!% 1 ; 1

!""" # $ %

9+9*9'3''8

8 <7=5 04 . ,1 % ,5

$ 1 !"""

#$ % &+&+*&+32

'')

9 , .55. >

$ - % 1 !"""

#$ % 33)*33)9

'''

+ 5. # 05 1 0

% ?0% $ - %

@0A %$ !7

; !"""#$ %

38'*398&(((

参照

関連したドキュメント

We present the new multiresolution network flow minimum cut algorithm, which is es- pecially efficient in identification of the maximum a posteriori (MAP) estimates of corrupted

A functor L which preserves the structure of a topos must be left exact (preserve finite limits) and preserve power objects in the sense that L applied to each power object

The idea is that this series can now be used to define the exponential of large classes of mathematical objects: complex numbers, matrices, power series, operators?. For the

5 used an improved version of particle swarm optimization algorithm in order to solve the economic emissions load dispatch problem for a test system of 6 power generators, for

Our goal is to establish the theorems of existence and multiple of positive entire solutions for a class quasilinear elliptic equations in R N with the Schauder-Tychonoff fixed

Now it makes sense to ask if the curve x(s) has a tangent at the limit point x 0 ; this is exactly the formulation of the gradient conjecture in the Riemannian case.. By the

Wu, “Positive solutions of two-point boundary value problems for systems of nonlinear second-order singular and impulsive differential equations,” Nonlinear Analysis: Theory,

In order to achieve the minimum of the lowest eigenvalue under a total mass constraint, the Stieltjes extension of the problem is necessary.. Section 3 gives two discrete examples