• 検索結果がありません。

the Geometric Markov Renewal Processes and Option Price Formulas

N/A
N/A
Protected

Academic year: 2022

シェア "the Geometric Markov Renewal Processes and Option Price Formulas"

Copied!
21
0
0

読み込み中.... (全文を見る)

全文

(1)

Volume 2010, Article ID 347105,21pages doi:10.1155/2010/347105

Research Article

Diffusion Approximations of

the Geometric Markov Renewal Processes and Option Price Formulas

Anatoliy Swishchuk

1

and M. Shafiqul Islam

2

1Department of Mathematics and Statistics, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4

2Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3

Correspondence should be addressed to M. Shafiqul Islam,sislam@upei.ca Received 3 August 2010; Accepted 8 November 2010

Academic Editor: Aihua Xia

Copyrightq2010 A. Swishchuk and M. S. Islam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the geometric Markov renewal processes as a model for a security market and study this processes in a diffusion approximation scheme. Weak convergence analysis and rates of convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented.

We present European call option pricing formulas in the case of ergodic, double-averaged, and merged diffusion geometric Markov renewal processes.

1. Introduction

Let Nt be a standard Poisson process and Ykk∈Z be i.i.d. random variables which are independent ofNtandS0 >0. The geometric compound Poisson processes

St S0

Nt

k1

1Yk, t >0, 1.1

is a trading model in many financial applications with pure jumps1, page 214. Motivated by the geometric compound Poisson processes 1.1, Swishchuk and Islam 2 studied the Geometric Markov renewal processes 2.5 see Section 2 for a security market in a series scheme. The geometric Markov renewal processes 2.5 are also known as a switched-switching process. Averaging and diffusion approximation methods are important

(2)

approximation methods for a switched-switching system. Averaging schemes of the geometric Markov renewal processes2.5were studied in2.

The singular perturbation technique of a reducible invertible-operator is one of the techniques for the construction of averaging and diffusion schemes for a switched- switching process. Strong ergodicity assumption for the switching process means that the singular perturbation problem has a solution with some additional nonrestrictive conditions.

Averaging and diffusion approximation schemes for switched-switching processes in the form of random evolutions were studied in3, page 157and1, page 41. In this paper, we introduce diffusion approximation of the geometric Markov renewal processes. We study a discrete Markov-modulatedB, S-security market described by a geometric Markov renewal processGMRP. Weak convergence analysis and rates of convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented. We present European call option pricing formulas in the case of ergodic, double-averaged, and merged diffusion geometric Markov renewal processes.

The paper is organized as follows. In Section 2 we review the definition of the geometric Markov renewal processesGMRPfrom2. Moreover we present notation and summarize results such as random evolution of GMRP, Markov renewal equation for GMRP, infinitesimal operator of GMRP, and martingale property of GMRP. InSection 3we present diffusion approximation of GMRP in ergodic, merged, and double-averaging schemes. In Section 4 we present proofs of the above-mentioned results.Section 4contains solution of martingale problem, weak convergence, rates of convergence for GMRP, and characterization of the limit measure. In Section 5 we present merged diffusion GMRP in the case of two ergodic classes. European call option pricing formula for ergodic, merged, and diffusion GMRP are presented inSection 6.

2. The Geometric Markov Renewal Processes (GMRP)

In this section we present the Geometric Markov renewal processes. We closely follow2.

Let Ω,B,Ft,P be a standard probability space with complete filtrationFt and let xkk∈Z be a Markov chain in the phase space X,Xwith transition probability Px, A, wherexX, A ∈ X. Letθkk∈Zbe a renewal process which is a sequence of independent and identically distributed i.i.d. random variables with a common distribution function Fx : P{w : θkw ≤ x}. The random variables θkk∈Z can be interpreted as lifetimes operating periods, holding times, renewal periods of a certain system in a random environment. From the renewal processθkk∈Zwe can construct another renewal process τkk∈Zdefined by

τk:k

n0

θn. 2.1

The random variablesτkare called renewal timesor jump times. The process

vt:sup{k:τkt} 2.2

is called the counting process.

(3)

Definition 2.1see1,4. A homogeneous two-dimensional Markov chainxn, θnn∈Zon the phase spaceX×R is called a Markov renewal processMRPif its transition probabilities are given by the semi-Markov kernel

Qx, A, t P{xn1A, θn1t|xn x}, ∀x∈X, A∈ X, t∈R. 2.3 Definition 2.2. The process

xt:xvt 2.4

is called a semi-Markov process.

The ergodic theorem for a Markov renewal process and a semi-Markov process respectively can be found in3, page 195,1, page 66, and4, page 113.

Letxn, θnn∈Zbe a Markov renewal process on the phase spaceX×Rwith the semi- Markov kernelQx, A, tdefined in2.3, and letxt:xvtbe a semi-Markov process where the counting processvtis defined in2.2. Letρxbe a bounded continuous function onX such thatρx>−1. We define the geometric Markov renewal processGMRP{St}t∈Ras a stochastic functionalStdefined by

St:S0 vt

k1

1ρxk

, t∈R, 2.5

whereS0 >0 is the initial value ofSt. We call this processStt∈Ra geometric Markov renewal process by analogy with the geometric compound Poisson processes

St S0

Nt

k1

1Yk, 2.6

whereS0 > 0,Ntis a standard Poisson process,Ykk∈Z are i.i.d. random variables. The geometric compound Poisson processes{St}t∈Rin2.6is a trading model in many financial applications as a pure jump model5,6. The geometric Markov renewal processes{St}t∈R in2.5will be our main trading model in further analysis.

Jump semi-Markov random evolutions, infinitesimal operators, and Martingale property of the GMRP were presented in2. For the convenience of readers we repeat them again in the following.

2.1. Jump Semi-Markov Random Evolutions

LetC0Rbe the space of continuous functions onRvanishing at infinity, and let us define a family of bounded contracting operatorsDxonC0Ras follows:

Dxfs:f s

1ρx

, xX, s∈R. 2.7

(4)

With these contraction operatorsDxwe define the following jump semi-Markov random evolutionJSMREVtof the geometric Markov renewal processes{St}t∈Rin2.5:

Vt vt

k1

Dxk:D xvt

D xvt−1

◦ · · · ◦Dx1. 2.8

Using2.7we obtain from2.8

Vtfs vt

k1

Dxkfs f

s vt

k1

1ρxk

fSt, 2.9

whereStis defined in2.5andS0 s. LetQx, A, tbe a semi-Markov kernel for Markov renewal processxn;θnn∈Z, that is,Qx, A, t Px, AGxt, wherePx, Ais the transition probability of the Markov chainxnn∈ZandGxtis defined byGxt:Pθn1t|xnx.

Let

ut, x:Ex

Vtgxt :E

Vtgxt|x0 x 2.10

be the mean value of the semi-Markov random evolutionVtin2.9.

The following theorem is proved in1, page 60and4, page 38.

Theorem 2.3. The mean valueut, xin2.10of the semi-Markov random evolutionVtgiven by the solution of the following Markov renewal equation (MRE):

ut, xt

0

X

Q

x, dy, ds D

y u

ts, y

Gxtgx, 2.11

whereGxt 1−Gxt, Gxt:Pθn1t|xnx, gxis a bounded and continuous function onX.

2.2. Infinitesimal Operators of the GMRP

Let

Tx: ρx

T , T >0, 2.12

STt :S0

vtT k1

1ρTxk S0

vtT

k1

1T−1ρxk

. 2.13

A detailed information aboutρTxandSTt can be found in Section 4 of2. It can be easily shown that

lnSTt S0 vtT

k1

ln

1 ρxk T

. 2.14

(5)

To describe martingale properties of the GMRP Stt∈R in 2.5 we need to find an infinitesimal operator of the process

ηt:vt

k1

ln

1ρxk

. 2.15

Letγt:tτvtand consider the processxt, γtonX×R. It is a Markov process with infinitesimal operator

Qfx, t : df

dt gxt Gxt

X

P x, dy

f y,0

fx, t , 2.16

wheregxt : dGxt/dt,Gxt 1−Gxt, wherefx, tCX×R. The infinitesimal operator for the process lnSthas the form:

Afz, x gxt Gxt

X

P x, dy

f zln

1ρ y

, x

fz, x , 2.17

wherez:lnS0. The processlnSt, xt, γtis a Markov process onR×X×Rwith the infinitesimal operator

Lf z, x, t Af z, x, t Qfz, x, t, 2.18 where the operatorsA andQ are defined in2.17and2.18, respectively. Thus we obtain that the process

mt:f

lnSt, xt, γt

fz, x,0− t

0

AQ f

lnSu, xu, γu

du 2.19

is anFt-martingale, whereFt : σxs, γs; 0≤st. Ifxt : xvt is a Markov process with kernel

Qx, A, t Px, A

1−e−λxt

, 2.20

namely,Gxt 1−e−λxt, thengxt λxe−λxt,Gxt e−λxt,gxt/Gxt λx, and the operatorAin2.17has the form:

Afz λx

X

P x, dy

f zln

1ρ

y

fz . 2.21

The processlnSt, xtonR×Xis a Markov process with infinitesimal operator

Lfz, x Afz, x Qfz, x, 2.22

(6)

where

Qfz, x λx

X

P x, dy

f y

fx

. 2.23

It follows that the process

mt:flnSt, xtfz, xt

0

AQ

flnSu, xudu 2.24

is anFt-martingale, whereFt:σxu; 0ut.

2.3. Martingale Property of the GMRP

Consider the geometric Markov renewal processesStt∈R

StS0

vt k1

1ρxk

. 2.25

Fort∈0, Tlet us define

Lt:L0

vt k1

hxk, EL01, 2.26

wherehxis a bounded continuous function such that

X

h y

P x, dy

1,

X

h y

P x, dy

p y

0. 2.27

If ELT 1, then geometric Markov renewal processSt in2.25 is an Ft, P-martingale, where measurePis defined as follows:

dP dP LT, Ft:σxs; 0st.

2.28

In the discrete case we have

SnS0

n k1

1ρxk

. 2.29

LetLn : L0n

k1hxk,EL0 1, wherehxis defined in2.27. IfELN 1, thenSn is an Ft, P-martingale, wheredP/dP LN, andFn:σxk; 0≤kn.

(7)

3. Diffusion Approximation of the Geometric Markov Renewal Process (GMRP)

Under an additional balance condition, averaging effect leads to diffusion approximation of the geometric Markov renewal processGMRP. In fact, we consider the counting process vtin2.5in the new accelerated scale of timetT2, that is,vvtT2. Due to more rapid changes of states of the system under the balance condition, the fluctuations are described by a diffusion processes.

3.1. Ergodic Diffusion Approximation

Let us suppose that balance condition is fulfilled for functionalSTt S0vtT

k1 1ρTxk:

ρ

Xpdx

XP x, dy

ρ y

m 0, 3.1

wherepxis ergodic distribution of Markov chainxkk∈Z. ThenSt S0, for alltR. ConsiderSTt in the new scale of timetT2:

STt:STtT2S0

vtT2

k1

1T−1ρxk

. 3.2

Due to more rapid jumps of vtT2the process STt will be fluctuated near the pointS0 as T → ∞. By similar arguments similar to 4.3–4.5 in 2, we obtain the following expression:

lnSTt S0 T−1

vtT2

k1

ρxk−1 2T−2

vtT2

k1

ρ2xk T−2

vtT2

k1

r

T−1ρxk

ρ2xk. 3.3

Algorithms of ergodic averaging give the limit result for the second term in3.3 see1, page 43and4, page 88:

Tlim→∞

1 2T−2

vtT2

k1

ρ2xk

1

22, 3.4

whereρ2 :

Xpdx

XPx, dyρ2y/m. Using algorithms of diffusion approximation with respect to the first term in3.3we obtain4, page 88:

Tlim→∞T−1

vtT2 k1

ρxk σρwt, 3.5

where σρ2 :

Xpdx1/2

XPx, dyρ2y

XPx, dyρyR0Px, dyρy/m,R0 is a potential3, page 68, ofxnn∈Z,wtis a standard Wiener process. The last term in3.3

(8)

goes to zero asT → ∞. LetSt be the limiting process forSTtin3.3asT → ∞. Taking limit on both sides of3.3we obtain

TlimlnSTt

S0 lnSt

S0 σρwt−1

22, 3.6

whereσρ2andρ2are defined in3.4and3.5, respectively. From3.6we obtain

St S0eσρwt−1/2tρ2S0e−1/2tρ2eσρwt. 3.7

Thus,St satisfies the following stochastic differential equationSDE:

dSt St 1

2

σρ2ρ2

dtσρdwt

. 3.8

In this way we have the following corollary.

Corollary 3.1. The ergodic diffusion GMRP has the form

St S0e−1/2tρ2eσρwt, 3.9

and it satisfies the following SDE:

dSt St 1

2

σρρ2

dtσρdwt. 3.10

3.2. Merged Diffusion Approximation

Let us suppose that the balance condition satisfies the following:

ρk

Xkpkdx

XkP x, dy

ρ y

mk 0, 3.11

for all k 1,2, . . . , r where xnn∈Z is the supporting embedded Markov chain,pk is the stationary density for the ergodic componentXk,mkis defined in2, and conditions of reducibility ofX are fulfilled. Using the algorithms of merged averaging1,3,4we obtain from the second part of the right hand side in3.3:

Tlim

1 2T−1

vtT2

k1

ρ2xk

1 2

t

0

ρ2xsds, 3.12

(9)

where

ρ2k:

Xkpkdx

XkP x, dy

ρ2 y

mk 3.13

using the algorithm of merged diffusion approximation that1,3,4obtain from the first part of the right hand side in3.3:

Tlim→∞T−1

vtT2

k1

ρxk

t

0

σρxsdws, 3.14

where σρ2k:

Xk

pkdx

Xk

P x, dy

ρ2 y

Xk

P x, dy

ρ y

R0

Xk

P x, dy

ρ y

mk . 3.15

The third term in3.3goes to 0 asT → ∞. In this way, from3.3we obtain:

Tlim→∞lnSTt

S0 lnSt S0

t

0

σρxsdws − 1 2

t

0

ρ2xsds, 3.16

whereSt is the limitSTtasT → ∞. From3.16we obtain

St S0e−1/2t0ρ2xsdst0σρxsdws. 3.17

Stochastic differential equationSDEfor ˇSthas the following form:

dSt St 1

2

σρ2xtρ2xt

dtσρxtdwt, 3.18

wherext is a merged Markov process.

In this way we have the following corollary.

Corollary 3.2. Merged diffusion GMRP has the form3.17and satisfies the SDE3.18.

3.3. Diffusion Approximation under Double Averaging

Let us suppose that the phase space X {1,2, . . . , r} of the merged Markov process xt consists of one ergodic class with stationary distributionspk; k {1,2, . . . r}. Let us also suppose that the balance condition is fulfilled:

r k1

pkρk 0. 3.19

(10)

Then using the algorithms of diffusion approximation under double averagingsee3, page 188,1, page 49and4, page 93we obtain:

TlimlnSTt

S0 lnStˇ

S0 σˇρwt−1

2pˇ2t, 3.20

where

ˇ σρ2:r

k1

pkσρ2k, pˇ2:r

k1

pkρ2k, 3.21

andρ2kandσρ2kare defined in3.13and3.15, respectively. Thus, we obtain from3.20:

St ˇ S0e−1/2ˇp2tσˇρwt. 3.22 Corollary 3.3. The diffusion GMRP under double averaging has the form

St ˇ S0e−1/2ρˇ2tσˇρwt, 3.23 and satisfies the SDE

dStˇ Stˇ 1

2

ˇ σρ2ρˇ2

dtσˇρdwt. 3.24

4. Proofs

In this section we present proofs of results inSection 3. All the above-mentioned results are obtained from the general results for semi-Markov random evolutions3,4in series scheme.

The main steps of proof are1weak convergence ofSTt in Skorokhod spaceDR0,∞ 7, page 148;2solution of martingale problem for the limit processSt; 3characterization of the limit measure for the limit processSt; 4uniqueness of solution of martingale problem.

We also give here the rate of convergence in the diffusion approximation scheme.

4.1. Diffusion Approximation (DA)

Let

GTt :T−1

vtT2 k0

ρxk, GTn :GTτ

nT−1, GT0 lns, 4.1

and the balance condition is satisfied:

ρ:

X

pdx

X

P x, dy

ρ y

0. 4.2

(11)

Let us define the functions

φTs, x:fs T−1φ1fs, x T−2φf2s, x, 4.3

whereφ1f andφf2are defined as follows:

P−f1s, x ρxfs, P−2fs, x

−Ax A

fs, 4.4

where

A:

X

pdxAx, 4.5

andAx: ρ2x/2ρxR0−Iρxd2/ds2. From the balance condition4.2and equality ΠAAx 0 it follows that both equations in 4.3 simultaneously solvable and the solutionsφifs, xare bounded functions,i1,2.

We note that

f STn1

f GTn

1

Tρxndfxn

ds 4.6

and define

φTs, x:fs T−1φ1fs, x T−2φf2s, x, 4.7 whereφ1fs, xandφ2fs, xare defined in4.4and4.5, respectively. We note, thatGTn1GTn T−1ρxn.

4.2. Martingale Problem for the Limiting Problem

G0t

in DA

Let us introduce the family of functions:

ψTs, t:φT

GTtT2, xtT2

φT

GTst2, xsT2

tT2−1

jsT2 E

φT

GTj, xj1

φT GTj, xj

| Fj

,

4.8

whereφT are defined in4.7andGTj is defined by

GTτ

n/T 1

T n k0

ρxk. 4.9

(12)

Functions ψTs, t are FtT2-martingale by t. Taking into account the expression4.6and 4.7, we find the following expression:

ψTs, t f

GTtT2

f

GTsT2

φ1f

GTtT2, xtT2

φ1f

GTst2, xsT2

2

φ2f

GTtT2, xtT2

φf2

GTsT2, xsT2

T−1

tT2−1 jsT2

⎧⎨

ρ xj

df GTj dg E

φ1f

GTj, xj1

φf2 GTj, xj

| Fj

T−2

tT2−1 jsT2

⎧⎪

⎪⎩2−1ρ2 xjdf

GTj dg ρ

xj E

⎜⎝1f

GTj, xj1 dg | Fj

⎟⎠

E φf2

GTj, xj1

φ2f GTj, xj

| Fj

o T−2

f

GTtT2

f

GTsT2

φf1

GTtT2, xtT2

φ1f

GTsT2, xsT2

T−2

φ2f

GTtT2, xtT2

φ2f

GTsT2, xsT2

T−2 tT2−1

jsT2 Af

GTj O

T−2 , 4.10

whereOT−2is the sum of terms withT−2nd order. SinceψT0, tisFtT2-martingale with respect to measure QT, generated by process GTt in 4.1, then for every scalar linear continuous functionalηs0we have from4.8-4.10:

0ET

ψTs, tηs0 ET

f

GTtT2

f

GTsT2

T−2 tT2−1

jsT2 Af

GTj

ηs0

T−1ET

φ1f

GTtT2, xtT2

φf1

GTsT2, xsT2

η0s

T−2ET

φ2f

GTtT2, xtT2

φf2

GTsT2, xsT2

η0s

O T−2

,

4.11

(13)

whereET is a mean value by measureQT. If the processGTtT2 converges weakly to some processG0tasT → ∞, then from4.11we obtain

0ET (

fG0t−fG0s− t

s

AfG 0udu )

, 4.12

that is, the process

fG0t−fG0s− t

s

AfG 0udu 4.13

is a continuous QT-martingale. Since A is the second order differential operator and coefficientσ12is positively defined, where

σ12:

X

πdx (ρ2x

2 ρxR0ρx )

, 4.14

then the processG0tis a Wiener process with varianceσ12in4.14:G0t σwt. Taking into account the renewal theorem forvt, namely,T−1vtT2T→∞t/m, and the following representation

GTt T−1

vtT2

k0

ρxk T−1 tT2

k0

ρxk T−1

vtT2

ktT21ρxk 4.15

we obtain, replacingtT2byvtT2, that processGTtconverges weakly to the processG0t asT → ∞, which is the solution of such martingale problem:

f G0t

f G0s

t

s

A0f G0u

du 4.16

is a continuousQT-martingale, whereA0:A/m, and Ais defined in4.5-4.5.

4.3. Weak Convergence of the Processes

GTt

in DA

From the representation of the processGTtit follows that

ΔTs, t:|GTt−GTs|

****

**T−1

vtT2

kvsT21 ρxk

****

**

T−1sup

x ρx***v tT2

v sT2

−1***.

4.17

(14)

This representation gives the following estimation:

Tt1, t2||ΔTt2, t3| ≤T−2

sup

x

ρx 2***v

t3T2

v

t1T2***2. 4.18

Taking into account the same reasonings as in2we obtain the weak convergence of the processesGTtin DA.

4.4. Characterization of the Limiting Measure

Q

for

QT

as

T → ∞

in DA

From Section 4.3 see also Section 4.1.4 of 2 it follows that there exists a sequence Tn

such that measures QTn converge weakly to some measure Q onDR0,∞ asT → ∞, whereDR0,∞is the Skorokhod space7, page 148. This measure is the solution of such martingale problem: the following process

ms, t:f G0t

f G0s

t

s

A0f G0u

du 4.19

is aQ-martingale for allfgC2Rand

Ems, tη0s0, 4.20

for scalar continuous bounded functionalηs0,Eis a mean value by measureQ. From4.19it follows thatETmTs, tηs00, and it is necessary to show that the limiting passing in4.1goes to the process in3.12asT → ∞. From equality4.11we find that limTn→∞ETnms, tηs0 Ems, tηs0. Moreover, from the following expression

***ETms, tηs0Ems, tηs0***≤***

ETE

ms, tηs0***ET***ms, tmTs, t******ηs0***−→T0, 4.21 we obtain that there exists the measureQonDR0,∞which solves the martingale problem for the operatorA0or, equivalently, for the processG0tin the form4.12. Uniqueness of the solution of the martingale problem follows from the fact that operatorA0generates the unique semigroup with respects to the Wiener process with varianceσ12in4.14. As long as the semigroup is unique then the limit processG0tis unique. See3, Chapter 1.

4.5. Calculation of the Quadratic Variation for GMRP

IfGTn GTT−1τ

n, the sequence

mTn:GTnGT0n−1

k0

E

GTk1GTk | Fk

, GT0 g, 4.22

(15)

isFn-martingale, where Fn : σ{xk, θk; 0 ≤ kn}. From the definition it follows that the characteristicmTnof the martingalemTnhas the form

+ mTn,

n−1

k0

E

mTk1mTk2

| Fk

. 4.23

To calculatemTnlet us representmTnin4.22in the form of martingale-difference:

mTn n−1

k0

GTk1E

GTk1| Fk

. 4.24

From representation

GTn1GTn 1

Tρxn 4.25

it follows thatEGTk1| Fk GTkT−1ρxk, that is why GTk1E

GTk1| Fk

T−1

ρxkP ρxk

. 4.26

Since from4.22it follows that

mTk1mTk GTk1E

GTk1| Fk

T−1

ρxkP ρxk

, 4.27

then substituting4.27in4.23we obtain +

mTn, T−2

n−1 k0

I−Pρxk 2. 4.28

In an averaging schemesee2for GMRP in the scale of timetTwe obtain thatmTtTgoes to zero asT → ∞in probability, which follows from4.27:

+ mTtT,

T−2

tT−1

k0

I−Pρxk 2−→0 asT −→∞ 4.29

for alltR. In the diffusion approximation scheme for GMRP in scale of timetT2 from 4.27we obtain that characteristicmTtT2does not go to zero asT → ∞since

- mTtT2

. T−2

tT2−1

k0

I−Pρxk 2−→12, 4.30

whereσ12:

XπdxIPρx2.

(16)

4.6. Rates of Convergence for GMRP

Consider the representation4.22for martingalemTn. It follows that

GTn gmTnn−1

k0

E

GTk1GTk| Fk

. 4.31

In diffusion approximation scheme for GMRP the limit for the processGTtT2asT → ∞will be diffusion processSt see 3.10. Ifm0tis the limiting martingale formTtT2in4.22as T → ∞, then from4.31and3.10we obtain

E

GTtT2St

E

mTtT2m0t

T−1 tT2−1

k0

ρxkSt. 4.32

SinceEmTtT2m0t 0,becausemTtT2 andm0tare zero-mean martingalesthen from 4.32we obtain:

****E

GTtT2St **

**≤T−1

****

**

tT2−1

k0

ρxkStT

****

**. 4.33 Taking into account the balance condition

Xπdxρx 0 and the central limit theorem for a Markov chain4, page 98, we obtain

****

**

tT2−1

k0

ρxkStT

****

**C1t0, 4.34 whereC1t0is a constant depending ont0,t∈0, t0. From4.33,4.2, and4.32we obtain:

****E

GTtT2St **

**≤T−1C1t0. 4.35 Thus, the rates of convergence in diffusion scheme has the orderT−1.

5. Merged Diffusion Geometric Markov Renewal Process in the Case of Two Ergodic Classes

5.1. Two Ergodic Classes

LetPx, A: P{xn1A|xn x}be the transition probabilities of supporting embedded reducible Markov chain{xn}n≥0in the phase spaceX. Let us have two ergodic classesX0and X1of the phase space such that:

XX0X1, X0X1∅. 5.1

(17)

Let{X {0,1},V} be the measurable merged phase space. A stochastic kernelP0x, Ais consistent with the splitting5.1in the following way:

P0x, Xk 1k:

⎧⎨

1, x∈Xk, 0, x /∈Xk,

k0,1. 5.2

Let the supporting embedded Markov chain xnn∈Z with the transition probabilities P0x, Abe uniformly ergodic in each classXk, k 0,1 and have a stationary distribution πkdxin the classesXk,k0,1:

πkA

Xk

πkdxP0x, A, AXk, k0,1. 5.3

Let the stationary escape probabilities of the embedded Markov chainxnn∈Zwith transition probabilitiesPx, A:P{xn1A|xnx}be positive and sufficiently small, that is,

qkA

Xk

πkdxPx, X\Xk>0, k0,1. 5.4

Let the stationary sojourn time in the classes of states be uniformly bounded, namely,

0≤C1mk:

Xk

πkdxmx≤C2, k0,1, 5.5

where

mx:

0

Gxtdt. 5.6

5.2. Algorithms of Phase Averaging with Two Ergodic Classes

The merged Markov chainxnn∈Zin merged phase spaceXis given by matrix of transition probabilities

P pkr

k,r0,1;

p01 1−p11

X1

π1dxPx, X0 1−

X1

π1dxPx, X1;

p01 1−p00

X0

π0dxPx, X1 1−

X0

π0dxPx, X0.

5.7

(18)

Aspkr/0,k0,1, thenxnhas virtual transitions. IntensitiesΛkof sojourn timesθk,k0,1, of the merged MRP are calculated as follows:

Λk 1

mk, mk

Xk

πkdxmx, k0,1. 5.8

And, finally, the merged MRP xnn∈Z in the merged phase space X is given by the stochastic matrix

Qt Qkr

k,r0,1:pkr

1−eΛkt

, k, r0,1. 5.9

Hence, the initial semi-Markov system is merged to a Markov system with two classes.

5.3. Merged Diffusion Approximation in the Case of Two Ergodic Classes

The merged diffusion GMRP in the case of two ergodic classes has the form:

St S0e−1/20tρ2xsds0tσρxsdws 5.10

which satisfies the stochastic differential equationSDE:

dSt St 1

2

σρ2xtρ2xt

dtσρxtdwt, 5.11

where

ρ21:

X1

p1dx

X1

P x, dy

ρ2 y

m1 ,

ρ20:

X0

p0dx

X0

P x, dy

ρ2 y

m0 ,

σ2ρ1:

X1

p1dx

X1

P x, dy

ρ2 y

X1

P x, dy

ρ y

R0

X1

P x, dy

ρ y

m1 ,

σ2ρ0:

X0

p0dx

X0

P x, dy

ρ2 y

X0

P x, dy

ρ y

R0

X0

P x, dy

ρ y

m0 ,

5.12

xtis a merged Markov process inX {0,1}with stochastic matrixQt in5.9.

(19)

6. European Call Option Pricing Formulas for Diffusion GMRP 6.1. Ergodic Geometric Markov Renewal Process

As we have seen inSection 3, an ergodic diffusion GMRPSt satisfies the following SDE see3.10:

dSt St 1

2

σρρ2

dtσρdwt, 6.1

where ρ2

X

pdx

X

P x, dy

ρ2 y

m , 6.2

σρ2

X

pdx (1

2

X

P x, dy

ρ2 y

X

P x, dy

ρ y

R0P x, dy

ρ y

m . 6.3

The risk-neutral measurePfor the process in6.1is:

dP P exp

/

−θt−1 2θ2wt

0

, 6.4

where

θ

1/2

σρρ2

r σρ

. 6.5

UnderP, the processe−rtStis a martingale and the processwt wt θtis a Brownian motion. In this way, in the risk-neutral world, the processSthas the following form

dSt

St rdtσρdwt. 6.6

Using Black-Scholes formulasee8we obtain the European call option pricing formula for our model6.6:

CS0ΦdKe−rTΦd, 6.7

where

d lnS0/K

r 1/2σρt σρ

t ,

d lnS0/K

r−1/2σρt σρ

t ,

6.8

Φxis a normal distribution andσρis defined in6.3.

参照

関連したドキュメント

Specifically, our main result in this case, Theorem 2.4, establishes the pre- cise convergence rate of the normalised probability mass function of the approximating Markov chain to

I give a proof of the theorem over any separably closed field F using ℓ-adic perverse sheaves.. My proof is different from the one of Mirkovi´c

Gauss’ functional equation (used in the study of the arithmetic-geometric mean) is generalized by replacing the arithmetic mean and the geometric mean by two arbi- trary means..

This is a typical behavior for processes comprising both jump and diffusion part, and for general open sets one cannot expect a scale-invariant result: the boundary Harnack

The focus has been on some of the connections between recent work on general state space Markov chains and results from mixing processes and the implica- tions for Markov chain

Keywords: Lévy processes, stable processes, hitting times, positive self-similar Markov pro- cesses, Lamperti representation, real self-similar Markov processes,

We approach this problem for both one-dimensional (Section 3) and multi-dimensional (Section 4) diffusions, by producing an auxiliary coupling of certain processes started at

The main problem upon which most of the geometric topology is based is that of classifying and comparing the various supplementary structures that can be imposed on a